Illinois Statewide

Technical Reference Manual

for Energy Efficiency

Version 2.0

June 7th, 2013

Effective: June 1st, 2013

[INTENTIONALLY LEFT BLANK]

TABLE OF CONTENTS

1	PURPOSE OF THE TRM
1.1	Enabling ICC Policy14
1.2	Development Process
2	USING THE TRM
2.1	Organizational Structure16
2.2	Measure Code Specification17
2.3	Components of TRM Measure Characterizations
2.4	Variable Input Tables
2.	4.1 C&I Custom Value Use in Measure Implementation19
2.	4.2 Custom Variables
2.5	Program Delivery & Baseline Definitions27
2.6	High Impact Measures
3	ASSUMPTIONS
3	
3.1	Footnotes & Documentation of Sources
3.2	General Savings Assumptions
3.3	Shifting Baseline Assumptions
3.	3.1 CFL and T5/T8 Linear Fluorescents Baseline Assumptions
	3.2 Early Replacement Baseline Assumptions 32
3.	3.3 Furnace Baseline
3.4	Glossary
3.5	Electrical Loadshapes (kWh)
3.6	Summer Peak Period Definition (kW)47
3.7	Heating and Cooling Degree-Day Data47
3.8	O&M Costs and the Weighted Average Cost of Capital (WACC)53
3.9	Interactive Effects
4	COMMERCIAL AND INDUSTRIAL MEASURES55
4.1	Agricultural End Use
4.	Engine Block Timer for Agricultural Equipment

4.1.2	High Volume Low Speed Fans	57
4.1.3	High Speed Fans	
4.1.4	Live Stock Waterer	
4.2 Food	l Service Equipment End Use	63
4.2.1	Combination Oven	63
4.2.2	Commercial Solid and Glass Door Refrigerators & Freezers	65
4.2.3	Commercial Steam Cooker	69
4.2.4	Conveyor Oven	78
4.2.5	ENERGY STAR Convection Oven	80
4.2.6	ENERGY STAR Dishwasher	84
4.2.7	ENERGY STAR Fryer	89
4.2.8	ENERGY STAR Griddle	
4.2.9	ENERGY STAR Hot Food Holding Cabinets	
4.2.10	ENERGY STAR Ice Maker	
4.2.11	High Efficiency Pre-Rinse Spray Valve	
4.2.12	Infrared Charbroiler	
4.2.13	Infrared Rotisserie Oven	
4.2.14	Infrared Salamander Broiler	
4.2.15	Infrared Upright Broiler	
4.2.16	Kitchen Demand Ventilation Controls	
4.2.17	Pasta Cooker	
4.2.18	Rack Oven - Double Oven	
4.3 Hot	Water	126
4.3.1	Storage Water Heater	126
4.3.2	Low Flow Faucet Aerators	130
4.3.3	Low Flow Showerheads	138
4.3.4	Commercial Pool Covers	145
4.3.5	Tankless Water Heater	148
	C End Use	
4.4.1	Air Conditioner Tune-up	
4.4.2	Space Heating Boiler Tune-up	
4.4.3	Process Boiler Tune-up	
4.4.4	Boiler Lockout/Reset Controls	
4.4.5	Condensing Unit Heaters	167
4.4.6	Electric Chiller	
4.4.7	ENERGY STAR and CEE Tier 1 Room Air Conditioner	
4.4.8	Guest Room Energy Management (PTAC & PTHP)	
4.4.9	Heat Pump Systems	
4.4.10	High Efficiency Boiler	
4.4.11	High Efficiency Furnace	
4.4.12	Infrared Heaters (all sizes), Low Intensity	
4.4.13	Package Terminal Air Conditioner (PTAC) and Package Terminal Heat Pump (PTHP)	
4.4.14	Pipe Insulation	
4.4.15	Single-Package and Split System Unitary Air Conditioners	
4.4.16	Steam Trap Replacement or Repair	
4.4.17	Variable Speed Drives for HVAC	232
	Sine Find Use	
-	ting End Use	
4.5.1	Commercial ENERGY STAR Compact Fluorescent Lamp (CFL)	
4.5.2	Fluorescent Delamping	248

4.5.3	High Performance and Reduced Wattage T8 Fixtures and Lamps	253
4.5.4	LED Bulbs and Fixtures	266
4.5.5	Commercial LED Exit Signs	279
4.5.6	LED Traffic and Pedestrian Signals	283
4.5.7	Lighting Power Density	288
4.5.8	Miscellaneous Commercial/Industrial Lighting	294
4.5.9	Multi-Level Lighting Switch	298
4.5.10	Occupancy Sensor Lighting Controls	
4.5.11	Solar Light Tubes	310
4.5.12	T5 Fixtures and Lamps	
A.C. Dofr	incretion End Line	224
4.6.1	geration End Use Automatic Door Closer for Walk-In Coolers and Freezers	
4.6.2	Beverage and Snack Machine Controls	
4.6.3	Door Heater Controls for Cooler or Freezer	
4.6.4	Electronically Commutated Motors (ECM) for Walk-in and Reach-in Coolers / Freezers	
-	ENERGY STAR Refrigerated Beverage Vending Machine	
4.6.5	5 5 5	
4.6.6	Evaporator Fan Control	
4.6.7	Strip Curtain for Walk-in Coolers and Freezers	
4.7 Misc	ellaneous End Use	
4.7.1	VSD Air Compressor	343
5 RES	IDENTIAL MEASURES	
F 1 A mm	iances End Use	246
5.1.1	ENERGY STAR Air Purifier/Cleaner	346
5.1.1 5.1.2	ENERGY STAR Air Purifier/Cleaner ENERGY STAR and CEE Tier 2 and 3 Clothes Washers	346 349
5.1.1 5.1.2 5.1.3	ENERGY STAR Air Purifier/Cleaner ENERGY STAR and CEE Tier 2 and 3 Clothes Washers ENERGY STAR Dehumidifier	346 349 356
5.1.1 5.1.2 5.1.3 5.1.4	ENERGY STAR Air Purifier/Cleaner ENERGY STAR and CEE Tier 2 and 3 Clothes Washers ENERGY STAR Dehumidifier ENERGY STAR Dishwasher	346 349 356 361
5.1.1 5.1.2 5.1.3 5.1.4 5.1.5	ENERGY STAR Air Purifier/Cleaner ENERGY STAR and CEE Tier 2 and 3 Clothes Washers ENERGY STAR Dehumidifier ENERGY STAR Dishwasher ENERGY STAR Freezer	
5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.6	ENERGY STAR Air Purifier/Cleaner ENERGY STAR and CEE Tier 2 and 3 Clothes Washers ENERGY STAR Dehumidifier ENERGY STAR Dishwasher ENERGY STAR Freezer ENERGY STAR and CEE Tier 2 Refrigerator	
5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7	ENERGY STAR Air Purifier/Cleaner ENERGY STAR and CEE Tier 2 and 3 Clothes Washers ENERGY STAR Dehumidifier ENERGY STAR Dishwasher ENERGY STAR Freezer ENERGY STAR and CEE Tier 2 Refrigerator ENERGY STAR and CEE Tier 1 Room Air Conditioner	
5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.1.8	ENERGY STAR Air Purifier/Cleaner ENERGY STAR and CEE Tier 2 and 3 Clothes Washers ENERGY STAR Dehumidifier ENERGY STAR Dishwasher ENERGY STAR Freezer ENERGY STAR and CEE Tier 2 Refrigerator ENERGY STAR and CEE Tier 1 Room Air Conditioner Refrigerator and Freezer Recycling	
5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7	ENERGY STAR Air Purifier/Cleaner ENERGY STAR and CEE Tier 2 and 3 Clothes Washers ENERGY STAR Dehumidifier ENERGY STAR Dishwasher ENERGY STAR Freezer ENERGY STAR and CEE Tier 2 Refrigerator ENERGY STAR and CEE Tier 1 Room Air Conditioner	
5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.1.8 5.1.9	ENERGY STAR Air Purifier/Cleaner ENERGY STAR and CEE Tier 2 and 3 Clothes Washers ENERGY STAR Dehumidifier ENERGY STAR Dishwasher ENERGY STAR Freezer ENERGY STAR and CEE Tier 2 Refrigerator ENERGY STAR and CEE Tier 1 Room Air Conditioner Refrigerator and Freezer Recycling Room Air Conditioner Recycling	
5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.1.8 5.1.9	ENERGY STAR Air Purifier/Cleaner ENERGY STAR and CEE Tier 2 and 3 Clothes Washers ENERGY STAR Dehumidifier ENERGY STAR Dishwasher ENERGY STAR Freezer ENERGY STAR and CEE Tier 2 Refrigerator ENERGY STAR and CEE Tier 1 Room Air Conditioner Refrigerator and Freezer Recycling Room Air Conditioner Recycling	
5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.1.8 5.1.9 5.2 Cons 5.2.1	ENERGY STAR Air Purifier/Cleaner ENERGY STAR and CEE Tier 2 and 3 Clothes Washers ENERGY STAR Dehumidifier ENERGY STAR Dishwasher ENERGY STAR Freezer ENERGY STAR and CEE Tier 2 Refrigerator ENERGY STAR and CEE Tier 1 Room Air Conditioner Refrigerator and Freezer Recycling Room Air Conditioner Recycling Smart Strip	
5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.1.8 5.1.9 5.2 Cons 5.2.1	ENERGY STAR Air Purifier/Cleaner ENERGY STAR and CEE Tier 2 and 3 Clothes Washers ENERGY STAR Dehumidifier ENERGY STAR Dishwasher ENERGY STAR Freezer ENERGY STAR and CEE Tier 2 Refrigerator ENERGY STAR and CEE Tier 1 Room Air Conditioner Refrigerator and Freezer Recycling Room Air Conditioner Recycling Smart Strip C End Use	
5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.1.8 5.1.9 5.2 Cons 5.2.1 5.3 HVA 5.3.1	ENERGY STAR Air Purifier/Cleaner ENERGY STAR and CEE Tier 2 and 3 Clothes Washers ENERGY STAR Dehumidifier ENERGY STAR Dishwasher ENERGY STAR Dishwasher ENERGY STAR Freezer ENERGY STAR and CEE Tier 2 Refrigerator ENERGY STAR and CEE Tier 1 Room Air Conditioner Refrigerator and Freezer Recycling Room Air Conditioner Recycling Sumer Electronics End Use Smart Strip C End Use Air Source Heat Pump.	
5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.1.8 5.1.9 5.2 Cons 5.2.1 5.3 HVA 5.3.1 5.3.2	ENERGY STAR Air Purifier/Cleaner ENERGY STAR and CEE Tier 2 and 3 Clothes Washers ENERGY STAR Dehumidifier ENERGY STAR Dishwasher ENERGY STAR Dishwasher ENERGY STAR Freezer ENERGY STAR and CEE Tier 2 Refrigerator ENERGY STAR and CEE Tier 1 Room Air Conditioner Refrigerator and Freezer Recycling Room Air Conditioner Recycling Sumer Electronics End Use Smart Strip C End Use Air Source Heat Pump Boiler Pipe Insulation	
5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.1.8 5.1.9 5.2 Cons 5.2.1 5.3 HVA 5.3.1 5.3.2 5.3.3	ENERGY STAR Air Purifier/Cleaner ENERGY STAR and CEE Tier 2 and 3 Clothes Washers ENERGY STAR Dehumidifier ENERGY STAR Dishwasher ENERGY STAR Dishwasher ENERGY STAR Freezer ENERGY STAR and CEE Tier 2 Refrigerator ENERGY STAR and CEE Tier 1 Room Air Conditioner Refrigerator and Freezer Recycling Room Air Conditioner Recycling Sumer Electronics End Use Smart Strip C End Use Air Source Heat Pump Boiler Pipe Insulation Central Air Conditioning > 14.5 SEER	
5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.1.8 5.1.9 5.2 Cons 5.2.1 5.3 HVA 5.3.1 5.3.2 5.3.3 5.3.4	ENERGY STAR Air Purifier/Cleaner ENERGY STAR and CEE Tier 2 and 3 Clothes Washers ENERGY STAR Dehumidifier ENERGY STAR Dishwasher ENERGY STAR Freezer ENERGY STAR and CEE Tier 2 Refrigerator ENERGY STAR and CEE Tier 1 Room Air Conditioner Refrigerator and Freezer Recycling Room Air Conditioner Recycling Sumer Electronics End Use Smart Strip C End Use Air Source Heat Pump Boiler Pipe Insulation Central Air Conditioning > 14.5 SEER Duct Insulation and Sealing	
5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.1.8 5.1.9 5.2 Cons 5.2.1 5.3 HVA 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5	ENERGY STAR Air Purifier/Cleaner ENERGY STAR and CEE Tier 2 and 3 Clothes Washers ENERGY STAR Dehumidifier ENERGY STAR Dishwasher ENERGY STAR freezer ENERGY STAR and CEE Tier 2 Refrigerator ENERGY STAR and CEE Tier 1 Room Air Conditioner Refrigerator and Freezer Recycling Room Air Conditioner Recycling Sumer Electronics End Use Smart Strip C End Use Air Source Heat Pump Boiler Pipe Insulation Central Air Conditioning > 14.5 SEER Duct Insulation and Sealing Furnace Blower Motor	
5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.1.8 5.1.9 5.2 Cons 5.2.1 5.3 HVA 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5 5.3.6	ENERGY STAR Air Purifier/Cleaner ENERGY STAR and CEE Tier 2 and 3 Clothes Washers ENERGY STAR Dehumidifier. ENERGY STAR Dishwasher ENERGY STAR Freezer. ENERGY STAR and CEE Tier 2 Refrigerator ENERGY STAR and CEE Tier 1 Room Air Conditioner Refrigerator and Freezer Recycling Room Air Conditioner Recycling Smart Strip C End Use Air Source Heat Pump. Boiler Pipe Insulation Central Air Conditioning > 14.5 SEER. Duct Insulation and Sealing Furnace Blower Motor Gas High Efficiency Boiler	
5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.1.8 5.1.9 5.2 Cons 5.2.1 5.3 HVA 5.3.1 5.3.2 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5 5.3.6 5.3.7	ENERGY STAR Air Purifier/Cleaner ENERGY STAR and CEE Tier 2 and 3 Clothes Washers ENERGY STAR Dehumidifier. ENERGY STAR Dishwasher ENERGY STAR Freezer. ENERGY STAR and CEE Tier 2 Refrigerator ENERGY STAR and CEE Tier 1 Room Air Conditioner Refrigerator and Freezer Recycling Room Air Conditioner Recycling Smart Strip C End Use Air Source Heat Pump. Boiler Pipe Insulation Central Air Conditioning > 14.5 SEER. Duct Insulation and Sealing Furnace Blower Motor Gas High Efficiency Boiler Gas High Efficiency Furnace.	
5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.1.8 5.1.9 5.2 Cons 5.2.1 5.3 HVA 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5 5.3.6 5.3.7 5.3.8	ENERGY STAR Air Purifier/Cleaner ENERGY STAR and CEE Tier 2 and 3 Clothes Washers ENERGY STAR Dehumidifier ENERGY STAR Dishwasher ENERGY STAR Dishwasher ENERGY STAR and CEE Tier 2 Refrigerator ENERGY STAR and CEE Tier 1 Room Air Conditioner Refrigerator and Freezer Recycling Room Air Conditioner Recycling Smart Strip C End Use Air Source Heat Pump Boiler Pipe Insulation Central Air Conditioning > 14.5 SEER. Duct Insulation and Sealing Furnace Blower Motor Gas High Efficiency Boiler Ground Source Heat Pump Ground Source Heat Pump	
5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.1.8 5.1.9 5.2 Cons 5.2.1 5.3 HVA 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5 5.3.6 5.3.7 5.3.8 5.3.9	ENERGY STAR Air Purifier/Cleaner ENERGY STAR and CEE Tier 2 and 3 Clothes Washers ENERGY STAR Dehumidifier ENERGY STAR Dishwasher ENERGY STAR Dishwasher ENERGY STAR and CEE Tier 2 Refrigerator ENERGY STAR and CEE Tier 1 Room Air Conditioner Refrigerator and Freezer Recycling Room Air Conditioner Recycling Room Air Conditioner Recycling Smart Strip C End Use Air Source Heat Pump Boiler Pipe Insulation Central Air Conditioning > 14.5 SEER Duct Insulation and Sealing Furnace Blower Motor Gas High Efficiency Boiler Gas High Efficiency Furnace Ground Source Heat Pump High Efficiency Bathroom Exhaust Fan	
5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.1.8 5.1.9 5.2 Cons 5.2.1 5.3 HVA 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5 5.3.6 5.3.7 5.3.8	ENERGY STAR Air Purifier/Cleaner ENERGY STAR and CEE Tier 2 and 3 Clothes Washers ENERGY STAR Dehumidifier ENERGY STAR Dishwasher ENERGY STAR Dishwasher ENERGY STAR and CEE Tier 2 Refrigerator ENERGY STAR and CEE Tier 1 Room Air Conditioner Refrigerator and Freezer Recycling Room Air Conditioner Recycling Smart Strip C End Use Air Source Heat Pump Boiler Pipe Insulation Central Air Conditioning > 14.5 SEER. Duct Insulation and Sealing Furnace Blower Motor Gas High Efficiency Boiler Ground Source Heat Pump Ground Source Heat Pump	

5.4 Hot	Water End Use	463
5.4.1	Domestic Hot Water Pipe Insulation	463
5.4.2	Gas Water Heater	467
5.4.3	Heat Pump Water Heaters	471
5.4.4	Low Flow Faucet Aerators	477
5.4.5	Low Flow Showerheads	
5.4.6	Water Heater Temperature Setback	
5.4.7	Water Heater Wrap	496
5.5 Light	ing End Use	
5.5.1	ENERGY STAR Compact Fluorescent Lamp (CFL)	
5.5.2	ENERGY STAR Specialty Compact Fluorescent Lamp (CFL)	
5.5.3	ENERGY STAR Torchiere	528
5.5.4	Exterior Hardwired Compact Fluorescent Lamp (CFL) Fixture	535
5.5.5	Interior Hardwired Compact Fluorescent Lamp (CFL) Fixture	544
5.5.6	LED Downlights	
5.5.7	LED Exit Signs	565
5.6 Shel	End Use	570
5.6.1	Air Sealing	
5.6.2	Basement Sidewall Insulation	
5.6.3	Floor Insulation Above Crawlspace	588
5.6.4	Wall and Ceiling/Attic Insulation	595

TABLES & FIGURES

Table 1.1: Document Revision History	8
Table 1.2: Summary of Measure-Level Changes	9
Table 1.3: Summary of Measure Code Meanings	9
Table 1.4: Summary of Measure Revisions	9
Table 2.1: End-Use Categories in the TRM	16
Table 2.2: Measure Code Specification Key	17
Table 2.3: Allowable Custom C&I Variables	19
Table 2.4: Program Delivery Types	28
Table 2.5: Commercial and Industrial High Impact Measures	29
Table 2.6: Residential High Impact Measures	
Table 3.1: Early Replacement Baseline Criteria	32
Table 3.2: SAG Stakeholder List	37
Table 3.3: On and Off Peak Energy Definitions	
Table 3.4: Loadshapes by Season	39
Table 3.5: Loadshapes by Month and Day of Week	42
Table 3.6: Degree-Day Zones and Values by Market Sector	
Table 3.7: Heating Degree-Day Zones by County	51
Table 3.8: Cooling Degree-day Zones by County	52

Figure 1: Cooling Degree-Day Zones by County	
Figure 2: Heating Degree-Day Zones by County	

Acknowledgements

This document was created through a collaboration amongst the members of the Illinois Energy Efficiency Stakeholder Advisory Group (SAG). The SAG is an open forum where interested parties may participate in the evolution of Illinois' energy efficiency programs. Parties wishing to participate in the SAG process may do so by visiting www.ilsag.org/questions and contacting the Independent Facilitator at Annette.beitel@futureenergyenterprises.biz. Parties wishing to participate in the Technical Advisory Committee (TAC), a subcommittee of the SAG, may do so by contacting the TRM Administrator at nclace@veic.org.

SAG Stakeholders ¹
Ameren Illinois Company (Ameren)
Center for Neighborhood Technology (CNT)
Citizen's Utility Board (CUB)
City of Chicago
Commonwealth Edison Company (ComEd)
Energy Resources Center at the University of Illinois, Chicago (ERC)
Environment IL
Environmental Law and Policy Center (ELPC)
Future Energy Enterprises LLC
Illinois Attorney General's Office (AG)
Illinois Commerce Commission Staff (ICC Staff)
Illinois Department of Commerce and Economic Opportunity (DCEO)
Independent Evaluators (Navigant and Opinion Dynamics Corporation)
Integrys (Peoples Gas and North Shore Gas)
Metropolitan Mayor's Caucus (MMC)
Midwest Energy Efficiency Association (MEEA)
Natural Resources Defense Council (NRDC)
Nicor Gas

¹ Being an open forum, this list of SAG stakeholders and participants may change at any time.

Document Title	Applicable to PY Beginning
Illinois_Statewide_TRM_Effective_060112_Version_1.0_091412_Clean.doc	6/1/12
Illinois_Statewide_TRM_Effective_060113_Version_2.0_060713_Clean.docx	6/1/13

Table 1.1: Document Revision History

Summary of Measure Revisions

The following tables summarize the evolution of measures that are new, revised or errata. This version of the TRM contains 45 measure-level changes as described in the following table.

Change Type	# Changes
Errata	13
Revision	25
New Measure	7
Total Changes	45

Table 1.2: Summary of Measure-Level Changes

The 'Change Type' column indicates what kind of change each measure has gone through. Specifically, when a measure error was identified and the TAC process resulted in a consensus, the measure is identified here as an 'Errata'. In these instances the measure code indicates that a new version of the measure has been published, and that the effective date of the measure dates back to June 1st, 2012. Measures that are identified as 'Revised' were included in the first edition of the TRM, and have been updated for this edition of the TRM. Both 'Revised' and 'New Measure(s)' have an effective date of June 1st, 2013. The meaning of the measure code in each of these instances is summarized in the following table.

Version Number	Meaning
& Effective Date	
V01-120601	Nothing has changed since first release.
V02-120601	The measure had an errata that is applicable to the program year beginning 6/1/12.
V02-130601	The measure was revised and is applicable to the program year beginning 6/1/13.
V03-130601	The measure had an errata, and was also subsequently revised effective 6/1/13.

The following table provides an overview of the 46 measure-level changes that are included in this version of the TRM.

Mkt	End Use	Measure Name	Measure Code	Change Type	Explanation
C&I	Food Service Equipment	Commercial Steam Cooker	CI-FSE-STMC-V02-120601	Errata	Revised 12 hours for the unknown category to a simple average of all other restaurant types which is 6 hours per day. Added "Full Service, Expanded Menu" category (7 hours per day) to the Hours per day Table.
C&I	Food Service Equipment	High Efficiency Pre Rinse Spray Valve	CI-FSE-SPRY-V02-120601	Revision	Changed the savings algorithm. Updated code to IECC 2012 (no change in code but updated language)
C&I	Hot Water	C&I Low Flow Faucet Aerators	CI-HWLFFA-V02-120601	Errata	Fixed error in algorithm
C&I	Hot Water	C&I Low Flow Faucet Aerators	CI-HWLFFA-V03-130601	Revision	Change algorithm and included water consumption defaults by building type

Table 1.4: Summary of Measure Revisions

Mkt	End Use	Measure Name	Measure Code	Change Type	Explanation
C&I	Hot Water	C&I Low Flow Showerheads	CI-HWLFSH-V02-120601	Errata	Fixed error in algorithm
C&I	Hot Water	Pool Covers	CI-HWPLCV-V01-130601	New Measure	New Measure
C&I	Hot Water	Tankless Water Heater	CI-HWTKWH-V02- 120601	Errata	Updated incremental costs. Updated code reference to IECC 2012 (standard didn't change)
C&I	HVAC	High Efficiency Boiler	CI-HVC-BOIL-V02-120601	Errata	Added different baseline for Steam boilers
C&I	HVAC	High Efficiency Boiler	CI-HVC-BOIL-V03-130601	Revision	Clarification of Efficiency Rating terminology in formula and tables. Delay of midyear federal baseline shift until June 2013. Add EFLH values for the multifamily building type.as being equivalent to the Lodging Hotel/Motel building type and clarifies that this measure applies to the central boiler in the multifamily building type
C&I	HVAC	High Efficiency Furnace	CI-HVC-FRNC-V02-130601	Revision	This measure was updated to include the agreed on language to describe situations where early retrofit applies and the reference to ENERGY STAR was removed as a program requirement
C&I	HVAC	Package Terminal Air Conditioner (PTAC) & Package Terminal Heat Pump (PTHP)	CI-HVC-PTAC-V02-120601	Errata	Corrected error in the savings algorithm
C&I	HVAC	Package Terminal Air Conditioner (PTAC) and Package Terminal Heat Pump (PTHP)	CI-HVC-PTAC-V03-130601	Revision	Updated code to IECC 2012
C&I	HVAC	Pipe Insulation	CI-HWE-PINS-V01-130601	New Measure	New measure.
C&I	HVAC	Process Boiler Tune-up	CI-HVC-PBTU-V02-130601	Revision	Revised baseline from "no maintenance contract for 36 months" to "no tune up for 36 months"
C&I	HVAC	Space Heating Boiler Tune Up	CI-HVC-BLRT-V02-130601	Revision	Revised baseline from "no maintenance contract for 36 months" to "no tune up for 36 months"
C&I	HVAC	Steam Trap Replacement or Repair	CI-HVC-STRE-V02-130601	Revision	Added multifamily specifically to building type list
C&I	Lighting	C&I Lighting Table	N/A	Revision	Added new building types and fixed footnotes.

Mkt	End Use	Measure Name	Measure Code	Change Type	Explanation
C&I	Lighting	Commercial ENERGY STAR Compact Fluorescent Lamp (CFL)	CI-LTG-CCFL-V02-130601	Revision	Added clarification on carryover and RES v C&I split. Moved high lumen bulbs to specialty and added assumptions to 2017.
C&I	Lighting	Commercial LED Exit Signs	CI-LTG-LEDE-V01-130601	New measure	New measure
C&I	Lighting	Fluorescent Delamping	CI-LTG-DLMP-V01-130601	New measure	New measure
C&I	Lighting	Multi-level Lighting Switch	CI-LTG-MLLC-V01-130601	New measure	New measure
C&I	Lighting	Solar Light Tubes	CI-LTG-STUB-V01-130601	New measure	New measure
C&I	Refrigeration	Strip Curtain for Walk-in Coolers and Freezers	CI-RFG-CRTN-V02-130601	Revision	Added per door incremental costs
RES	Appliances	ENERGY STAR and CEE Tier 1 Room Air Conditioner	RS-APL-ESRA-V02-130601	Revision	Baseline increased to ENERGY STAR 3.0 and incremental costs decreased.
RES	Appliances	ENERGY STAR Dehumidifier	RS-APL-ESDH-V02-130601	Revision	Updated based on new Federal Standard
RES	Appliances	Refrigerator and Freezer Recycling	RS-APL-RFRC-V02-130601	Revision	Updated regression equation
RES	Hot Water	RES Low Flow Faucet Aerators	RS-HWE-LFFA-V02-130601	Revision	Added clarification on Efficiency Kits. Split water consumption in to kitchen v bathroom
RES	Hot Water	RES Low Flow Showerheads	RS-HWE-LFSH-V02-130601	Revision	Added clarification on Efficiency Kits.
RES	HVAC	Air Source Heat Pump	RS-HVC-ASHP-V02-120601	Revision	Updated to include ER baseline and the derating factor has been removed.
RES	HVAC	Boiler Pipe Insulation	RS-HVC-PINS-V01-130601	New Measure	New measure.
RES	HVAC	Central Air Conditioning > 14.5 SEER	RS-HVC-CAC1-V02-130601	Revision	The early replacement baseline has been added.
RES	HVAC	Gas High Efficiency Boiler	RS-HVC-GHEB-V02-120601	Errata	Added installation costs to cost assumption.
RES	HVAC	Gas High Efficiency Furnace	RS-HVC-GHEF-V02-120601	Errata	Added installation costs to cost assumption.
RES	HVAC	Ground Source Heat Pump	RS-HVC-GSHP-V02-130601	Revision	The early replacement baseline has been added.
RES	HVAC	Programmable Thermostats	RS-HVC-PROG-V02-130601	Revision	Added thermostat reprogramming

Mkt	End Use	Measure Name	Measure Code	Change Type	Explanation
RES	Lighting	ENERGY STAR Compact Fluorescent Lamp (CFL)	RS-LTG-ESCF-V02-130601	Revision	Added clarification on carryover, RES v C&I split, and Efficiency Kits. Moved high lumen bulbs to specialty and added assumptions to 2017.
RES	Lighting	Exterior Hardwired Compact Fluorescent Lamp (CFL) Fixture	RS-LTG-EFIX-V02-120601	Errata	Added direct install In Service Rate
RES	Lighting	Interior Hardwired Compact Fluorescent Lamp (CFL) Fixture	RS-LTG-IFIX-V02-120601	Errata	Added direct install In Service Rate
RES	Lighting	RES ENERGY STAR Specialty Compact Fluorescent Lamp (CFL)	RS-LTG-ESCC-V02-130601	Revision	Added clarification on carryover, RES v C&I split and Efficiency Kits. Added high lumen bulbs and added assumptions to 2017.
RES	Shell	Basement Sidewall Insulation	RS-SHL-BINS-V02-120601	Errata	Adjustment factor added.
RES	Shell	Basement Sidewall Insulation	RS-SHL-BINS-V03-130601	Revision	Adjustment factor added. Language added to encourage custom application of the measure where possible.
RES	Shell	Floor Insulation Above Crawlspace	RS-SHL-FINS-V02-120601	Errata	Adjustment factor added.
RES	Shell	Floor Insulation Above Crawlspace	RS-SHL-FINS-V03-130601	Revision	Adjustment factor added. Language added to encourage custom application of the measure where possible.
RES	Shell	Wall and Ceiling/Attic Insulation	RS-SHL-AINS-V02-120601	Errata	Adjustment factor added.
RES	Shell	Wall and Ceiling/Attic Insulation	RS-SHL-AINS-V03-130601	Revision	Adjustment factor added. Language added to encourage custom application of the measure where possible.

1 Purpose of the TRM

The purpose of the Illinois Statewide Technical Reference Manual (TRM) is to provide a transparent and consistent basis for calculating energy (electric kilowatt-hours (kWh) and natural gas therms) and capacity (electric kilowatts (kW)) savings generated by the State of Illinois' energy efficiency programs² which are administered by the Department of Commerce and Economic Opportunity (DCEO) and the state's largest electric and gas Utilities³ (collectively, Program Administrators).

The TRM is a technical document that is filed with the Illinois Commerce Commission (Commission or ICC) and is intended to fulfill a series of objectives, including:

- "Serve as a common reference document for all... stakeholders, [Program Administrators], and the Commission, so as to provide transparency to all parties regarding savings assumptions and calculations and the underlying sources of those assumptions and calculations.
- Support the calculation of the Illinois Total Resource Cost test^[4] ("TRC"), as well as other cost-benefit tests in support of program design, evaluation and regulatory compliance. Actual cost-benefit calculations and the calculation of avoided costs will not be part of this TRM.
- Identify gaps in robust, primary data for Illinois, that can be addressed via evaluation efforts and/or other targeted end-use studies.
- [Provide] a process for periodically updating and maintaining records, and preserve a clear record of what deemed parameters are/were in effect at what times to facilitate evaluation and data accuracy reviews.
- ...[S]upport coincident peak capacity (for electric) savings estimates and calculations for electric utilities in a manner consistent with the methodologies employed by the utility's Regional Transmission Organization ("RTO"), as well as those necessary for statewide Illinois tracking of coincident peak capacity impacts."⁵

² 220 ILCS 5/8-103 and 220 ILCS 5/8-104.

³ In addition to DCEO, the Program Administrators include: Ameren Illinois, ComEd, Peoples Gas, North Shore Gas, and Nicor Gas (collectively, the Utilities).

⁴ The Illinois TRC test is defined in 220 ILCS 5/8-104(b) and 20 ILCS 3855/1-10.

⁵ Illinois Statewide Technical Reference Manual Request for Proposals, August 22, 2011, pages 3-4, <u>http://ilsag.org/yahoo_site_admin/assets/docs/TRM_RFP_Final_part_1.230214520.pdf</u>

1.1 Enabling ICC Policy

This Illinois Statewide Technical Reference Manual (TRM) was developed to comply with the Illinois Commerce Commission (ICC or Commission) Final Orders from the electric and gas Utilities'⁶ Energy Efficiency Plan dockets. In the Final Orders, the ICC required the utilities to work with DCEO and the SAG to develop a statewide TRM. *See, e.g.,* ComEd's Final Order (*Docket No. 10-0570, Final Order*⁷ at 59-60, *December 21, 2010*); Ameren's Final Order (*Docket No. 10-0568, Order on Rehearing*⁸ at 19, May 24, 2011); Peoples Gas/North Shore Gas' Final Order (*Docket No. 10-0564, Final Order*⁹ at 76, May 24, 2011), and Nicor's Final Order (*Docket No. 10-0562, Final Order*¹⁰ at 30, May 24, 2011).

As directed in the Utilities' Efficiency Plan Orders, the SAG had the opportunity to, and also participated in, every aspect of the development of the TRM. Interested members of the SAG participated in weekly teleconferences to review, comment, and participate in the development of the TRM. The active participants in the TRM were designated as the "Technical Advisory Committee" (TAC). The TAC participants were representatives from the following organizations: the Utilities (ComEd, Ameren IL, Nicor Gas, Peoples Gas/North Shore Gas), DCEO, the Illinois Attorney General's Office (AG), Natural Resources Defense Council (NRDC), the Environmental Law and Policy Center (ELPC), the Citizen's Utility Board (CUB), CNT Energy, the independent evaluators (Navigant and Opinion Dynamics Corporation), The University of Illinois at Chicago, and ICC Staff.

1.2 Development Process

The first edition of the IL-TRM was approved by the Commission in ICC Docket No. 12-0528. This document represents the second edition of the IL-TRM. It contains a series of new measures, as well as a series of updates to existing measures that were already present in the first edition.

Like the first edition, it is a result of an ongoing review process involving the Illinois Commerce Commission (ICC) Staff (Staff or ICC Staff), the Utilities, DCEO, the Evaluators, the SAG TAC, and the SAG. VEIC meets with the SAG and/or the TRM TAC at least once each month to create a high level of transparency and vetting in the development of this TRM. As measure requests are finalized leading up to the next update of the TRM, weekly TAC meetings are often scheduled to maximize the level of collaboration and visibility into the measure characterization process. Where consensus does not emerge on specific measures or issues, those items are identified in a memo, and are not included in the TRM. As a result, this TRM represents a broad consensus amongst the SAG and TAC participants. In keeping with the goal of transparency, all of the comments and their status to-date are available through the TAC SharePoint web site, <u>https://portal.veic.org</u>.

⁶ The Illinois Utilities subject to this TRM include: Ameren Illinois Company d/b/a Ameren Illinois (Ameren), Commonwealth Edison Company (ComEd), The Peoples Gas Light and Coke Company and North Shore Gas Company (Integrys), and Northern Illinois Gas Company d/b/a Nicor Gas.

⁷ <u>http://www.icc.illinois.gov/docket/files.aspx?no=10-0570&docld=159809</u>

⁸ http://www.icc.illinois.gov/docket/files.aspx?no=10-0568&docId=167031

⁹ <u>http://www.icc.illinois.gov/docket/files.aspx?no=10-0564&docld=167023</u>

¹⁰ http://www.icc.illinois.gov/docket/files.aspx?no=10-0562&docId=167027

2 Using the TRM

For each measure characterization, this TRM includes engineering algorithm(s) and a value(s) for each parameter in the equation(s)¹¹. These parameters have values that fall into one of three categories: a single deemed value, a lookup table of deemed values or an actual value such as the capacity of the equipment. The TRM makes extensive use of lookup tables because they allow for an appropriate level of measure streamlining and customization within the context of an otherwise prescriptive measure.

Accuracy is the overarching principle that governs what value to use for each parameter. When it is explicitly allowed within the text of the measure characterization, the preferred value is the actual or on-site value for the individual measure being implemented. The *deemed values*¹² in the lookup tables are the next most accurate choice, and in the absence of either an actual value or an appropriate value in a lookup table, the single, *deemed value* should be used. As a result, this single, *deemed value* can be thought of as a default value for that particular input to the algorithm.

A single *deemed savings estimate* is produced by any given combination of an algorithm and the allowable input values for each of its parameters. In cases where lookup tables are provided, there is a range of deemed savings estimates that are possible, depending on site-specific factors such as equipment capacity, location and building type.

Algorithms and their parameter values are included for calculating estimated:

- Gross annual electric energy savings (kWh)
- Gross annual natural gas energy savings (therms)
- Gross electric summer coincident peak demand savings (kW)

To support cost-effectiveness calculations, parameter values are also included for:

- Incremental costs (\$)
- Measure life (years)
- Operation and maintenance costs (\$)
- Water (gal) and other resource savings where appropriate.

To facilitate the use of the TRM as measures are revised, updated, and removed, a unique code is provided for each measure that identifies the measure and the applicable installed program year.

¹¹ As noted in the RFP, the net-to-gross ratios are provided by the evaluators and are listed in the appendices. ¹² Emphasis has been added to denote the difference between a "deemed value" and a "deemed savings estimate". A deemed value refers to a single input value to an algorithm, while a deemed savings estimate is the result of calculating the end result of all of the values in the savings algorithm.

2.1 Organizational Structure

The organization of this document follows a three-level format, each of which is a major heading in the Table of Contents. These levels are designed to define and clarify what the measure is and where it is applied.

1. Market Sectors¹³

- This level of organization specifies the type of customer the measure applies to, either Commercial and Industrial or Residential.
- Answers the question, "What category best describes the customer?"

2. End-use Category

- This level of organization represents most of the major end-use categories for which an efficient alternative exists. The following table lists all of the end-use categories in this version of the TRM.
- Answers the question, "To what end-use category does the measure apply?"

Residential Market Sector	Commercial and Industrial Market Sector
Appliances	Agricultural Equipment
Consumer Electronics	Food Service Equipment
Hot Water	Hot Water
HVAC	HVAC
Lighting	Lighting
Shell	Miscellaneous
	Refrigeration

Table 2.1: End-Use Categories in the TRM¹⁴

3. Measure & Technology

- This level of organization represents individual efficient measures such as CFL lighting and LED lighting, both of which are individual technologies within the Lighting end-use category.
- Answers the question, "What technology defines the measure?"

This organizational structure is silent on which fuel the measure is designed to save; electricity or natural gas. By organizing the TRM this way, measures that save on both fuels do not need to be repeated. As a result, the TRM will be easier to use and to maintain.

¹³ Note that the Public sector buildings and low income measures that DCEO administers are not listed as a separate Market Sector. The Public building type is one of a series of building types that are included in the appropriate measures in the Commercial and Industrial Sector.

¹⁴ Please note that this is not an exhaustive list of end-uses and that others may be included in future versions of the TRM.

2.2 Measure Code Specification

In order to uniquely identify each measure in the TRM, abbreviations for the major organizational elements of the TRM have been established. When these abbreviations are combined and delimited by a dash ('-') a unique, 18-character alphanumeric code is formed that can be used for tracking the measures and their associated savings estimates. Measure codes appear at the end of each measure and are structured using five parts.

Code Structure = Market + End-use Category + Measure + Version # + Effective Date

For example, the commercial boiler measure is coded: "CI-HVC-BLR_-V01-120601"

Market (@@)	End-use (@@@)	Measure (@@@@)	Version (V##)	Effective Date
CI (C&I)	AGE (Agricultural Equipment)	BLR_	V01	YYMMDD
RS (Residential)	APL (Appliances)	T5F_	V02	YYMMDD
	CEL (Consumer Electronics)	T8F_	V03	YYMMDD
	FSE (Food Service Equipment)			
	HVC (HVAC)			
	HW_ (Hot Water)			
	LTG (Lighting)			
	MSC (Miscellaneous)			
	RFG (Refrigeration)			
	SHL (Shell)			

Table 2.2: Measure Code Specification Key

2.3 Components of TRM Measure Characterizations

Each measure characterization uses a standardized format that includes at least the following components. Measures that have a higher level of complexity may have additional components, but also follow the same format, flow and function.

DESCRIPTION	
Definition of Efficient Equipment	
DEFINITION OF BASELINE EQUIPMENT	
DEEMED LIFETIME OF EFFICIENT EQUIPMENT	
DEEMED MEASURE COST	
DEEMED O&M COST ADJUSTMENTS	
LOADSHAPE	
COINCIDENCE FACTOR	
Algorithm	
CALCULATION OF ENERGY SAVINGS	
ELECTRIC ENERGY SAVINGS	

SUMMER COINCIDENT PEAK DEMAND SAVINGS

NATURAL GAS SAVINGS

WATER IMPACT DESCRIPTIONS AND CALCULATION

DEEMED O&M COST ADJUSTMENT CALCULATION

MEASURE CODE

2.4 Variable Input Tables

Many of the measures in this TRM require the user to select the appropriate input value from a list of inputs for a given parameter in the savings algorithm. Where the TRM asks the user to select the input, look-up tables of allowable values are provided. For example, a set of input parameters may depend on building type; while a range of values may be given for each parameter, only one value is appropriate for any specific building type. If no table of alternative inputs is provided for a particular parameter, then the single deemed value will be used, unless the measure has a custom allowable input.

2.4.1 C&I Custom Value Use in Measure Implementation

This section defines the requirements for capturing custom variables stated in the commercial and industrial (C&I) prescriptive measures defined in this statewide TRM. This approach is to be used when a variable in a measure formula can be replaced by a verifiable and documented value that is not presented in the TRM. This approach assumes that the algorithms presented in the measure are used as stated and only allows changes to certain variable values and is not a replacement algorithm for the measure.

2.4.2 Custom Variables

The following table defines which C&I measures this custom approach can be applied to and further, what variables can be adjusted. This table does not include variables that require actually installed numbers that are collected from the customer, but maps those values where a default value is provided that can be replaced with a custom value. Also indicated is the type of validation required to update a custom figure. Information should be collected and stored based on existing utility procedures.

Measure Number	Measure Title	Adjustable Variable	Adjustable Variable Description	Documentation	Notes
4.2.3	Commercial Steam Cooker	HOURS _{day}	Average Daily Operation (hours)	Customer input or measured value	
		F	Food cooked per day (lb)	Customer input or measured value	
		Days _{Year}	Annual Days of Operation (days)	Customer input or measured value	

Table 2.3: Allowable Custom C&I Variables

Measure Number	Measure Title	Adjustable Variable	Adjustable Variable Description	Documentation	Notes
4.2.5	ENERGY STAR Convection Oven	HOURSday	Average Daily Operation (hours)	Customer input or measured value	
		Days	Annual Days of Operation (days	Customer input or measured value	
		LB	Food cooked per day (lb)	Customer input or measured value	
		EffENERGYST AR	Cooking Efficiency ENERGY STAR	From ENERGY STAR product data	
		EffBase	Cooking Efficiency Baseline	Customer input or measured value	
		PCENERGYST AR	Production Capacity ENERGY STAR (lbs/hr)	Customer input or measured value	
		PCBase	Production Capacity base (lbs/hr)	Customer input or measured value	
		PPreheatNumber ENERGYSTAR	Number of preheates per day ENERGY STAR	From ENERGY STAR product data	
		PreheatNumberb ase	Number of preheats per day Base	Customer input or measured value	
		PreheatTimeEN ERGYSTAR	preheat length ENERGY STAR, min	From ENERGY STAR product data	
		PreheatTimeBas e	preheat length base, min	Customer input or measured value	
		PreheatRateENE RGYSTAR	preheat energy rate ENERGY STAR, btu/h	From ENERGY STAR product data	
		PreheatRateBase	preheat energy rate baseline, btu/h	Customer input or measured value	
		IdleENERGYST AR	Idle energy rate ENERGY STAR, btu/h	From ENERGY STAR product data	
		IdleBase	Idle energy rate baseline, btu/h	Customer input or measured value	
		IdleBaseTime	BASE Idle Time, hours	Customer input or measured value	

Measure	Measure Title	Adjustable	Adjustable Variable	Documentation	Notes
Number		Variable	Description		
4.2.5	ENERGY STAR	HOURSday	Average Daily	Customer input or	
	Convection Oven		Operation (hours)	measured value	
		Days	Annual Days of	Customer input or	
			Operation (days)	measured value	
		LB	Food cooked per day	Customer input or	
			(lb)	measured value	
		EffENERGYST	Cooking Efficiency	From ENERGY	
		AR	ENERGY STAR	STAR product data	
		EffBase	Cooking Efficiency	Customer input or	
			Baseline	measured value	
		PCENERGYST	Production Capacity	Customer input or	
		AR	ENERGY STAR	measured value	
			(lbs/hr)		
		PCBase	Production Capacity	Customer input or	
			base (lbs/hr)	measured value	
		PPreheatNumber	Number of preheats	From ENERGY	
		ENERGYSTAR	per day ENERGY STAR	STAR product data	
		PreheatNumberb	Number of preheates	Customer input or	
		ase	per day Base	measured value	
		PreheatTimeEN	preheat length	From ENERGY	
		ERGYSTAR	ENERGY STAR, min	STAR product data	
		PreheatTimeBas	preheat length base,	Customer input or	
		e	min	measured value	
		PreheatRateENE	preheat energy rate	From ENERGY	
		RGYSTAR	ENERGY STAR,	STAR product data	
			Btu/h	-	
		PreheatRateBase	preheat energy rate	Customer input or	
			baseline, Btu/h	measured value	
		IdleENERGYST	Idle energy rate	From ENERGY	
		AR	ENERGY STAR,	STAR product data	
			Btu/h	I.	
		IdleBase	Idle energy rate	Customer input or	
			baseline, Btu/h	measured value	
		IdleBaseTime	BASE Idle Time,	Customer input or	
			hours	measured value	

Measure	Measure Title	Adjustable	Adjustable Variable	Documentation	Notes
Number		Variable	Description		
4.2.7	ENERGY STAR	HOURSday	Average Daily	Customer input or	
	Fryer		Operation (hours)	measured value	
		Days	Annual Days of	Customer input or	
			Operation (days)	measured value	
		LB	Food cooked per day	Customer input or	
			(lb)	measured value	
		EffENERGYST	Cooking Efficiency	From ENERGY	
		AR	ENERGY STAR	STAR product data	
		EffBase	Cooking Efficiency	Customer input or	
			Baseline	measured value	
		PCENERGYST	Production Capacity	Customer input or	
		AR	ENERGY STAR	measured value	
			(lbs/hr)		
		PCBase	Production Capacity	Customer input or	
			base (lbs/hr)	measured value	
		PPreheatNumber	Number of preheats	From ENERGY	
		ENERGYSTAR	per day ENERGY STAR	STAR product data	
		PreheatNumberb	Number of preheats	Customer input or	
		ase	per day Base	measured value	
		PreheatTimeEN	preheat length	From ENERGY	
		ERGYSTAR	ENERGY STAR, min	STAR product data	
		PreheatTimeBas	preheat length base,	Customer input or	
		e	min	measured value	
		PreheatRateENE	preheat energy rate	From ENERGY	
		RGYSTAR	ENERGY STAR,	STAR product data	
			Btu/h	C. dama i d	
		PreheatRateBase	preheat energy rate	Customer input or	
			baseline, Btu/h	measured value	
		IdleENERGYST	Idle energy rate	From ENERGY	
		AR	ENERGY STAR, Btu/h	STAR product data	
		IdleBase	Idle energy rate	Customer input or	
			baseline, btu/h	measured value	
		IdleBaseTime	BASE Idle Time,	Customer input or	
			hours	measured value	

Measure	Measure Title	Adjustable	Adjustable Variable	Documentation	Notes
Number	measure mie	Variable	Description	Documentation	Notes
4.2.7	ENERGY STAR	HOURSday	Average Daily	Customer input or	Electric
	Fryer	5	Operation (hours)	measured value	and Gas
	-	Days	Annual Days of	Customer input or	Electric
			Operation (days)	measured value	and Gas
		LB	Food cooked per day	Customer input or	Electric
			(lb)	measured value	and Gas
		Width	Griddle Width, ft	Customer input or	Electric
				measured value	and Gas
		Depth	Griddle Depth, ft	Customer input or	Electric
				measured value	and Gas
		EffENERGYST	Cooking Efficiency	From ENERGY	Electric
		AR	ENERGY STAR	STAR product data	and Gas
		EffBase	Cooking Efficiency	Customer input or	Electric
			Baseline	measured value	and Gas
		PCENERGYST	Production Capacity	Customer input or	Electric
		AR	ENERGY STAR	measured value	and Gas
			(lbs/hr)		
		PCBase	Production Capacity	Customer input or	Electric
			base (lbs/hr)	measured value	and Gas
		PreheatNumberE	Number of preheats	From ENERGY	Electric
		NERGYSTAR	per day ENERGY STAR	STAR product data	and Gas
		PreheatNumberb	Number of preheats	Customer input or	Electric
		ase	per day Base	measured value	and Gas
		PreheatTimeEN	preheat length	From ENERGY	Electric
		ERGYSTAR	ENERGY STAR, min	STAR product data	and Gas
		PreheatTimeBas	preheat length base,	Customer input or	Electric
		e	min	measured value	and Gas
		PreheatRateENE	preheat energy rate	From ENERGY	Electric
		RGYSTAR	ENERGY STAR, Btu/h	STAR product data	and Gas
		PreheatRateBase	preheat energy rate	Customer input or	Electric
			baseline, Btu/h	measured value	and Gas
		IdleENERGYST	Idle energy rate	From ENERGY	Electric
		AR	ENERGY STAR,	STAR product data	and Gas
			Btu/h		
		IdleBase	Idle energy rate	Customer input or	Electric
			baseline, Btu/h	measured value	and Gas
		IdleBaseTime	BASE Idle Time,	Customer input or	Electric
			hours	measured value	and Gas
4.2.9 ENERGY	ENERGY STAR Hot Food Holding	PowerBaseline	Baseline power of cabinet, Watts		
STAR	Cabinet		caomer, mans		
		PowerENERGY	cabinet, Watts	From ENERGY	
		STAR		STAR product data	
		HOURSday	Average Daily	Customer input or	
			Operation (hours)	measured value	
		Days	Annual Days of	Customer input or	
			Operation (days)	measured value	

Measure	Measure Title	Adjustable	Adjustable Variable	Documentation	Notes
Number		Variable	Description		
4.3.1	High Efficiency Pre-	Tout	Outlet Water	Customer input or	
	Rinse Spray Valve		Temperature	measured value	
		Tin	Inlet Water	Customer input or	
			Temperature	measured value	
		EFF	Efficiency of water	Customer input or	Electric
			heater supplying hot	measured value or	and Gas
			water	Manufacturer	
				specification	
		FLObase	Base case flow in	Customer input or	
			gallons per minute	measured value or	
				Manufacturer	
				specification	
		FLOeff	Efficient case flow in	Customer input or	
			gallons per minute	measured value or	
				Manufacturer	
				specification	
		HOURS _{day}	Hours of use per day	Customer input or	
				measured value	
		Days _{Year}	Days of use per year	Customer input or	
				measured value	
4.3.2	Low Flow Faucet Aerators	NOPF	Number of occupants	Customer input	
			per faucet		
		GPM_base	Average flow rate, in	Documented value	
			gallons per minute, of	based on study or	
			the baseline faucet	report	
			"as-used"		
		GPM_low	Average flow rate, in	Documented value	
			gallons per minute, of	based on study or	
			the low-flow faucet	report	
			aerator "as-used"		
		L_base	Average baseline	Documented value	
			length faucet use per	based on study or	
			capita for all faucets	report	
			in minutes		
		L_low	Average retrofit	Documented value	
			length faucet use per	based on study or	
			capita for all faucets	report	
			in minutes		
					ļ
4.3.3	Low Flow	GPM_base	Average flow rate, in	Documented flow rate	
	Showerheads		gallons per minute, of	from installed	
			the baseline faucet	equipment	
			"as-used"		
		NSPF	Number of showers	Customer input	
			per faucet		1

Measure	Measure Title	Adjustable	Adjustable Variable	Documentation	Notes
Number		Variable	Description		
4.3.4	Tankless Water	Wgal	Annual Water use for	Customer input or	
	Heater		equipment	measured value	
		Tout	Outlet Water	Customer input or	
			Temperature	measured value	
		Tin	Inlet Water	Customer input or	
			Temperature	measured value	
		SL	Stand-by Loss in Base	Customer input or	
			Case Btu/hr	measured value	
		Eff_ee	Rated Efficiency of	Customer input or	
		_	water Heater	documented value	
				based on study or	
				report	
		Tank Volume	Tank Volume	Customer input or	
		Tunk Volume	Tunk Volume	documented value	
				based on study or	
				report	
4.4.2	Space Boiler Tune-	Ngi	Boiler gas input size	Customer input or	
4.4.2	-	Ingi	Boller gas input size	measured value	
	up	SF	Savings Factor		
		ЪГ	Savings Factor	Customer input or	
		T CC		measured value	
		Effpre	Boiler Efficiency	Customer input or	
4.4.2		NT .	before Tune-up	measured value	
4.4.3	Process Boiler Tune-	Ngi	Boiler gas input size	Customer input or	
	up			measured value	
		UF	Utilization Factor	Customer input or	
				measured value	
		Effpre	Boiler Combustion	Customer input or	
			Efficiency before	measured value	
			Tune-up		
		Eff _{measured}	Boiler Combustion	Customer input or	
			Efficiency before	measured value	
			Tune-up		
4.4.4	Boiler Lockout/Reset Controls	Binput	Boiler Input Capacity	Customer input or	
				measured value	
		SF	Savings Factor	Customer input or	
				measured value	
		Effpre	Boiler Efficiency	Customer input or	
		_	-	measured value	
4.4.11	High Efficiency Boiler	Capacity	Nominal Heating	Customer input or	
7.7.11		1 5	Capacity Boiler Size	measured value	
		AFUE(base)	Efficient Furnace	Customer input or	
		- ()	Annual Fuel	measured value	
			Utilization Efficiency		
			Rating		
		AFUE(eff)	Efficient Furnace	Customer input or	
			Annual Fuel	measured value	
			Utilization Efficiency	measureu value	
			Rating		
			Kaung		

Measure Number	Measure Title	Adjustable Variable	Adjustable Variable Description	Documentation	Notes
4.4.12	High Efficiency Furnace	Capacity	Nominal Furnace input capacity	Customer input or measured value	
		AFUE(base)	Efficient Furnace Annual Fuel Utilization Efficiency Rating	Customer input or measured value	
		AFUE(eff)	Efficient Furnace Annual Fuel Utilization Efficiency Rating	Customer input or measured value	
4.4.15	Steam Trap Replacement or	В	Boiler Efficiency	Customer input or measured value	
	Repair	L	Leaking and blow- thru percentage	Customer input or documented value based on study or report	
4.4.16	VSD for HVAC	HP	Motor HP	Customer input or measured value	
		Load Factor	Motor Load Factor	Customer input or measured value	
		Hours	Actual hours for equipment operations	Customer input or measured value	
		ESF	VDS Energy Savings Factors	Custom calculated values	
		CF	Coincidence factor	Custom calculated values	
4.5.3 HP	HPT8 Lighting	Watts _{base}	Base Wattage	Customer input or measured value	This will allow for reduced wattage applicatio ns
		Watts _{EE}	Efficiency Wattage	Customer input or measured value	This will allow for reduced wattage applicatio ns
		Hours	Average use hours	Customer input or documented value based on study or report	

Measure Number	Measure Title	Adjustable Variable	Adjustable Variable Description	Documentation	Notes
4.5.4	T5 Lighting	Watts _{base}	Base Wattage	Customer input or measured value	This will allow for reduced wattage applicatio ns
		Watts _{EE}	Efficiency Wattage	Customer input or measured value	This will allow for reduced wattage applicatio ns
		Hours	Average use hours	Customer input or documented value based on study or report	
4.5.5	Lighting Controls	KW _{connected}	Total Connected kW load	Customer input or measured value	
		Hours	Hours of use	Customer input or documented value based on study or report	
		ESF	Energy Savings Factor	Customer input or documented value based on study or report	
4.5.6	Lighting Power Density Reduction	WSF _{effic}	The actual installed lighting watts per square foot or linear foot	Customer input	
		SF	Square footage of the building area applicable to the lighting design	Customer input	
		Hours	Hours of use	Customer input	

2.5 Program Delivery & Baseline Definitions

The measure characterizations in this TRM are not grouped by program delivery type. As a result, the measure characterizations provided include information and assumptions to support savings calculations for the range of program delivery options commonly used for the measure. The organizational significance of this approach is that multiple baselines, incremental costs, O&M costs, measure lives and in-service rates are included in the measure characterization(s) that are delivered under two or more different program designs. Values appropriate for each given program delivery type are clearly specified in the algorithms or in look-up tables within the characterization.

Care has been taken to clearly define in the measure's description the types of program delivery that the measure characterization is designed to support. However, there are no universally accepted definitions for a particular program type, and the description of the program type(s) may differ by measure. Nevertheless, program delivery types can be generally defined according to the following table. These are the definitions used in the measure descriptions, and, when necessary, individual measure descriptions may further refine and clarify these definitions of program delivery type.

Program	Attributes
Time of Sale (TOS)	Definition: A program in which the customer is incented to purchase or install higher efficiency equipment than if the program had not existed. This may include retail rebate (coupon) programs, upstream buydown programs, online store programs or contractor based programs as examples. Baseline = New equipment. Efficient Case = New, premium efficiency equipment above federal and state codes and standard industry practice. Example: CFL rebate
New Construction (NC)	Definition: A program that intervenes during building design to support the use of more- efficient equipment and construction practices. Baseline = Building code or federal standards. Efficient Case = The program's level of building specification Example: Building shell and mechanical measures
Retrofit (RF)	Definition: A program that upgrades existing equipment before the end of its useful life. Baseline = Existing equipment or the existing condition of the building or equipment. A single baseline applies over the measure's life. Efficient Case = New, premium efficiency equipment above federal and state codes and standard industry practice. Example: Air sealing and insulation
Early Replacement (EREP)	<u>Definition</u> : A program that <i>replaces</i> existing equipment before the end of its expected life. <u>Baseline</u> = Dual; it begins as the existing equipment and shifts to new baseline equipment after the expected life of the existing equipment is over. <u>Efficient Case</u> = New, premium efficiency equipment above federal and state codes and standard industry practice. <u>Example</u> : Refrigerators, freezers
Early Retirement (ERET)	Definition: A program that retires duplicative equipment before its expected life is over. Baseline = The existing equipment, which is retired and not replaced. Efficient Case = Zero because the unit is retired. Example: Appliance recycling
Direct Install (DI)	Definition:A program where measures are installed during a site visit.Baseline= Existing equipment.Efficient Case= New, premium efficiency equipment above federal and state codes andstandard industry practice
Efficiency Kits (KITS)	Definition: A program where measures are provided free of charge to a customer in anEfficiency Kit.Baseline = Existing equipment.Efficient Case = New, premium efficiency equipment above federal and state codes andstandard industry practice.Example: Lighting and low-flow hot water measures

Table 2.4: Program Delivery Types

The concept and definition of the baseline is a key element of every measure characterization and is directly related to the program delivery type. Without a clear definition of the baseline, the savings algorithms cannot be adequately specified and subsequent evaluation efforts would be hampered. As a result, each measure has a detailed description (and in many cases, specification) of the specific baseline that should be used to calculate savings. Baselines in this TRM fall into one of the following five categories, and are organized within each measure characterization by the program delivery type to which it applies.

- 1. **Building Code:** As defined by the minimum specifications required under state energy code or applicable federal standards.
- 2. **Existing Equipment**: As determined by the most representative (or average) example of equipment that is in the existing stock. Existing equipment baselines apply over the equipment's remaining useful life.
- 3. **New Equipment**: As determined by the equipment that represents standard practice in the current market environment. New equipment baselines apply over the effective useful life of the measure.
- 4. **Dual Baseline**: A baseline that begins as the existing equipment and shifts to new equipment after the expected life of the existing equipment is over.

2.6 High Impact Measures

Measures that are expected to collectively account for at least 80% of statewide energy savings are considered high impact measures. The following tables list these measures and show the section in which they may be found.

Section	End-use	Technology / Measure	
4.2.3	Food Service	Commercial Steam Cooker	
4.2.11	Food Service	High Efficiency Pre-Rinse Spray Valve	
4.3.5	Hot Water	Tankless Water Heater	
4.4.3	HVAC	Process Boiler Tune-up	
4.4.4	HVAC	Boiler Lockout/Reset Controls	
4.4.10	HVAC	High Efficiency Boilers	
4.4.11	HVAC	High Efficiency Furnace	
4.4.16	HVAC	Steam Trap Replacement or Repair	
4.4.17	HVAC	Variable Speed Drives for HVAC	
4.5.1	Lighting	Commercial ENERGY STAR CFL	
4.5.3	Lighting	High Performance and Reduced Wattage T8 Fixtures and Lamps	
4.5.4	Lighting	LED Bulbs & Fixtures	
4.5.6	Lighting	LED Traffic and Pedestrian Signals	
4.5.7	Lighting	Lighting Power Density Reduction	
4.5.10	Lighting	Occupancy Sensor Lighting Controls	
4.5.12	Lighting	T5 Fixtures & Lamps	

Table 2.5: Commercial and Industrial High Impact Measures

Section	End-use	Technology / Measure	
5.1.2	Appliances	Clothes Washer	
5.1.8	Appliances	Refrigerator & Freezer Recy.	
5.4.2	Hot Water	Gas Water Heater	
5.4.3	Hot Water	Heat Pump Water Heater	
5.4.4	Hot Water	Low Flow Faucet Aerator	
5.4.5	Hot Water	Low Flow Showerhead	
5.3.3	HVAC	Central Air Conditioning > 14.5 SEER	
5.3.5	HVAC	Furnace Blower Motor	
5.3.6	HVAC	Gas High Efficiency Boiler	
5.3.7	HVAC	Gas High Efficiency Furnace	
5.3.11	HVAC	Programmable Thermostats	
5.5.1	Lighting	Energy Star Compact Florescent Lamp	
5.5.2	Lighting	ENERGY STAR Specialty CFL	
5.5.6	Lighting	LED Downlights	
5.6.1	Shell	Air Sealing	
5.6.2	Shell	Basement Sidewall Insulation	
5.6.4	Shell	Wall and Ceiling Insulation	

Table 2.6: Residential High Impact Measures

3 Assumptions

The information contained in this TRM contains VEIC's recommendations for the content of the Illinois TRM. Sources that are cited within the TRM have been chosen based on two priorities, geography and age. Whenever possible and appropriate, VEIC has incorporated Illinois-specific information into each measure characterization. The Business TRM documents from Ameren and ComEd were reviewed, as well as program and measure specific data from evaluations, efficiency plans, and working documents.

The assumptions for these characterizations rest on our understanding of the information available. In each case, the available Illinois and Midwest-specific information was reviewed, including evaluations and support material provided by the Illinois Utilities.

When Illinois or region-specific evaluations or data were not available, best practice research and data from other jurisdictions was used, often from west and east-coast states that have allocated large amounts of funding to evaluation work and to refining their measure characterization parameters. As a result, much of the most-defensible information originates from these regions. In every case, VEIC used the most recent, well-designed, and best-supported studies and only if it was appropriate to generalize their conclusions to the Illinois programs.

3.1 Footnotes & Documentation of Sources

Each new and updated measure characterization is supported by a work paper, which is posted to the SharePoint web site (<u>https://portal.veic.org</u>).¹⁵ Both the work paper and the measure characterizations themselves use footnotes to document the references that have been used to characterize the technology. The reference documents are too numerous to include in an Appendix and have instead been posted to the TRM's Sharepoint website. These files can be found in the 'Sources and Reference Documents' folder in the main directory, and may also be posted to the SAG's public web site (<u>www.ilsag.org</u>).

3.2 General Savings Assumptions

The TRM savings estimates are expected to serve as average, representative values, or ways to calculate savings based on program-specific information. All information is presented on a per-measure basis. In using the measure-specific information in the TRM, it is helpful to keep the following notes in mind.

- All estimates of energy (kWh or therms) and peak (kW) savings are for first-year savings, not lifetime savings.
- Unless otherwise noted, measure life is defined to be the life of an energy consuming measure, including its equipment life and measure persistence.
- Where deemed values for savings are provided, they represent the average energy (kWh or therms) or peak (kW) savings that could be expected from the average of all measures that might be installed in Illinois in the program year.
- In general, the baselines included in the TRM are intended to represent average conditions in Illinois. Some are based on data from the state, such as household consumption characteristics provided by the Energy Information Administration. Some are extrapolated from other areas, when Illinois data are not available.

¹⁵ To gain access to the SharePoint web site, please contact the TRM Administrator, Nikki Clace at <u>nclace@veic.org</u>.

3.3 Shifting Baseline Assumptions

The TRM anticipates the effects of changes in efficiency codes and standards on affected measures. When these changes take effect, a shift in the baseline is usually required. This complicates the measure savings estimation somewhat, and will be handled in future versions of the TRM by describing the choice of and reasoning behind a shifting baseline assumption. In this version of the TRM, this applies to CFLs and T5/T8 Linear Fluorescents, Furnaces and Early Replacement Measures.

3.3.1 CFL and T5/T8 Linear Fluorescents Baseline Assumptions

Specific reductions in savings have been incorporated for CFL measures that relate to the shift in appropriate baseline due to changes in Federal Standards for lighting products. Federal legislation (stemming from the Energy Independence and Security Act of 2007) mandates a phase-in process beginning in 2012 for all general-purpose light bulbs between 40W and 100W to be approximately 30% more energy efficient than current incandescent bulbs, in essence beginning the phase-out of the current style, or "standard", incandescent bulbs. In 2012, standard 100W incandescent bulbs will no longer be manufactured, followed by restrictions on standard 75W bulbs in 2013 and 60W and 40W bulbs in 2014. The baseline for the CFL measure in the corresponding program years starting June 1 each year will therefore become bulbs (improved or "efficient" incandescent, or halogen) that meet the new standard and have the same lumen equivalency. Those products can take several different forms we can envision now and perhaps others we do not yet know about. Halogens are one of those possibilities and have been chosen to represent a baseline at that time. To account for this shifting baseline, annual savings are reduced within the lifetime of the measure.

Other lighting measures will also have baseline shifts (for example screw based LED and CFL fixtures) that will result in significant impacts to annual estimated savings in later years. Finally, as of July 14, 2012, Federal Standards will require that practically all linear fluorescents meet strict performance requirements essentially requiring all T12 users, when they need to purchase new bulbs, to upgrade to high performance T8 lamps and ballasts¹⁶. We have assumed that this standard will become fully effective in 2016. To account for this, we have included a methodology to address the shifting baseline in the high performance T8 measure and T5 measure which is defined specifically in each measure characterization.

3.3.2 Early Replacement Baseline Assumptions

A series of measures have an option to choose an Early Replacement Baseline. For these measures, the baseline assumption of the existing unit efficiency is based upon the average efficiency of units that were classified in Ameren's PY3-PY4 as functioning and that meet efficiency and cost of replacement criteria in the following table.

Measure Section		Criteria
Air Source Heap Pump	5.3.1	SEER <=10 and cost of any repairs <\$249 per ton
Central Air Conditioner	5.3.3	SEER <=10 and cost of any repairs <\$190 per ton
Boiler	5.3.6	AFUE <= 75% and cost of any repairs <\$709
Furnace	4.4.11, 5.3.7	AFUE <= 75% and cost of any repairs <\$528
Ground Source Heat Pump	5.3.8	SEER <=10 and cost of any repairs <\$249 per ton

Table 3.1: Early Replacement Baseline Criteria¹⁷

¹⁶ At the time of this draft, we understand that some standard T8 lamps may meet the federal standard, and in that event, some T12 retrofits may end up being completed with standard T8s instead of high performance T8s.

¹⁷ These criteria were documented in a memo entitled, "Early Replacement Measure Issue Summary_0409.docx."

It is only appropriate to use these Early Replacement assumptions where these conditions are met. The TAC defined "functioning" as the unit is fully operational – providing sufficient space conditioning (i.e. heat exchanger, compressors, pumps work effectively) and/or the cost of repair is under 20% of the new baseline replacement cost. Therefore in order to apply early replacement assumptions the programs should apply the following eligibility criteria for the existing heating or cooling system in the home:

3.3.3 Furnace Baseline

"The prior national standard for residential oil and gas furnaces was 78% AFUE. DOE raised the standard in 2007 to 80% AFUE, effective 2015. However, virtually all furnaces on the market have an AFUE of 80% or better, which prompted states and environmental and consumer groups to sue DOE over its 2007 decision. In April 2009, DOE accepted a "voluntary remand" in that litigation. In October 2009, manufacturers and efficiency advocates negotiated an agreement that, for the first time, included different standard levels in three climate regions: the North, South, and Southwest. DOE issued a direct final rule (DFR) in June 2011 reflecting the standard levels in the consensus agreement. The DFR became effective on October 25, 2011 establishing new standards: In the North, most furnaces will be required to have an AFUE of 90%. The 80% AFUE standard for the South and Southwest will remain unchanged at 80%. Oil furnaces will be required to have an AFUE of 9213 for non-weatherized furnaces and in January 2015 for weatherized furnaces. DOE estimates that the standards will save about 3.3 quads (quadrillion Btu) of energy over 30 years and yield a net present value of about \$14 billion at a 3 percent discount rate.

<u>Update</u>: On January 14th, the U.S. Department of Energy (DOE) proposed to settle a lawsuit brought by the American Public Gas Association (APGA) that seeks to roll back gas furnace efficiency standards. As a result, the new standards, completed in 2011 and slated to take effect in May 2013, would be eliminated in favor of yet another round of DOE hearings and studies. Even if DOE completes a new rulemaking in two years, it's unlikely to take effect before 2020."¹⁸

As a result, each of the furnace measures contain the following language describing the baseline assumption.

"Although the current Federal Standard for gas furnaces is an AFUE rating of 78%, based upon review of available product in the AHRI database, the baseline efficiency for this characterization is assumed to be 80%. The baseline will be adjusted when the Federal Standard is updated."¹⁹

¹⁸ Appliance Standards Awareness Project, <u>http://www.appliance-standards.org/product/furnaces</u>

¹⁹ Illinois Statewide Technical Reference Manual, May 13, 2013, pp 191, 439

3.4 Glossary

Baseline Efficiency: The assumed standard efficiency of equipment, absent an efficiency program.

Building Types²⁰:

Building Type	Definition
College/University	Applies to facility space used for higher education. Relevant buildings include administrative headquarters, residence halls, athletic and recreation facilities, laboratories, etc. The total gross floor area should include all supporting functions such as kitchens used by staff, lobbies, atria, conference rooms and auditoria, fitness areas for staff, storage areas, stairways, elevator shafts, etc.
Exterior	Applies to unconditioned spaces that are outside of the building envelope.
Garage	Applies to unconditioned spaces either attached or detached from the primary building envelope that are not used for living space.
Grocery	Applies to facility space used for the retail sale of food and beverage products. It should not be used by restaurants. The total gross floor area should include all supporting functions such as kitchens and break rooms used by staff, storage areas (refrigerated and non-refrigerated), administrative areas, stairwells, atria, lobbies, etc.
Heavy and Light Industry	Applies to buildings that are dedicated to manufacturing activities. Light industry buildings are characterized by consumer product and component manufacturing while Heavy industry buildings are characterized by products that require full assumbly under closely regulated conditions. These building types may be distinguished by categorizing NIACS (SIC) codes according to the needs of the Program Administrator, but are generally similar in terms of their energy performance and operating characteristics.
Hotel/Motel	Applies to buildings that rent overnight accommodations on a room/suite basis, typically including a bath/shower and other facilities in guest rooms. The total gross floor area should include all interior space, including guestrooms, halls, lobbies, atria, food preparation and restaurant space, conference and banquet space, health clubs/spas, indoor pool areas, and laundry facilities, as well as all space used for supporting functions such as elevator shafts, stairways, mechanical rooms, storage areas, employee break rooms, back-of-house offices, etc. Hotel does not apply to fractional ownership properties such as condominiums or vacation timeshares. Hotel properties should be owned by a single entity and have rooms available on a nightly basis.
K-12 School	Applies to facility space used as a school building for Kindergarten through 12th grade students. This does not include college or university classroom facilities and laboratories, vocational, technical, or trade schools. The total gross floor area should include all supporting functions such as administrative space, conference rooms, kitchens used by staff, lobbies, cafeterias, gymnasiums, auditoria, laboratory classrooms, portable classrooms, greenhouses, stairways, atria, elevator shafts, small landscaping sheds, storage areas, etc. The K-12 school model does not apply to preschool or day care buildings; in order to classify as K-12 school, more than 75% of the students must be in kindergarten or older.
Medical	Applies to a general medical and surgical hospital (including critical access hospitals and children's hospitals) that is either a stand-alone building or a campus of buildings.
	The definition of Hospital accounts for all space types that are located within the Hospital building/campus, such as medical offices, administrative offices, and skilled nursing. The

²⁰ Source: US EPA, <u>www.energystar.gov</u>, Space Type Definitions

Building Type	Definition
	total floor area should include the aggregate floor area of all buildings on the campus as well as all supporting functions such as: stairways, connecting corridors between buildings, medical offices, exam rooms, laboratories, lobbies, atria, cafeterias, storage areas, elevator shafts, and any space affiliated with emergency medical care, or diagnostic care.
Miscellaneous	Applies to spaces that do not fit clearly within any available categories should be designated as "miscellaneous".
Multifamily	Applies to residential buildings of three of more units, including all public and multiuse spaces within the building envelope.
Office	Applies to facility spaces used for general office, professional, and administrative purposes. The total gross floor area should include all supporting functions such as kitchens used by staff, lobbies, atria, conference rooms and auditoria, fitness areas for staff, storage areas, stairways, elevator shafts, etc.
Restaurant	Applies to a subcategory of Retail/Service space that is used to provide commercial food services to individual customers, and includes kitchen, dining, and common areas.
Retail/Service	Applies to facility space used to conduct the retail sale of consumer product goods. Stores must be at least 5,000 square feet and have an exterior entrance to the public. The total gross floor area should include all supporting functions such as kitchens and break rooms used by staff, storage areas, administrative areas, elevators, stairwells, etc. Retail segments typically included under this definition are: Department Stores, Discount Stores, Supercenters, Warehouse Clubs, Drug Stores, Dollar Stores, Home Center/Hardware Stores, and Apparel/Hard Line Specialty Stores (e.g., books, clothing, office products, toys, home goods, electronics). Retail segments excluded under this definition are: Supermarkets (eligible to be benchmarked as Supermarket space), Convenience Stores, Automobile Dealerships, and Restaurants.
Warehouse	Applies to unrefrigerated or refrigerated buildings that are used to store goods, manufactured products, merchandise or raw materials. The total gross floor area of Refrigerated Warehouses should include all temperature controlled area designed to store perishable goods or merchandise under refrigeration at temperatures below 50 degrees Fahrenheit. The total gross floor area of Unrefrigerated Warehouses should include space designed to store non-perishable goods and merchandise. Unrefrigerated warehouses also include distribution centers. The total gross floor area of refrigerated and unrefrigerated warehouses should include all supporting functions such as offices, lobbies, stairways, rest rooms, equipment storage areas, elevator shafts, etc. Existing atriums or areas with high ceilings should only include the base floor area that they occupy. The total gross floor area of refrigerated or unrefrigerated warehouse should not include outside loading bays or docks. Self-storage facilities, or facilities that rent individual storage units, are not eligible for a rating using the warehouse model.

Coincidence Factor (CF): Coincidence factors represent the fraction of connected load expected to be coincident with a particular system peak period, on a diversified basis. Coincidence factors are provided for summer peak periods.

Commercial & Industrial: The market sector that includes measures that apply to any of the building types defined in this TRM, which includes multifamily common areas and public housing²¹.

²¹ Measures that apply to the multifamily and public housing building types describe how to handle tenant versus master metered buildings.

Connected Load: The maximum wattage of the equipment, under normal operating conditions.

Deemed Value: A value that has been assumed to be representative of the average condition of an input parameter.

Default Value: When a measure indicates that an input to a prescriptive saving algorithm may take on a range of values, an average value is also provided in many cases. This value is considered the default input to the algorithm, and should be used when the other alternatives listed in the measure are not applicable.

End-use Category: A general term used to describe the categories of equipment that provide a service to an individual or building. See Table 2.1.1 for a list of the end-use categories that are incorporated in this TRM.

Full Load Hours (FLH): The equivalent hours that equipment would need to operate at its peak capacity in order to consume its estimated annual kWh consumption (annual kWh/connected kW).

High Efficiency: General term for technologies and processes that require less energy, water, or other inputs to operate.

Lifetime: The number of years (or hours) that the new high efficiency equipment is expected to function. These are generally based on engineering lives, but sometimes adjusted based on expectations about frequency of removal, remodeling or demolition. Two important distinctions fall under this definition; Effective Useful Life (EUL) and Remaining Useful Life (RUL).

EUL – EUL is based on the manufacturers rating of the effective useful life; how long the equipment will last. For example, a CFL that operates x hours per year will typically have an EUL of y. A house boiler may have a lifetime of 20 years but the EUL is only 15 years since after that time it may be operating at a non-efficient point. An estimate of the median number of years that the measures installed under a program are still in place and operable.

RUL – Applies to retrofit or replacement measures. For example, if an existing working refrigerator is replaced with a high efficiency unit, the RUL is an assumption of how many more years the existing unit would have lasted. As a general rule the RUL is usually assumed to be 1/3 of the EUL.

Load Factor (LF): The fraction of full load (wattage) for which the equipment is typically run.

Measure Cost: The incremental (for time of sale measures) or full cost (both capital and labor for retrofit measures) of implementing the High Efficiency equipment.

Measure Description: A detailed description of the technology and the criteria it must meet to be eligible as an energy efficient measure.

Measure: An efficient technology or procedure that results in energy savings as compared to the baseline efficiency.

Residential: The market sector that includes measures that apply only to detached, residential buildings or duplexes.

Operation and Maintenance (O&M) Cost Adjustments: The dollar impact resulting from differences between baseline and efficient case Operation and Maintenance costs.

Operating Hours (HOURS): The annual hours that equipment is expected to operate.

Program: The mode of delivering a particular measure or set of measures to customers. See Table 2.5.1 for a list

of program descriptions that are presently operating in Illinois.

Rating Period Factor (RPF): Percentages for defined times of the year that describe when energy savings will be realized for a specific measure.

Stakeholder Advisory Group (SAG): The Illinois Energy Efficiency Stakeholder Advisory Group (SAG) was first defined in the electric utilities' first energy efficiency Plan Orders to include "... the Utility, DCEO, Staff, the Attorney General, BOMA and CUB and representation from a variety of interests, including residential consumers, business consumers, environmental and energy advocacy organizations, trades and local government... [and] a representative from the ARES (alternative retail electric supplier) community should be included."²² A group of stakeholders who have an interest in Illinois' energy efficiency programs and who meet regularly to share information and work toward consensus on various energy efficiency issues. The Utilities in Illinois have been directed by the ICC to work with the SAG on the development of a statewide TRM. A list of current SAG participants appears in the following table.

SAG Stakeholder
Ameren Illinois Company (Ameren)
Center for Neighborhood Technology (CNT)
Citizen's Utility Board (CUB)
City of Chicago
Commonwealth Edison Company (ComEd)
Energy Resources Center at the University of Illinois, Chicago (ERC)
Environment IL
Environmental Law and Policy Center (ELPC)
Future Energy Enterprises LLC
Illinois Attorney General's Office (AG)
Illinois Commerce Commission Staff (ICC Staff)
Illinois Department of Commerce and Economic Opportunity (DCEO)
Independent Evaluators (Navigant and Opinion Dynamics Corporation)
Integrys (Peoples Gas and North Shore Gas)
Metropolitan Mayor's Caucus (MMC)
Midwest Energy Efficiency Association (MEEA)
Natural Resources Defense Council (NRDC)
Nicor Gas

²² Docket No. 07-0540, Final Order at 32-33, February 6, 2008. <u>http://www.icc.illinois.gov/downloads/public/edocket/215193.pdf</u>

3.5 Electrical Loadshapes (kWh)

Loadshapes are an integral part of the measure characterization and are used to divide energy savings into appropriate periods using Rating Period Factors (RPFs) such that each have variable avoided cost values allocated to them for the purpose of estimating cost effectiveness.

For the purposes of assigning energy savings (kWh) periods, the TRM TAC has agreed to use the industry standards for wholesale power market transactions as shown in the following table.

Period Category	Period Definition (Central Prevailing Time)
Winter On-Peak Energy	8AM - 11PM, weekdays, Oct – Apr, No NERC holidays
Winter Off-Peak Energy	All other hours
Summer On-Peak Energy	8AM - 11PM, weekdays, May – Sept, No NERC holidays
Summer Off-Peak Energy	All other hours

Table 3.3: On and Off Peak Energy Definitions

Loadshapes have been developed for each end-use by assigning Rating Period Factor percentages to each of the four periods above. Two methodologies were used:

- 1. Itron eShapes²³ data for Missouri, reconciled to Illinois loads and provided by Ameren, were used to calculate the percentage of load in to the four categories above.
- 2. Where the Itron eShapes data did not provide a particular end-use or specific measure load profile, loadshapes that have been developed over many years by Efficiency Vermont and that have been reviewed by the Vermont Department of Public Service, were adjusted to match Illinois period definitions. Note no weather sensitive loadshapes were based on this method. Any of these load profiles that relate to High Impact Measures should be an area of future evaluation.

The following pages provide the loadshape values for all measures provided in the TRM. To distinguish the source of the loadshape, they are color coded. Rows that are shaded in green are Efficiency Vermont loadshapes adjusted for Illinois periods. Rows that are unshaded and are left in white are Itron eShapes data provided by Ameren.

The Illinois electric utilities use the DSMore[™] (Integral Analytics DSMore[™] Demand Side Management Option/Risk Evaluator) software to screen the efficiency measures for cost effectiveness. Since this tool requires a loadshape value for weekdays and weekends in each month (i.e., 24 inputs), the percentages for the four period categories above were calculated by weighting the proportion of weekdays/weekends in each month to the total within each period. The results of these calculations are also provided below.

²³ All loadshape information has been posted to the project's Sharepoint site, and may be provided publically through the Stakeholder Advisory Group's web site at their discretion. <u>http://www.ilsag.org/</u>

		Winter Peak	Winter Off-peak	Summer Peak	Summer Off-peak
	Loadshape Reference Number	Oct-Apr, M-F, non-holiday, 8AM - 11PM	Oct-Apr, All other time	May-Sept, M-F, non-holiday, 8AM - 11PM	May- Sept, All other time
Residential Clothes Washer	R01	47.0%	11.1%	34.0%	8.0%
Residential Dish Washer	R02	49.3%	8.7%	35.7%	6.3%
Residential Electric DHW	R03	43.2%	20.6%	24.5%	11.7%
Residential Freezer	R04	38.9%	16.4%	31.5%	13.2%
Residential Refrigerator	R05	37.0%	18.1%	30.1%	14.7%
Residential Indoor Lighting	R06	48.1%	15.5%	26.0%	10.5%
Residential Outdoor Lighting	R07	18.0%	44.1%	9.4%	28.4%
Residential Cooling	R08	4.1%	0.7%	71.3%	23.9%
Residential Electric Space Heat	R09	57.8%	38.8%	1.7%	1.7%
Residential Electric Heating and Cooling	R10	35.2%	22.8%	31.0%	11.0%
Residential Ventilation	R11	25.8%	32.3%	18.9%	23.0%
Residential - Dehumidifier	R12	12.9%	16.2%	31.7%	39.2%
Residential Standby Losses - Entertainment Center	R13	26.0%	32.5%	18.9%	22.6%
Residential Standby Losses - Home Office	R14	23.9%	34.6%	17.0%	24.5%
Commercial Electric Cooking	C01	40.6%	18.2%	28.7%	12.6%
Commercial Electric DHW	C02	40.5%	18.2%	28.5%	12.8%
Commercial Cooling	C03	4.9%	0.8%	66.4%	27.9%
Commercial Electric Heating	C04	53.5%	43.2%	1.9%	1.4%
Commercial Electric Heating and Cooling	C05	19.4%	13.5%	47.1%	19.9%
Commercial Indoor Lighting	C06	40.1%	18.6%	28.4%	12.9%
Grocery/Conv. Store Indoor Lighting	C07	31.4%	26.4%	22.8%	19.3%
Hospital Indoor Lighting	C08	29.1%	29.0%	21.0%	20.9%
Office Indoor Lighting	C09	42.1%	16.0%	30.4%	11.5%
Restaurant Indoor Lighting	C10	32.1%	25.7%	23.4%	18.8%
Retail Indoor Lighting	C11	35.5%	22.3%	25.8%	16.3%
Warehouse Indoor Lighting	C12	39.4%	18.5%	28.6%	13.5%
K-12 School Indoor Lighting	C13	45.8%	22.6%	20.2%	11.4%

Table 3.4: Loadshapes by Season

	_	Winter Peak	Winter Off-peak	Summer Peak	Summer Off-peak
	Loadshape Reference Number	Oct-Apr, M-F, non-holiday, 8AM - 11PM	Oct-Apr, All other time	May-Sept, M-F, non-holiday, 8AM - 11PM	May- Sept, All other time
Indust. 1-shift (8/5) (e.g., comp. air, lights)	C14	50.5%	7.2%	37.0%	5.3%
Indust. 2-shift (16/5) (e.g., comp. air, lights)	C15	47.5%	10.2%	34.8%	7.4%
Indust. 3-shift (24/5) (e.g., comp. air, lights)	C16	34.8%	23.2%	25.5%	16.6%
Indust. 4-shift (24/7) (e.g., comp. air, lights)	C17	25.8%	32.3%	18.9%	23.0%
Industrial Indoor Lighting	C18	44.3%	13.6%	32.4%	9.8%
Industrial Outdoor Lighting	C19	18.0%	44.1%	9.4%	28.4%
Commercial Outdoor Lighting	C20	23.4%	35.3%	13.0%	28.3%
Commercial Office Equipment	C21	37.7%	20.9%	26.7%	14.7%
Commercial Refrigeration	C22	38.5%	20.6%	26.7%	14.2%
Commercial Ventilation	C23	38.1%	20.6%	29.7%	11.6%
Traffic Signal - Red Balls, always changing or flashing	C24	25.8%	32.3%	18.9%	23.0%
Traffic Signal - Red Balls, changing day, off night	C25	37.0%	20.9%	27.1%	14.9%
Traffic Signal - Green Balls, always changing	C26	25.8%	32.3%	18.9%	23.0%
Traffic Signal - Green Balls, changing day, off night	C27	37.0%	20.9%	27.1%	14.9%
Traffic Signal - Red Arrows	C28	25.8%	32.3%	18.9%	23.0%
Traffic Signal - Green Arrows	C29	25.8%	32.3%	18.9%	23.0%
Traffic Signal - Flashing Yellows	C30	25.8%	32.3%	18.9%	23.0%
Traffic Signal - "Hand" Don't Walk Signal	C31	25.8%	32.3%	18.9%	23.0%
Traffic Signal - "Man" Walk Signal	C32	25.8%	32.3%	18.9%	23.0%
Traffic Signal - Bi-Modal Walk/Don't Walk	C33	25.8%	32.3%	18.9%	23.0%
Industrial Motor	C34	47.5%	10.2%	34.8%	7.4%
Industrial Process	C35	47.5%	10.2%	34.8%	7.4%
HVAC Pump Motor (heating)	C36	38.7%	48.6%	5.9%	6.8%
HVAC Pump Motor (cooling)	C37	7.8%	9.8%	36.8%	45.6%
HVAC Pump Motor (unknown use)	C38	23.2%	29.2%	21.4%	26.2%
VFD - Supply fans <10 HP	C39	38.8%	16.1%	28.4%	16.7%
VFD - Return fans <10 HP	C40	38.8%	16.1%	28.4%	16.7%
VFD - Exhaust fans <10 HP	C41	34.8%	23.2%	20.3%	21.7%
VFD - Boiler feedwater pumps <10 HP	C42	42.9%	44.2%	6.6%	6.3%

		Winter Peak		Summer Peak	Summer Off-peak
	Loadshape Reference Number	Oct-Apr, M-F, non-holiday, 8AM - 11PM	Oct-Apr All other	May-Sept, M-F, non-holiday, 8AM - 11PM	May- Sept, All other time
VFD - Chilled water pumps <10 HP	C43	11.2%	5.5%	40.7%	42.6%
VFD Boiler circulation pumps <10 HP	C44	42.9%	44.2%	6.6%	6.3%
Refrigeration Economizer	C45	36.3%	50.8%	5.6%	7.3%
Evaporator Fan Control	C46	24.0%	35.9%	16.7%	23.4%
Standby Losses - Commercial Office	C47	8.2%	50.5%	5.6%	35.7%
VFD Boiler draft fans <10 HP	C48	37.3%	48.9%	6.4%	7.3%
VFD Cooling Tower Fans <10 HP	C49	7.9%	5.2%	54.0%	32.9%
Engine Block Heater Timer	C50	26.5%	61.0%	4.1%	8.5%
Door Heater Control	C51	30.4%	69.6%	0.0%	0.0%
Beverage and Snack Machine Controls	C52	10.0%	48.3%	7.4%	34.3%
Flat	C53	36.3%	21.8%	26.2%	15.7%
Religious Indoor Lighting	C54	26.8%	31.4%	18.9%	22.8%

Table 3.5: Loadshapes by Month and Day of Week

		Jan		Feb		Mar		Apr		May		Jun		Jul		Aug		Sep		Oct		Nov		Dec	
		M-F	S-S	M-F	S-S	M-F	S-S	M-F	S-S	M-F	S-S	M-F	S-S	M-F	S-S	M-F	S-S	M-F	S-S	M-F	S-S	M-F	S-S	M-F	S-S
Residential Clothes Washer	R01	7.0%	1.6%	6.3%	1.5%	6.6%	1.7%	6.7%	1.5%	6.9%	1.6%	6.5%	1.6%	7.1%	1.5%	6.8%	1.7%	6.6%	1.6%	7.0%	1.5%	6.5%	1.7%	6.9%	1.6%
Residential Dish Washer	R02	7.3%	1.2%	6.6%	1.2%	7.0%	1.4%	7.1%	1.2%	7.3%	1.2%	6.9%	1.3%	7.4%	1.2%	7.1%	1.3%	7.0%	1.2%	7.4%	1.2%	6.8%	1.3%	7.2%	1.3%
Residential Electric DHW	R03	6.4%	2.9%	5.8%	2.7%	6.1%	3.3%	6.2%	2.8%	5.0%	2.3%	4.7%	2.4%	5.1%	2.2%	4.9%	2.5%	4.8%	2.3%	6.5%	2.8%	6.0%	3.1%	6.3%	3.0%
Residential Freezer	R04	5.8%	2.3%	5.2%	2.2%	5.5%	2.6%	5.6%	2.2%	6.4%	2.6%	6.1%	2.7%	6.6%	2.5%	6.3%	2.8%	6.1%	2.6%	5.8%	2.2%	5.4%	2.4%	5.7%	2.4%
Residential Refrigerator	R05	5.5%	2.6%	4.9%	2.4%	5.2%	2.9%	5.3%	2.5%	6.2%	2.9%	5.8%	3.0%	6.3%	2.8%	6.0%	3.1%	5.9%	2.9%	5.5%	2.5%	5.1%	2.7%	5.4%	2.6%
Residential Indoor Lighting	R06	7.1%	2.2%	6.4%	2.1%	6.8%	2.4%	6.9%	2.1%	5.3%	2.1%	5.0%	2.2%	5.4%	2.0%	5.2%	2.2%	5.1%	2.1%	7.2%	2.1%	6.6%	2.3%	7.0%	2.2%
Residential Outdoor Lighting	R07	2.7%	6.2%	2.4%	5.9%	2.6%	7.0%	2.6%	6.0%	1.9%	5.7%	1.8%	5.8%	2.0%	5.3%	1.9%	6.0%	1.8%	5.7%	2.7%	6.0%	2.5%	6.6%	2.6%	6.4%
Residential Cooling	R08	0.6%	0.1%	0.5%	0.1%	0.6%	0.1%	0.6%	0.1%	14.6%	4.8%	13.7%	4.9%	14.9%	4.5%	14.2%	5.0%	13.9%	4.8%	0.6%	0.1%	0.6%	0.1%	0.6%	0.1%
Residential Electric Space Heat	R09	8.6%	5.5%	7.7%	5.1%	8.2%	6.1%	8.3%	5.3%	0.3%	0.3%	0.3%	0.3%	0.4%	0.3%	0.3%	0.4%	0.3%	0.3%	8.7%	5.3%	8.0%	5.8%	8.5%	5.6%
Residential Electric Heating and Cooling	R10	5.2%	3.2%	4.7%	3.0%	5.0%	3.6%	5.0%	3.1%	6.3%	2.2%	6.0%	2.3%	6.5%	2.1%	6.2%	2.3%	6.0%	2.2%	5.3%	3.1%	4.9%	3.4%	5.2%	3.3%
Residential Ventilation	R11	3.8%	4.6%	3.4%	4.3%	3.6%	5.1%	3.7%	4.4%	3.8%	4.6%	3.6%	4.7%	3.9%	4.3%	3.8%	4.8%	3.7%	4.6%	3.9%	4.4%	3.6%	4.8%	3.8%	4.7%
Residential - Dehumidifier	R12	1.9%	2.3%	1.7%	2.2%	1.8%	2.6%	1.8%	2.2%	6.5%	7.8%	6.1%	8.0%	6.6%	7.3%	6.3%	8.2%	6.2%	7.8%	1.9%	2.2%	1.8%	2.4%	1.9%	2.4%
Residential Standby Losses - Entertainmen t Center	R13	3.8%	4.6%	3.5%	4.3%	3.7%	5.1%	3.7%	4.4%	3.9%	4.5%	3.7%	4.6%	4.0%	4.2%	3.8%	4.8%	3.7%	4.5%	3.9%	4.4%	3.6%	4.8%	3.8%	4.7%
Residential Standby Losses - Home Office	R14	3.5%	4.9%	3.2%	4.6%	3.4%	5.5%	3.4%	4.7%	3.5%	4.9%	3.3%	5.0%	3.5%	4.6%	3.4%	5.2%	3.3%	4.9%	3.6%	4.7%	3.3%	5.2%	3.5%	5.0%

Illinois Statewide Technical Reference Manual – Assumptions

		Jan		Feb		Mar	·	Apr		May		Jun		Jul		Aug		Sep		Oct		Nov		Dec	
		M-F	S-S	M-F	S-S	M-F	S-S	M-F	S-S	M-F	S-S	M-F	S-S	M-F	S-S	M-F	S-S	M-F	S-S	M-F	S-S	M-F	S-S	M-F	S-S
Commercial Electric Cooking	C01	6.0%	2.6%	5.4%	2.4%	5.7%	2.9%	5.8%	2.5%	5.9%	2.5%	5.5%	2.6%	6.0%	2.4%	5.7%	2.6%	5.6%	2.5%	6.1%	2.5%	5.6%	2.7%	5.9%	2.6%
Commercial Electric DHW	C02	6.0%	2.6%	5.4%	2.4%	5.7%	2.9%	5.8%	2.5%	5.8%	2.5%	5.5%	2.6%	6.0%	2.4%	5.7%	2.7%	5.6%	2.5%	6.1%	2.5%	5.6%	2.7%	5.9%	2.6%
Commercial Cooling	C03	0.7%	0.1%	0.6%	0.1%	0.7%	0.1%	0.7%	0.1%	13.6%	5.5%	12.8%	5.7%	13.9%	5.2%	13.3%	5.9%	13.0%	5.5%	0.7%	0.1%	0.7%	0.1%	0.7%	0.1%
Commercial Electric Heating	C04	7.9%	6.1%	7.1%	5.7%	7.6%	6.8%	7.7%	5.9%	0.4%	0.3%	0.4%	0.3%	0.4%	0.3%	0.4%	0.3%	0.4%	0.3%	8.0%	5.9%	7.4%	6.5%	7.8%	6.3%
Commercial Electric Heating and Cooling	C05	2.9%	1.9%	2.6%	1.8%	2.8%	2.1%	2.8%	1.9%	9.6%	4.0%	9.1%	4.1%	9.8%	3.7%	9.4%	4.2%	9.2%	4.0%	2.9%	1.9%	2.7%	2.0%	2.8%	2.0%
Commercial Indoor Lighting	C06	5.9%	2.6%	5.3%	2.5%	5.7%	2.9%	5.7%	2.6%	5.8%	2.6%	5.5%	2.6%	5.9%	2.4%	5.7%	2.7%	5.5%	2.6%	6.0%	2.6%	5.5%	2.8%	5.9%	2.7%
Grocery/Conv . Store Indoor Lighting	C07	4.7%	3.7%	4.2%	3.5%	4.4%	4.2%	4.5%	3.6%	4.7%	3.8%	4.4%	3.9%	4.8%	3.6%	4.6%	4.1%	4.5%	3.8%	4.7%	3.6%	4.3%	3.9%	4.6%	3.8%
Hospital Indoor Lighting	C08	4.3%	4.1%	3.9%	3.8%	4.1%	4.6%	4.2%	4.0%	4.3%	4.2%	4.0%	4.3%	4.4%	3.9%	4.2%	4.4%	4.1%	4.2%	4.4%	4.0%	4.0%	4.3%	4.3%	4.2%
Office Indoor Lighting	C09	6.2%	2.3%	5.6%	2.1%	6.0%	2.5%	6.0%	2.2%	6.2%	2.3%	5.9%	2.4%	6.4%	2.2%	6.1%	2.4%	5.9%	2.3%	6.3%	2.2%	5.8%	2.4%	6.2%	2.3%
Restaurant Indoor Lighting	C10	4.8%	3.6%	4.3%	3.4%	4.5%	4.1%	4.6%	3.5%	4.8%	3.7%	4.5%	3.8%	4.9%	3.5%	4.7%	4.0%	4.6%	3.7%	4.8%	3.5%	4.4%	3.8%	4.7%	3.7%
Retail Indoor Lighting	C11	5.3%	3.1%	4.7%	3.0%	5.0%	3.5%	5.1%	3.1%	5.3%	3.2%	5.0%	3.3%	5.4%	3.1%	5.2%	3.4%	5.0%	3.2%	5.3%	3.1%	4.9%	3.3%	5.2%	3.2%
Warehouse Indoor Lighting	C12	5.8%	2.6%	5.2%	2.5%	5.6%	2.9%	5.6%	2.5%	5.8%	2.7%	5.5%	2.8%	6.0%	2.5%	5.7%	2.8%	5.6%	2.7%	5.9%	2.5%	5.4%	2.8%	5.8%	2.7%
K-12 School Indoor Lighting	C13	6.8%	3.2%	6.1%	3.0%	6.5%	3.6%	6.6%	3.1%	4.1%	2.3%	3.9%	2.3%	4.2%	2.1%	4.0%	2.4%	3.9%	2.3%	6.9%	3.1%	6.3%	3.4%	6.7%	3.3%
Indust. 1-shift (8/5) (e.g., comp. air, lights)	C14	7.5%	1.0%	6.7%	1.0%	7.1%	1.1%	7.2%	1.0%	7.5%	1.1%	7.1%	1.1%	7.7%	1.0%	7.4%	1.1%	7.2%	1.1%	7.6%	1.0%	7.0%	1.1%	7.4%	1.0%
Indust. 2-shift	C15	7.0%	1.4%	6.3%	1.4%	6.7%	1.6%	6.8%	1.4%	7.1%	1.5%	6.7%	1.5%	7.3%	1.4%	6.9%	1.6%	6.8%	1.5%	7.1%	1.4%	6.6%	1.5%	7.0%	1.5%

		Jan		Feb		Mar	·	Apr		May		Jun		Jul		Aug		Sep		Oct		Nov		Dec	
		M-F	S-S																						
(16/5) (e.g., comp. air, lights)																									
Indust. 3-shift (24/5) (e.g., comp. air, lights)	C16	5.1%	3.3%	4.6%	3.1%	4.9%	3.7%	5.0%	3.2%	5.2%	3.3%	4.9%	3.4%	5.3%	3.1%	5.1%	3.5%	5.0%	3.3%	5.2%	3.2%	4.8%	3.5%	5.1%	3.4%
Indust. 4-shift (24/7) (e.g., comp. air, lights)	C17	3.8%	4.6%	3.4%	4.3%	3.6%	5.1%	3.7%	4.4%	3.8%	4.6%	3.6%	4.7%	3.9%	4.3%	3.8%	4.8%	3.7%	4.6%	3.9%	4.4%	3.6%	4.8%	3.8%	4.7%
Industrial Indoor Lighting	C18	6.6%	1.9%	5.9%	1.8%	6.3%	2.1%	6.3%	1.9%	6.6%	1.9%	6.2%	2.0%	6.8%	1.8%	6.5%	2.0%	6.3%	1.9%	6.6%	1.9%	6.1%	2.0%	6.5%	2.0%
Industrial Outdoor Lighting	C19	2.7%	6.2%	2.4%	5.9%	2.6%	7.0%	2.6%	6.0%	1.9%	5.7%	1.8%	5.8%	2.0%	5.3%	1.9%	6.0%	1.8%	5.7%	2.7%	6.0%	2.5%	6.6%	2.6%	6.4%
Commercial Outdoor Lighting	C20	3.5%	5.0%	3.1%	4.7%	3.3%	5.6%	3.3%	4.8%	2.7%	5.6%	2.5%	5.8%	2.7%	5.3%	2.6%	5.9%	2.5%	5.6%	3.5%	4.8%	3.2%	5.3%	3.4%	5.1%
Commercial Office Equipment	C21	5.6%	3.0%	5.0%	2.8%	5.3%	3.3%	5.4%	2.9%	5.4%	2.9%	5.1%	3.0%	5.6%	2.7%	5.3%	3.1%	5.2%	2.9%	5.6%	2.9%	5.2%	3.1%	5.5%	3.0%
Commercial Refrigeration	C22	5.7%	2.9%	5.1%	2.7%	5.4%	3.2%	5.5%	2.8%	5.5%	2.8%	5.1%	2.9%	5.6%	2.7%	5.3%	3.0%	5.2%	2.8%	5.8%	2.8%	5.3%	3.1%	5.6%	3.0%
Commercial Ventilation	C23	5.6%	2.9%	5.1%	2.7%	5.4%	3.3%	5.4%	2.8%	6.1%	2.3%	5.7%	2.4%	6.2%	2.2%	5.9%	2.4%	5.8%	2.3%	5.7%	2.8%	5.3%	3.1%	5.6%	3.0%
Traffic Signal - Red Balls, always changing or flashing	C24	3.8%	4.6%	3.4%	4.3%	3.6%	5.1%	3.7%	4.4%	3.8%	4.6%	3.6%	4.7%	3.9%	4.3%	3.8%	4.8%	3.7%	4.6%	3.9%	4.4%	3.6%	4.8%	3.8%	4.7%
Traffic Signal - Red Balls, changing day, off night	C25	5.5%	2.9%	4.9%	2.8%	5.2%	3.3%	5.3%	2.9%	5.5%	3.0%	5.2%	3.1%	5.7%	2.8%	5.4%	3.1%	5.3%	3.0%	5.5%	2.9%	5.1%	3.1%	5.4%	3.0%
Traffic Signal - Green Balls, always changing	C26	3.8%	4.6%	3.4%	4.3%	3.6%	5.1%	3.7%	4.4%	3.8%	4.6%	3.6%	4.7%	3.9%	4.3%	3.8%	4.8%	3.7%	4.6%	3.9%	4.4%	3.6%	4.8%	3.8%	4.7%
Traffic Signal - Green Balls,	C27	5.5%	2.9%	4.9%	2.8%	5.2%	3.3%	5.3%	2.9%	5.5%	3.0%	5.2%	3.1%	5.7%	2.8%	5.4%	3.1%	5.3%	3.0%	5.5%	2.9%	5.1%	3.1%	5.4%	3.0%

		Jan		Feb		Mar		Apr		May		Jun		Jul		Aug		Sep		Oct		Nov		Dec	
		M-F	S-S																						
changing day, off night																									
Traffic Signal - Red Arrows	C28	3.8%	4.6%	3.4%	4.3%	3.6%	5.1%	3.7%	4.4%	3.8%	4.6%	3.6%	4.7%	3.9%	4.3%	3.8%	4.8%	3.7%	4.6%	3.9%	4.4%	3.6%	4.8%	3.8%	4.7%
Traffic Signal - Green Arrows	C29	3.8%	4.6%	3.4%	4.3%	3.6%	5.1%	3.7%	4.4%	3.8%	4.6%	3.6%	4.7%	3.9%	4.3%	3.8%	4.8%	3.7%	4.6%	3.9%	4.4%	3.6%	4.8%	3.8%	4.7%
Traffic Signal - Flashing Yellows	C30	3.8%	4.6%	3.4%	4.3%	3.6%	5.1%	3.7%	4.4%	3.8%	4.6%	3.6%	4.7%	3.9%	4.3%	3.8%	4.8%	3.7%	4.6%	3.9%	4.4%	3.6%	4.8%	3.8%	4.7%
Traffic Signal - "Hand" Don't Walk Signal	C31	3.8%	4.6%	3.4%	4.3%	3.6%	5.1%	3.7%	4.4%	3.8%	4.6%	3.6%	4.7%	3.9%	4.3%	3.8%	4.8%	3.7%	4.6%	3.9%	4.4%	3.6%	4.8%	3.8%	4.7%
Traffic Signal - "Man" Walk Signal	C32	3.8%	4.6%	3.4%	4.3%	3.6%	5.1%	3.7%	4.4%	3.8%	4.6%	3.6%	4.7%	3.9%	4.3%	3.8%	4.8%	3.7%	4.6%	3.9%	4.4%	3.6%	4.8%	3.8%	4.7%
Traffic Signal - Bi-Modal Walk/Don't Walk	C33	3.8%	4.6%	3.4%	4.3%	3.6%	5.1%	3.7%	4.4%	3.8%	4.6%	3.6%	4.7%	3.9%	4.3%	3.8%	4.8%	3.7%	4.6%	3.9%	4.4%	3.6%	4.8%	3.8%	4.7%
Industrial Motor	C34	7.0%	1.4%	6.3%	1.4%	6.7%	1.6%	6.8%	1.4%	7.1%	1.5%	6.7%	1.5%	7.3%	1.4%	6.9%	1.6%	6.8%	1.5%	7.1%	1.4%	6.6%	1.5%	7.0%	1.5%
Industrial Process	C35	7.0%	1.4%	6.3%	1.4%	6.7%	1.6%	6.8%	1.4%	7.1%	1.5%	6.7%	1.5%	7.3%	1.4%	6.9%	1.6%	6.8%	1.5%	7.1%	1.4%	6.6%	1.5%	7.0%	1.5%
HVAC Pump Motor (heating)	C36	5.7%	6.9%	5.2%	6.4%	5.5%	7.7%	5.5%	6.6%	1.2%	1.4%	1.1%	1.4%	1.2%	1.3%	1.2%	1.4%	1.2%	1.4%	5.8%	6.6%	5.3%	7.3%	5.7%	7.1%
HVAC Pump Motor (cooling)	C37	1.2%	1.4%	1.0%	1.3%	1.1%	1.5%	1.1%	1.3%	7.5%	9.1%	7.1%	9.3%	7.7%	8.5%	7.3%	9.6%	7.2%	9.1%	1.2%	1.3%	1.1%	1.5%	1.1%	1.4%
HVAC Pump Motor (unknown use)	C38	3.4%	4.1%	3.1%	3.9%	3.3%	4.6%	3.3%	4.0%	4.4%	5.2%	4.1%	5.4%	4.5%	4.9%	4.3%	5.5%	4.2%	5.2%	3.5%	4.0%	3.2%	4.4%	3.4%	4.2%
VFD - Supply fans <10 HP	C39	5.7%	2.3%	5.2%	2.1%	5.5%	2.5%	5.6%	2.2%	5.8%	3.3%	5.5%	3.4%	5.9%	3.1%	5.7%	3.5%	5.5%	3.3%	5.8%	2.2%	5.4%	2.4%	5.7%	2.3%
VFD - Return fans <10 HP	C40	5.7%	2.3%	5.2%	2.1%	5.5%	2.5%	5.6%	2.2%	5.8%	3.3%	5.5%	3.4%	5.9%	3.1%	5.7%	3.5%	5.5%	3.3%	5.8%	2.2%	5.4%	2.4%	5.7%	2.3%
VFD - Exhaust fans <10 HP	C41	5.1%	3.3%	4.6%	3.1%	4.9%	3.7%	5.0%	3.2%	4.1%	4.3%	3.9%	4.4%	4.2%	4.1%	4.1%	4.6%	4.0%	4.3%	5.2%	3.2%	4.8%	3.5%	5.1%	3.4%
VFD - Boiler feedwater	C42	6.4%	6.2%	5.7%	5.9%	6.1%	7.0%	6.1%	6.0%	1.3%	1.3%	1.3%	1.3%	1.4%	1.2%	1.3%	1.3%	1.3%	1.3%	6.4%	6.0%	5.9%	6.6%	6.3%	6.4%

		Jan		Feb		Mar		Apr		May		Jun		Jul		Aug		Sep		Oct		Nov		Dec	
		M-F	S-S	M-F	S-S	M-F	S-S	M-F	S-S	M-F	S-S	M-F	S-S	M-F	S-S	M-F	S-S	M-F	S-S	M-F	S-S	M-F	S-S	M-F	S-S
pumps <10 HP																									
VFD - Chilled water pumps <10 HP	C43	1.7%	0.8%	1.5%	0.7%	1.6%	0.9%	1.6%	0.8%	8.3%	8.5%	7.8%	8.7%	8.5%	8.0%	8.1%	8.9%	7.9%	8.5%	1.7%	0.8%	1.6%	0.8%	1.6%	0.8%
VFD Boiler circulation pumps <10 HP	C44	6.4%	6.2%	5.7%	5.9%	6.1%	7.0%	6.1%	6.0%	1.3%	1.3%	1.3%	1.3%	1.4%	1.2%	1.3%	1.3%	1.3%	1.3%	6.4%	6.0%	5.9%	6.6%	6.3%	6.4%
Refrigeration Economizer	C45	5.4%	7.2%	4.8%	6.7%	5.1%	8.0%	5.2%	7.0%	1.1%	1.5%	1.1%	1.5%	1.2%	1.4%	1.1%	1.5%	1.1%	1.5%	5.4%	7.0%	5.0%	7.6%	5.3%	7.4%
Evaporator Fan Control	C46	3.6%	5.1%	3.2%	4.8%	3.4%	5.7%	3.4%	4.9%	3.4%	4.7%	3.2%	4.8%	3.5%	4.4%	3.3%	4.9%	3.3%	4.7%	3.6%	4.9%	3.3%	5.4%	3.5%	5.2%
Standby Losses - Commercial Office	C47	1.2%	7.1%	1.1%	6.7%	1.2%	8.0%	1.2%	6.9%	1.1%	7.1%	1.1%	7.3%	1.2%	6.7%	1.1%	7.5%	1.1%	7.1%	1.2%	6.9%	1.1%	7.5%	1.2%	7.3%
VFD Boiler draft fans <10 HP	C48	5.5%	6.9%	5.0%	6.5%	5.3%	7.7%	5.3%	6.7%	1.3%	1.5%	1.2%	1.5%	1.3%	1.4%	1.3%	1.5%	1.2%	1.5%	5.6%	6.7%	5.2%	7.3%	5.5%	7.1%
VFD Cooling Tower Fans <10 HP	C49	1.2%	0.7%	1.1%	0.7%	1.1%	0.8%	1.1%	0.7%	11.0%	6.5%	10.4%	6.7%	11.3%	6.2%	10.8%	6.9%	10.5%	6.5%	1.2%	0.7%	1.1%	0.8%	1.2%	0.8%
Engine Block Heater Timer	C50	3.9%	8.6%	3.5%	8.1%	3.7%	9.6%	3.8%	8.3%	0.8%	1.7%	0.8%	1.7%	0.8%	1.6%	0.8%	1.8%	0.8%	1.7%	4.0%	8.3%	3.7%	9.1%	3.9%	8.9%
Door Heater Control	C51	4.5%	9.8%	4.0%	9.2%	4.3%	11.0%	4.3%	9.5%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	4.5%	9.5%	4.2%	10.4%	4.4%	10.1 %
Beverage and Snack Machine Controls	C52	1.5%	6.8%	1.3%	6.4%	1.4%	7.6%	1.4%	6.6%	1.5%	6.8%	1.4%	7.0%	1.5%	6.4%	1.5%	7.2%	1.4%	6.8%	1.5%	6.6%	1.4%	7.2%	1.5%	7.0%
Flat	C53	5.4%	3.1%	4.8%	2.9%	5.1%	3.4%	5.2%	3.0%	5.3%	3.1%	5.0%	3.2%	5.5%	2.9%	5.2%	3.3%	5.1%	3.1%	5.4%	3.0%	5.0%	3.3%	5.3%	3.2%
Religious Indoor Lighting	C54	4.0%	4.4%	3.6%	4.2%	3.8%	5.0%	3.8%	4.3%	3.9%	4.5%	3.6%	4.7%	3.9%	4.3%	3.8%	4.8%	3.7%	4.5%	4.0%	4.3%	3.7%	4.7%	3.9%	4.6%

3.6 Summer Peak Period Definition (kW)

To estimate the impact that an efficiency measure has on a utility's system peak, the peak itself needs to be defined. Illinois spans two different electrical control areas, the Pennsylvania – Jersey – Maryland (PJM) and the Midwest Independent System Operators (MISO). As a result, there is some disparity in the peak definition across the state. However, only PJM has a forward capacity market where an efficiency program can potentially participate. Because ComEd is part of the PJM control area, their definition of summer peak is being applied statewide in this TRM.

Because Illinois is a summer peaking state, only the summer peak period is defined for the purpose of this TRM. The coincident summer peak period is defined as 1:00-5:00 PM Central Prevailing Time on non-holiday weekdays, June through August.

Summer peak coincidence factors can be found within each measure characterization. The source is provided and is based upon evaluation results, analysis of load shape data (e.g., the Itron eShapes data provided by Ameren), or through a calculation using stated assumptions.

For measures that are not weather-sensitive, the summer peak coincidence factor is estimated whenever possible as the average of savings within the peak period defined above. For weather sensitive measures such as cooling, the summer peak coincidence factor is provided in two different ways. The first method is to estimate demand savings during the utility's peak hour (as provided by Ameren). This is likely to be the most indicative of actual peak benefits. The second way represents the average savings over the summer peak period, consistent with the non-weather sensitive end uses, and is presented so that savings can be bid into PJM's Forward Capacity Market.

3.7 Heating and Cooling Degree-Day Data

Many measures are weather sensitive. Because there is a range of climactic conditions across the state, VEIC engaged the Utilities to provide their preferences for what airports and cities are the best proxies for the weather in their service territories. The result of this engagement is in the table below. All of the data represents 30-year normals²⁴ from the National Climactic Data Center (NCDC). Note that the base temperature for the calculation of heating degree-days in this document does not follow the historical 65F degree base temperature convention. Instead VEIC used several different temperatures in this TRM to more accurately reflect the outdoor temperature when a heating or cooling system turns on.

Residential heating is based on 60F, in accordance with regression analysis of heating fuel use and weather by state by the Pacific Northwest National Laboratory²⁵. Residential cooling is based on 65F in agreement with a field study in Wisconsin²⁶. These are lower than typical thermostat set points because internal gains such as appliances, lighting, and people provide some heating. In C&I settings, internal gains are often much higher; the base temperatures for both heating and cooling is 55F²⁷. Custom degree-days with building specific base temperatures are recommended for large C&I projects.

²⁴ 30-year normals have been used instead of Typical Meteorological Year (TMY) data due to the fact that few of the measures in the TRM are significantly affected by solar insolation, which is one of the primary benefits of using the TMY approach.

²⁵ Belzer and Cort, Pacific Northwest National Laboratory in "Statistical Analysis of Historical State-Level Residential Energy Consumption Trends," 2004.

²⁶ Energy Center of Wisconsin, May 2008 metering study; "Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research", p. 32 (amended in 2010).

²⁷ This value is based upon experience, and it is preferable to use building-specific base temperatures when available.

	Resid	ential	C	&I	
Zone	HDD	CDD	HDD	CDD	Weather Station / City
1	5,352	820	4,272	2,173	Rockford AP / Rockford
2	5,113	842	4,029	3,357	Chicago O'Hare AP / Chicago
3	4,379	1,108	3,406	2,666	Springfield #2 / Springfield
4	3,378	1,570	2,515	3,090	Belleville SIU RSCH / Belleville
5	3,438	1,370	2,546	2,182	Carbondale Southern IL AP / Marion
Average	4,860	947	3,812	3,051	Weighted by occupied housing units
Base Temp	60F	65F	55F	55F	30 year climate normals, 1981-2010

Table 3.6: Degree-Day Zones and Values by Market Sector

This table assigns each of the proxy cities to one of five climate zones. The following graphics from the Illinois State Water Survey show isobars (lines of equal degree-days) and we have color-coded the counties in each of these graphics using those isobars as a dividing line. Using this approach, the state divides into five cooling degree-day zones and five heating degree-day zones. Note that although the heating and cooling degree-day maps are similar, they are not the same, and the result is that there are a total of 10 climate zones in the state. The counties are listed in the tables following the figures for ease of reference.

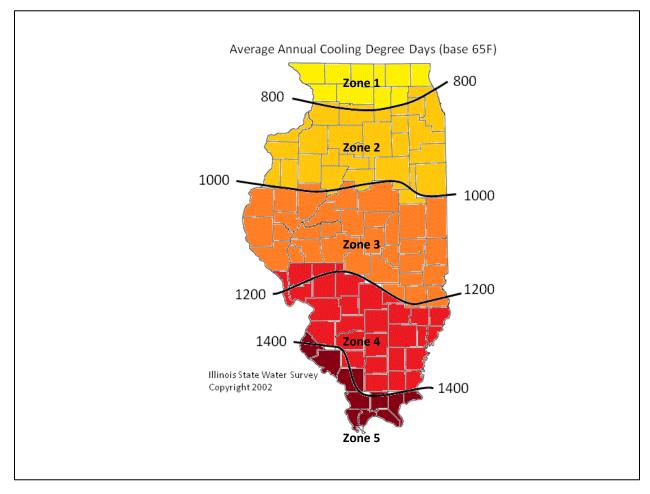


Figure 1: Cooling Degree-Day Zones by County

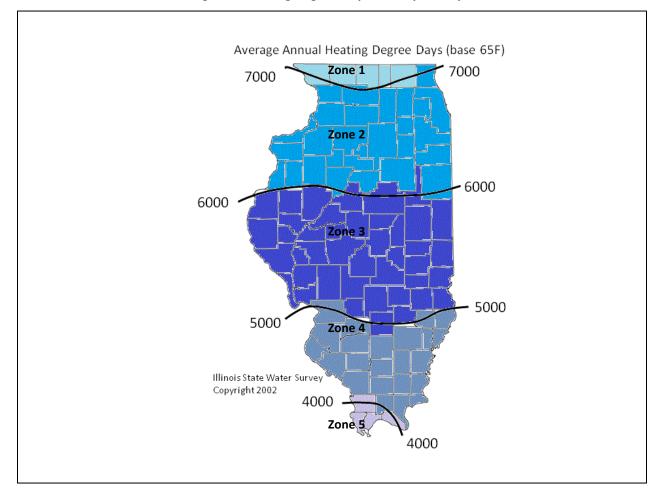


Figure 2: Heating Degree-Day Zones by County

Zone 1	Zone 2	Zone 3	Zone 4	Zone 5
Boone County	Bureau County	Adams County	Clinton County	Alexander County
Jo Daviess County	Carroll County	Bond County	Edwards County	Massac County
Stephenson County	Cook County	Brown County	Franklin County	Pulaski County
Winnebago County	DeKalb County	Calhoun County	Gallatin County	Union County
	DuPage County	Cass County	Hamilton County	
	Grundy County	Champaign County	Hardin County	
	Henderson County	Christian County	Jackson County	
	Henry County	Clark County	Jefferson County	
	Iroquois County	Clay County	Johnson County	
	Kane County	Coles County	Lawrence County	
	Kankakee County	Crawford County	Madison County	
	Kendall County	Cumberland County	Marion County	
	Knox County	De Witt County	Monroe County	
	Lake County	Douglas County	Perry County	
	LaSalle County	Edgar County	Pope County	
	Lee County	Effingham County	Randolph County	
	Livingston County	Fayette County	Richland County	
	Marshall County	Ford County	Saline County	
	McHenry County	Fulton County	St. Clair County	
	Mercer County	Greene County	Wabash County	
	Ogle County	Hancock County	Washington County	
	Peoria County	Jasper County	Wayne County	
	Putnam County	Jersey County	White County	
	Rock Island County	Logan County	Williamson County	
	Stark County	Macon County		
	Warren County	Macoupin County		
	Whiteside County	Mason County		
	Will County	McDonough County		
	Woodford County	McLean County		
		Menard County		
		Montgomery		
		Morgan County		
		Moultrie County		
		Piatt County		
		Pike County		
		Sangamon County		
		Schuyler County		
		Scott County		
		Shelby County		
		Tazewell County		
		Vermilion County		

Table 3.7: Heating Degree-Day Zones by County

Zone 1	Zone 2	Zone 3	Zone 4	Zone 5
Boone County	Bureau County	Adams County	Bond County	Alexander County
Carroll County	Cook County	Brown County	Clay County	Hardin County
DeKalb County	DuPage County	Calhoun County	Clinton County	Johnson County
Jo Daviess County	Grundy County	Cass County	Edwards County	Massac County
Kane County	Henderson County	Champaign County	Fayette County	Pope County
Lake County	Henry County	Christian County	Franklin County	Pulaski County
McHenry County	Iroquois County	Clark County	Gallatin County	Randolph County
Ogle County	Kankakee County	Coles County	Hamilton County	Union County
Stephenson County	Kendall County	Crawford County	Jackson County	
Winnebago County	Knox County	Cumberland County	Jefferson County	
	LaSalle County	De Witt County	Jersey County	
	Lee County	Douglas County	Lawrence County	
	Livingston County	Edgar County	Macoupin County	
	Marshall County	Effingham County	Madison County	
	Mercer County	Ford County	Marion County	
	Peoria County	Fulton County	Monroe County	
	Putnam County	Greene County	Montgomery	
	Rock Island County	Hancock County	Perry County	
	Stark County	Jasper County	Richland County	
	Warren County	Logan County	Saline County	
	Whiteside County	Macon County	St. Clair County	
	Will County	Mason County	Wabash County	
	Woodford County	McDonough County	Washington County	
		McLean County	Wayne County	
		Menard County	White County	
		Morgan County	Williamson County	
		Moultrie County		
		Piatt County		
		Pike County		
		Sangamon County		
		Schuyler County		
		Scott County		
		Shelby County		
		Tazewell County		
		Vermilion County		

3.8 O&M Costs and the Weighted Average Cost of Capital (WACC)

Some measures specify an operations and maintenance (O&M) parameter that describes the incremental O&M cost savings that can be expected over the measure's lifetime. When estimating the cost effectiveness of these measures, it is necessary to calculate the net present value (NPV) of O&M costs over the life of the measure, which requires an appropriate discount rate. The utility's weighted average cost of capital (WACC) is the most commonly used discount rate that is used in this context.

Each utility has a unique WACC that will vary over time. As a result, the TRM does not specify the NPV of the O&M costs. Instead, the necessary information required to calculate the NPV is included. An example is provided below to demonstrate how to calculate the NPV of O&M costs.

EXAMPLE	
Baseline Case:	O&M costs equal \$150 every two years.
Efficient Case:	O&M costs equal \$50 every five years.

Given this information, the incremental O&M costs can be determined by discounting the cash flows in the Baseline Case and the Efficient Case separately using the applicable WACC. Then the NPV of the incremental O&M costs is calculated by subtracting one NPV from the other. This value is then used in each utility's cost-effectiveness screening process.

Those measures that include baseline shifts that result in multiple component costs and lifetimes cannot be calculated by this standard method. In only these cases, the O&M costs are presented both as Annual Levelized equivalent cost (i.e., the annual payment that results in an equivalent NPV to the actual stream of O&M costs) and as NPVs using a statewide average real discount rate of 5.23%.

3.9 Interactive Effects

The TRM presents engineering equations for most measures. This approach is desirable because it conveys information clearly and transparently, and is widely accepted in the industry. Unlike simulation model results, engineering equations also provide flexibility and the opportunity for users to substitute local, specific information for specific input values. Furthermore, the parameters can be changed in TRM updates to be applied in future years as better information becomes available.

One limitation is that some interactive effects between measures are not automatically captured. Because we cannot know what measures will be implemented at the same time with the same customer, we cannot always capture the interactions between multiple measures within individual measure characterizations. However, interactive effects with different end-uses are included in individual measure characterizations whenever possible²⁸. For instance, waste heat factors are included in the lighting characterizations to capture the interaction between more-efficient lighting measures and the amount of heating and/or cooling that is subsequently needed in the building.

By contrast, no effort is made to account for interactive effects between an efficient air conditioning measure and an efficient lighting measure, because it is impossible to know the specifics of the other measure in advance of its installation. For custom measures and projects where a bundle of measures is being implemented at the same time, these kinds of interactive effects should be estimated.

²⁸ For more information, please refer to the document, 'Dealing with interactive Effects During Measure Characterization" Memo to the Stakeholder Advisory Group dated 12/9/11.

4 Commercial and Industrial Measures

4.1 Agricultural End Use

4.1.1 Engine Block Timer for Agricultural Equipment

DESCRIPTION

The measure is a plug-in timer that is activated below a specific outdoor temperature to control an engine block heater in agricultural equipment. Engine block heaters are typically used during cold weather to pre-warm an engine prior to start, for convenience heaters are typically plugged in considerably longer than necessary to improve startup performance. A timer allows a user to preset the heater to come on for only the amount of time necessary to pre-warm the engine block, reducing unnecessary run time even if the baseline equipment has an engine block temperature sensor.

This measure was developed to be applicable to the following program types: RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient measure is an engine block heater operated by an outdoor plug-in timer (15 amp or greater) that turns on the heater only when the outdoor temperature is below 25 F.

DEFINITION OF BASELINE EQUIPMENT

The baseline scenario is an engine block heater that is manually plugged in by the farmer to facilitate equipment startup at a later time.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life if assumed to be 3 years²⁹

DEEMED MEASURE COST

The incremental cost per installed plug-in timer is \$10.19³⁰.

DEEMED O&M COST ADJUSTMENTS

N/A

COINCIDENCE FACTOR

Engine block timers only operate in the winter so the summer peak demand savings is zero.

²⁹Equipment life is expected to be longer, but measure life is more conservative to account for possible attrition in use over time.

³⁰Based on bulk pricing reported by EnSave, which administers the rebate in Vermont

		Algorithm
CALCULA	TION OF SA	VINGS
ELECTRIC	ENERGY SA	VINGS
Δ kWh	=	ISR * Use Season * %Days * HrSave/Day * kW _{heater} - ParaLd
	=	78.39% * 87 days * 84.23% * 7.765 Hr/Day * 1.5 kW - 5.46 kWh
	=	664 kWh
SUMMER		it Peak Demand Savings
N/A		
NATUR	AL GAS EN	IERGY SAVINGS
N/A		
WATER II	MPACT DES	CRIPTIONS AND CALCULATION
N/A		
DEEMED	O&M Cos	T ADJUSTMENT CALCULATION
N/A		
Measuri	e Code: RS	-APL-ESDH-V01-120601

4.1.2 High Volume Low Speed Fans

DESCRIPTION

The measure applies to 20-24 foot diameter horizontally mounted ceiling high volume low speed (HVLS) fans that are replacing multiple non HVLS fans that have reached the end of useful life in agricultural applications.

This measure was developed to be applicable to the following program types: TOS. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the efficient equipment is assumed to be classified as HVLS and have a VFD³¹.

DEFINITION OF BASELINE EQUIPMENT

In order for this characterization to apply, the baseline condition is assumed to be multiple non HVLS existing fans that have reached the end of s useful life.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 10 years 32 .

DEEMED MEASURE COST

The incremental capital cost for the fans are as follows³³:

Fan Diameter Size (feet)	Incremental Cost
20	\$4150
22	\$4180
24	\$4225

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape C34 - Industrial Motor

COINCIDENCE FACTOR

The measure has deemed kW savings therefor a coincidence factor is not applied.

³² Ibid.

³¹ Act on Energy Commercial Technical Reference Manual No. 2010-4

³³ Ibid.

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS 34

The annual electric savings from this measure are deemed values depending on fan size and apply to all building types:

Fan Diameter Size (feet)	kWh Savings
20	6576.85
22	8543.34
24	10018.22

SUMMER COINCIDENT PEAK DEMAND SAVINGS³⁵

The annual kW savings from this measure are deemed values depending on fan size and apply to all building types:

Fan Diameter Size (feet)	kW Savings
20	2.408
22	3.128
24	3.668

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-AGE-HVSF-V01-120601

³⁴ Ibid. ³⁵ Ibid.

4.1.3 High Speed Fans

DESCRIPTION

The measure applies to high speed exhaust, ventilation and circulation fans that are replacing an existing unit that reached the end of its useful life in agricultural applications.

This measure was developed to be applicable to the following program types: TOS. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the efficient equipment is assumed to be diffuser equipped and meet the following criteria³⁶.

Diameter of Fan (inches)	Minimum Efficiency for Exhasut &	Minimum Efficiency for Circulation
	Ventilation Fans	Fans
24 through 35	14.0 cfm/W at 0.10 static pressure	12.5 lbf/kW
36 through 47	17.1 cfm/W at 0.10 static pressure	18.2 lbf/kW
48 through 71	20.3 cfm/W at 0.10 static pressure	23.0 lbf/kW

DEFINITION OF BASELINE EQUIPMENT

In order for this characterization to apply, the baseline condition is assumed to be an existing fan that reached the end of its useful life.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 7 years 37 .

DEEMED MEASURE COST

The incremental capital cost for all fan sizes is $$150^{38}$.

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape C34 - Industrial Motor

COINCIDENCE FACTOR

The measure has deemed kW savings therefor a coincidence factor is not applied.

³⁶ Act on Energy Commercial Technical Reference Manual No. 2010-4

³⁷ Ibid.

³⁸ Ibid.

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS 39

The annual electric savings from this measure are deemed values depending on fan size and apply to all building types:

Diameter of Fan (inches)	kWh
24 through 35	372.14
36 through 47	625.23
48 through 71	1122.36

SUMMER COINCIDENT PEAK DEMAND SAVINGS⁴⁰

The annual kW savings from this measure are deemed values depending on fan size and apply to all building types:

Diameter of Fan (inches)	kW
24 through 35	0.118
36 through 47	0.198
48 through 71	0.356

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-AGE-HSF_-V01-120601

³⁹ Ibid. ⁴⁰ Ibid.

4.1.4 Live Stock Waterer

DESCRIPTION

This measure applies to the replacement of electric open waterers with sinking or floating water heaters with equivalent herd size watering capacity of the old unit.

This measure was developed to be applicable to the following program types: TOS. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the efficient equipment is assumed to an electrically heated thermally insulated waterer with minimum 2 inches of insulation. A thermostat is required on unit with heating element greater than or equal to 250 watts⁴¹.

DEFINITION OF BASELINE EQUIPMENT

In order for this characterization to apply, the baseline equipment is assumed to be an electric open waterer with sinking or floating water heaters that have reached the end of useful life.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 10 years⁴².

DEEMED MEASURE COST

The incremental capital cost for the waters are \$787.50:⁴³.

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape C04 - Non-Residential Electric Heating

COINCIDENCE FACTOR

The measure has deemed kW savings therefor a coincidence factor is not applied

⁴¹ Act on Energy Commercial Technical Reference Manual No. 2010-4

⁴² Ibid.

⁴³ Ibid.

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS 44

The annual electric savings from this measure is a deemed value and assumed to be 1592.85 kWh.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

The annual kW savings from this measure is a deemed value and assumed to be 0.525 kW. $^{\rm 45}$

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-AGE-LSW1-V01-120601

⁴⁴ Ibid. ⁴⁵ Ibid.

4.2 Food Service Equipment End Use

4.2.1 Combination Oven

DESCRIPTION

This measure applies to natural gas fired high efficiency combination convection and steam ovens installed in a commercial kitchen replacing existing equipment at the end of its useful life.

This measure was developed to be applicable to the following program types: TOS. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the installed equipment must be a new natural gas combination convection with steam oven cooking efficiency \ge 38% and convection mode cooking efficiency \ge 44% utilizing ASTM standard F2861 and meet idle requirements below⁴⁶:

Idle Rate Requirements for Commercial Combination Ovens/Steamers

Combi Oven Type	Steam Mode Idle Rate	Convection Mode Idle Rate
Gas Combi < 15 pan capacity	15,000 Btu/h	9,000 Btu/h
Gas Combi 15-28 pan capacity	18,000 Btu/h	11,000 Btu/h
Gas Combi > 28 pan capacity	28,000 Btu/h	17,000 Btu/h

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a new or existing natural gas combination convection and steam ovens that do not meet the efficient equipment criteria

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years⁴⁷

DEEMED MEASURE COST

The incremental capital cost for this measure is \$4300⁴⁸

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

N/A

48 Ibid.

⁴⁶ http://www.fishnick.com/saveenergy/rebates/combis.pdf

⁴⁷ Deemed values from Nicor Gas were used. Nicor Gas Energy Efficiency Plan 2011-2014. Revised Plan Filed Pursuant to Order Docket 10-0562, May 27, 2011.

COINCIDENCE FACTOR

N/A

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

N/A

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

NATURAL GAS ENERGY SAVINGS

The annual natural gas energy savings from this measure is a deemed value equaling 644 therms.⁴⁹

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-FSE-CBOV-V01-120601

⁴⁹ Nicor Gas Energy Efficiency Plan 2011-2014. Revised Plan Filed Pursuant to Order Docket 10-0562, May 27, 2011. These deemed values should be compared to PY evaluation and revised as necessary.

4.2.2 Commercial Solid and Glass Door Refrigerators & Freezers

DESCRIPTION

This measure relates to the installation of a new reach-in commercial refrigerator or freezer meeting ENERGY STAR efficiency standards. ENERGY STAR labeled commercial refrigerators and freezers are more energy efficient because they are designed with components such as ECM evaporator and condenser fan motors, hot gas anti-sweat heaters, or high-efficiency compressors, which will significantly reduce energy consumption.

This measure was developed to be applicable to the following program types: TOS and NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the efficient equipment is assumed to be a new vertical solid or glass door refrigerator or freezer or vertical chest freezer meeting the minimum ENERGY STAR efficiency level standards.

DEFINITION OF BASELINE EQUIPMENT

In order for this characterization to apply, the baseline equipment is assumed to be an existing solid or glass door refrigerator or freezer meeting the minimum federal manufacturing standards as specified by the Energy Policy Act of 2005.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years 50 .

⁵⁰2008 Database for Energy-Efficiency Resources (DEER), Version 2008.2.05, "Effective/Remaining Useful Life Values", California Public Utilities Commission, December 16, 2008.

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf

DEEMED MEASURE COST

The incremental capital cost for this measure is provided below⁵¹.

Туре	Refrigerator incremental Cost, per unit	Freezer Incremental Cost, per unit
Solid or Glass Door		
0 < V < 15	\$143	\$142
$15 \leq V \leq 30$	\$164	\$166
$30 \le V \le 50$	\$164	\$166
$V \ge 50$	\$249	\$407

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape C23 - Commercial Refrigeration

COINCIDENCE FACTOR

The summer peak coincidence factor for this measure is assumed to be 0.937.⁵²

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = (kWhbase - kWhee) * 365.25$

Where:

kWhbase= baseline maximum daily energy consumption in kWh

= calculated using actual chilled or frozen compartment volume (V) of the efficient unit as shown in the table below.

⁵¹ Estimates of the incremental cost of commercial refrigerators and freezers varies widely by source. Nadel, S., Packaged Commercial Refrigeration Equipment: A Briefing Report for Program Planners and Implementers, ACEEE, December 2002, indicates that incremental cost is approximately zero. Efficiency Vermont Technical Reference User Manual (TRM) Measure Savings Algorithms and Cost Assumptions, February, 19, 2010, assumed incremental cost ranging from \$75 to \$125 depending on equipment volume. ACEEE notes that incremental cost ranges from 0 to 10% of the baseline unit cost <http://www.aceee.org/ogeece/ch5_reach.htm>. For the purposes of this characterization, assume and incremental cost adder of 5% on the full unit costs presented in Goldberg et al, State of Wisconsin Public Service Commission of Wisconsin, Focus on Energy Evaluation, Business Programs: Incremental Cost Study, KEMA, October 28, 2009.

⁵² The CF for Commercial Refrigeration was calculated based upon the Ameren provided eShapes

Туре	kWhbase ⁵³
Solid Door Refrigerator	0.10 * V + 2.04
Glass Door Refrigerator	0.12 * V + 3.34
Solid Door Freezer	0.40 * V + 1.38
Glass Door Freezer	0.75 * V + 4.10

kWhee⁵⁴

= efficient maximum daily energy consumption in kWh

= calculated using actual chilled or frozen compartment volume (V) of the efficient unit as shown in the table below.

	Refrigerator	Freezer
Туре	kWhee	kWhee
Solid Door		
0 < V < 15	$\leq 0.089V + 1.411$	\leq 0.250V + 1.250
$15 \le V \le 30$	$\leq 0.037V + 2.200$	$\leq 0.400 V - 1.000$
$30 \le V \le 50$	$\leq 0.056V + 1.635$	$\leq 0.163 V + 6.125$
$V \ge 50$	$\leq 0.060V + 1.416$	$\leq 0.158V + 6.333$
Glass Door		
0 < V < 15	$\leq 0.118V + 1.382$	$\leq 0.607V + 0.893$
$15 \leq V \leq 30$	$\leq 0.140V + 1.050$	$\leq 0.733 V - 1.000$
$30 \le V \le 50$	$\leq 0.088V + 2.625$	\leq 0.250V + 13.500
$V \ge 50$	$\leq 0.110V + 1.500$	\leq 0.450V + 3.500

V = the chilled or frozen compartment volume (ft^3) (as defined in the Association of Home Appliance Manufacturers Standard HRF1–1979)

= Actual installed

365.25 = days per year

For example a solid door refrigerator with a volume of 15 would save

 $\Delta kWh = (3.54 - 2.76) * 365.25$

= 285 kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh / HOURS * CF$

Where:

⁵³Energy Policy Act of 2005. Accessed on 7/7/10. <http://www.epa.gov/oust/fedlaws/publ_109-058.pdf>

⁵⁴ENERGY STAR Program Requirements for Commercial Refrigerators and Freezers Partner Commitments Version 2.0, U.S. Environmental Protection Agency, Accessed on 7/7/10. <

http://www.energystar.gov/ia/partners/product_specs/program_reqs/commer_refrig_glass_prog_req.pdf>

Illinois Statewide Technical Reference Manual - 4.2.2 Commercial Solid and Glass Door Refrigerators & Freezers

HOURS	= equipment is assumed to operate continuously, 24 hours per day, 365.25 days per
year.	
	= 8766
CF	= Summer Peak Coincidence Factor for measure
	= 0.937

For example a solid door refrigerator with a volume of 15 would save $\Delta kW = 285/8766 * .937$ = 0.030 kW

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-FSE-CSDO-V01-120601

4.2.3 Commercial Steam Cooker

Description

To qualify for this measure the installed equipment must be an ENERGY STAR[®] steamer in place of a standard steamer in a commercial kitchen. Savings are presented dependent on the pan capacity and corresponding idle rate at heavy load cooking capacity and if the steamer is gas or electric.

This measure was developed to be applicable to the following program types: TOS. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the installed equipment must be as follows:

Gas	Electric
ENERGY STAR [®] qualified with 38% minimum cooking energy efficiency at heavy load (potato) cooking capacity for gas steam cookers.	ENERGY STAR [®] qualified with 50% minimum cooking energy efficiency at heavy load (potato) cooking capacity for electric steam cookers.

DEFINITION OF BASELINE EQUIPMENT

The baseline condition is assumed to be a non-ENERGY STAR[®] commercial steamer at end of life. It is assumed that the efficient equipment and baseline equipment have the same number of pans.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years⁵⁵

DEEMED MEASURE COST

The incremental capital cost for this measure is \$998⁵⁶ for a natural gas steam cooker or \$2490⁵⁷ for an electric steam cooker.

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape C01 - Commercial Electric Cooking

⁵⁵California DEER 2008 which is also used by both the Food Service Technology Center and ENERGY STAR[®]. **56**Source for incremental cost for efficient natural gas steamer is RSG Commercial Gas Steamer Workpaper, January 2012.

⁵⁷Source for efficient electric steamer incremental cost is \$2,490 per 2009 PG&E Workpaper - PGECOFST104.1 - Commercial Steam Cooker - Electric and Gas as reference by KEMA in the ComEd C & I TRM.

COINCIDENCE FACTOR

Location	CF
Fast Food Limited Menu	0.32
Fast Food Expanded Menu	0.41
Pizza	0.46
Full Service Limited Menu	0.51
Full Service Expanded Menu	0.36
Cafeteria	0.36
Unknown	0.40

Summer Peak Coincidence Factor for measure is provided below for different building type⁵⁸:

Algorithm

CALCULATION OF SAVINGS

Formulas below are applicable to both gas and electric steam cookers. Please use appropriate lookup values and identified flags.

ENERGY SAVINGS

 Δ Savings = (Δ Idle Energy + Δ Preheat Energy + Δ Cooking Energy) * Z

For a gas cooker: Δ Savings = Δ Btu * 1/100,000 *Z

For an electric steam cooker: Δ Savings = Δ kWh *Z

Where Z = days/yr steamer operating (use 365.25 days/yr if heavy use restaurant and exact number unknown)

Where:

 $\Delta Idle \ Energy = ((((1 - CSM_{\&Baseline})* IDLE_{BASE} + CSM_{\&Baseline}* PC_{BASE}* E_{FOOD} / EFF_{BASE})*(HOURS_{day} - (F / PC_{Base}) - (PRE_{number}* 0.25))) - (((1 - CSM_{\&ENERGYSTAR})* IDLE_{ENERGYSTAR} + CSM_{\&ENERGYSTAR}* PC_{ENERGY}* E_{FOOD} / EFF_{ENERGYSTAR}) * (HOURS_{Day} - (F I / PC_{ENERGY}) - (PRE_{number}* 0.25))))$

⁵⁸Minnesota 2012 Technical Reference Manual, <u>Electric Food Service v03.2.xls</u>,

http://mn.gov/commerce/energy/topics/conservation/Design-Resources/Deemed-Savings.jspech. Unknown is an average of other location types

Where:

CSM _{%Baseline}	\space _ Baseline Steamer Time in Manual Steam Mode (% of time)

= 90%⁵⁹

 $\mathsf{IDLE}_{\mathsf{Base}}$

= Idle Energy Rate of Base Steamer⁶⁰

Number of Pans	IDLE _{BASE} - Gas, Btu/hr	IDLE _{BASE} - Electric, kw
3	11,000	1.0
4	14,667	1.33
5	18,333	1.67
6	22,000	2.0

 $\mathsf{PC}_{\mathsf{Base}}$

= Production Capacity of Base Steamer⁶¹

Number of Pans	PC _{BASE} , gas (lbs/hr)	PC _{BASE} , electric (lbs/hr)
3	65	70
4	87	93
5	108	117
6	130	140

E_{FOOD}=

Amount of Energy Absorbed by the food during cooking known as ASTM Energy to Food (Btu/lb or kW/lb)

=105 Btu/lb⁶² (gas steamers) or 0.0308⁸ (electric steamers)

⁵⁹Food Service Technology Center 2011 Savings Calculator

⁶⁰Food Service Technology Center 2011 Savings Calculator

⁶¹Production capacity per Food Service Technology Center 2011 Savings Calculator of 23.3333 lb/hr per pan for electric baseline steam cookers and 21.6667 lb/hr per pan for natural gas baseline steam cookers. ENERGY STAR® savings calculator uses 23.3 lb/hr per pan for both electric and natural gas baseline steamers.

 $\mathsf{EFF}_{\mathsf{BASE}}$

=Heavy Load Cooking Efficiency for Base Steamer

=15%⁶³ (gas steamers) or 26%⁹ (electric steamers)

HOURS_{day} = Average Daily Operation (hours)

Type of Food Service	Hoursday ⁶⁴
Fast Food, limited menu	4
Fast Food, expanded menu	5
Pizza	8
Full Service, limited menu	8
Full Service, expanded menu	7
Cafeteria	6
Unknown	6 ⁶⁵
Custom	Varies

F	= Food cooked per day (lbs/day)
	= custom or if unknown, use 100 lbs/day ⁶⁶
CSM%ENERGYSTAR	= ENERGY STAR Steamer's Time in Manual Steam Mode (% of time) ⁶⁷
	= 0%
IDLE _{ENERGYSTAR}	= Idle Energy Rate of ENERGY STAR ^{®68}

⁶²Reference ENERGY STAR[®] savings calculator at

http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&pgw_code=COC. **63**Reference Food Service Technology Center 2011 Savings Calculator values as used by Consortium for Energy Efficiency, Inc. for baseline electric and natural gas steamer heavy cooking load energy efficiencies. ⁶⁴Minnesota 2012 Technical Reference Manual, Electric Food Service_v03.2.xls, http://mn.gov/commerce/energy/topics/conservation/Design-Resources/Deemed-Savings.jspech

65Unknown is average of other locations

⁶⁶Reference amount used by both Food Service Technology Center and ENERGY STAR® savings calculator
⁶⁷Reference information from the Food Service Technology Center siting that ENERGY STAR® steamers are not typically operated in constant steam mode, but rather are used in timed mode. Reference ENERGY STAR® savings calculator at

http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&pgw_code=COC for efficient steamer. Both baseline & efficient steamer mode values should be considered for users in Illinois market. ⁶⁸Food Service Technology Center 2011 Savings Calculator

Number of Pans	IDLE _{ENERGY STAR} – gas, (Btu/hr)	IDLE _{ENERGY STAR} – electric, (kW)
3	6250	0.40
4	8333	0.53
5	10417	0.67
6	12500	0.80

PCENERGY

= Production Capacity of ENERGY STAR[®] Steamer⁶⁹

Number of Pans	PC _{ENERGY} - gas(lbs/hr)	PC _{energy} – electric (lbs/hr)
3	55	50
4	73	67
5	92	83
6	110	100

EFF_{ENERGYSTAR} = Heavy Load Cooking Efficiency for ENERGY STAR[®] Steamer(%)

=38%⁷⁰ (gas steamer) or 50%¹⁵ (electric steamer)

PRE_{number}

= Number of preheats per day

=1⁷¹ (if unknown, use 1)

Where:

 Δ Preheat Energy = (PRE_{number} * Δ Pre_{heat})

Where:

PRE_{number} = Number of Preheats per Day

⁷⁰Reference Food Service Technology Center 2011 Savings Calculator values as used by Consortium for Energy Efficiency, Inc. for Tier 1A and Tier 1B qualified electric and natural gas steamer heavy cooking load energy efficiencies and

http://www.energystar.gov/ia/partners/product_specs/program_reqs/Commercial_Steam_Cookers_Program_Req uirements.pdf?7010-36eb

⁷¹Reference ENERGY STAR[®] savings calculator at

http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&pgw_code=COC and Food

⁶⁹Production capacity per Food Service Technology Center 2011 Savings Calculator of 18.3333 lb/hr per pan for gas ENERGY STAR[®] steam cookers and 16.6667 lb/hr per pan for electric ENERGY STAR[®] steam cookers. ENERGY STAR[®] savings calculator uses 16.7 lb/hr per pan for electric and 20 lb/hr for natural gas ENERGY STAR[®] steamers.

=1⁷²(if unknown, use 1)

PRE_{heat} = Preheat energy savings per preheat

= 11,000 Btu/preheat⁷³ (gas steamer) or 0.5 kWh/preheat⁷⁴ (electric steamer)

Where:

 Δ Cooking Energy = ((1/ EFFBASE) - (1/ EFFENERGY STAR[®])) * F * E_{FOOD}

Where:

EFF _{BASE}	=Heavy Load Cooking Efficiency for Base Steamer		
	=15% ⁷⁵ (gas steamer) or 26% ²⁸ (electric steamer)		
EFF _{ENERGYSTAR}	=Heavy Load Cooking Efficiency for ENERGY STAR [®] Steamer		
	=38% ⁷⁶ (gas steamer) or 50% ²³ (electric steamer)		
F	= Food cooked per day (lbs/day)		
	= custom or if unknown, use 100 lbs/day ⁷⁷		
E _{FOOD}	= Amount of Energy Absorbed by the food during cooking known as ASTM Energy to $Food^{78}$		
	E _{FOOD} - gas(Btu/lb) E _{FOOD} (kWh/lb)		

0.0308⁸⁰

 105^{79}

⁷⁴ Reference Food Service Technology Center 2011 Savings Calculator values for Baseline Preheat Energy.

⁷⁵ Reference Food Service Technology Center 2011 Savings Calculator values as used by Consortium for Energy Efficiency, Inc. for baseline electric and natural gas steamer heavy cooking load energy efficiencies.

⁷²Reference ENERGY STAR[®] savings calculator at

http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&pgw_code=COC and Food ⁷³Ohio TRM which references 2002 Food Service Technology Center "Commercial Cooking Appliance Technology Assessment" Chapter 8: Steamers. This is time also used by ENERGY STAR® savings calculator at <u>http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&pgw_code=COC</u>. 11,000 Btu/preheat is from 72,000 Btu/hr * 15 min/hr /60 min/hr for gas steamers and 0.5 kWh/preheat is from 6 kW/preheat * 15 min/hr / 60 min/hr

⁷⁶ Ibid.

⁷⁷Amount used by both Food Service Technology Center and ENERGY STAR® savings calculator ⁷⁸Reference ENERGY STAR® savings calculator at

http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&pgw_code=COC. ⁷⁹lbid.

⁸⁰Ibid.

EXAMPLE

For a gas steam cooker: A 3 pan steamer in a restaurant Δ Savings = Δ Idle Energy + Δ Preheat Energy + Δ Cooking Energy *Z * 1/100.000 Δ Idle Energy = ((((1-.9)*11000 + .9*65*105/.15)*(12 - (100/65)-(1-.25))) - ((((1-0)*6250 + 0*55*105/0.38)*(12 - (100/55) - (1-0.25)))) + Δ Preheat Energy = (1 *11,000) + Δ Cooking Energy = (((1/0.15) - (1/0.38)) * (100 lb/day * 105 btu/lb))) * 365.25 days)) *1/100,000 = =1536 therms For an electric steam cooker: A 3 pan steamer in a restaurant

SUMMER COINCIDENT PEAK DEMAND SAVINGS

This is only applicable to the electric steam cooker.

```
\Delta kW = (\Delta kWh/(HOURSDay *DaysYear)) * CF
```

Where:

CF =Summer Peak Coincidence Factor for measure is provided below for different locations⁸¹:

Location	CF
Fast Food Limited Menu	0.32
Fast Food Expanded Menu	0.41
Pizza	0.46
Full Service Limited Menu	0.51
Full Service Expanded Menu	0.36
Cafeteria	0.36

 $\mathsf{Days}_{\mathsf{Year}}\,$ =Annual Days of Operation

=custom or 365.25 days a year⁸²

⁸¹Minnesota 2012 Technical Reference Manual, Electric Food Service_v03.2.xls,

http://mn.gov/commerce/energy/topics/conservation/Design-Resources/Deemed-Savings.jspech

Other values as defined above

EXAMPLE

ΔkW

For 3 pan electric steam cooker located in a cafeteria:

= (ΔkWh/(HOURS_{Day} *Days_{Year})) * CF =

(30,533/(12*365.25))*.36 =

2.51 kW

WATER IMPACT DESCRIPTIONS AND CALCULATION

This is applicable to both gas and electric steam cookers.

```
\Delta Water = [(W_{BASE} - W_{ENERGYSTAR^{\circ}})*HOURS_{Day} *Days_{Year}]
```

Where

W_{BASE} = Water Consumption Rate of Base Steamer (gal/hr)

 $=40^{83}$

W_{ENERGYSTAR} = Water Consumption Rate of ENERGY STAR[®] Steamer look up⁸⁴

CEE Tier	gal/hr
Tier 1A	15
Tier 1B	4
Avg Efficient	10
Avg Most Efficient	3

Days_{Year} = Annual Days of Operation

=custom or 365.25 days a year⁸⁵

⁸³ FSTC (2002). Commercial Cooking Appliance Technology Assessment. Chapter 8: Steamers.

⁸⁴Source Consortium for Energy Efficiency, Inc. September 2010 "Program Design Guidance for Steamers" for Tier 1A and Tier 1B water requirements. Ohio Technical Reference Manual 2010 for 10 gal/hr water consumption which can be used when Tier level is not known.

EXAMPLE

For example, an electric 3 pan steamer with average efficiency in a restaurant

 $\Delta Water =$

ΔWater = [(40 -10)*12*365.25

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

REFERENCE TABLES

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-FSE-STMC-V02-120601

⁸⁵Source for 365.25 days/yr is ENERGY STAR[®] savings calculator which references Food Service Technology research on average use, 2009.

4.2.4 Conveyor Oven

DESCRIPTION

This measure applies to natural gas fired high efficiency conveyor ovens installed in commercial kitchens replacing existing natural gas units with conveyor width greater than 25 inches.

Conveyor ovens are available using four different heating processes: infrared, natural convection with a ceramic baking hearth, forced convection or air impingement, or a combination of infrared and forced convection. Conveyor ovens are typically used for producing a limited number of products with similar cooking requirements at high production rates. They are highly flexible and can be used to bake or roast a wide variety of products including pizza, casseroles, meats, breads, and pastries.

Some manufacturers offer an air-curtain feature at either end of the cooking chamber that helps to keep the heated air inside the conveyor oven. The air curtain operates as a virtual oven wall and helps reduce both the idle energy of the oven and the resultant heat gain to the kitchen.

This measure was developed to be applicable to the following program types: TOS. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the installed equipment must be a natural gas conveyor oven with a tested baking energy efficiency > 42% and an idle energy consumption rate < 57,000 Btu/h utilizing ASTM standard F1817.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is an existing pizza deck oven at end of life.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 17 years.⁸⁶

DEEMED MEASURE COST

The incremental capital cost for this measure is \$1800⁸⁷.

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

N/A

⁸⁷ Ibid.

 ⁸⁶Nicor Gas Energy Efficiency Plan 2011-2014. Revised Plan Filed Pursuant to Order Docket 10-0562, May 27, 2011
 87

COINCIDENCE FACTOR

N/A

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

N/A

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

NATURAL GAS ENERGY SAVINGS

The annual natural gas energy savings from this measure is a deemed value equaling 733 Therms⁸⁸.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-FSE-CVOV-V01-120601

 ⁸⁸Nicor Gas Energy Efficiency Plan 2011-2014. Revised Plan Filed Pursuant to Order Docket 10-0562, May 27, 2011. These deemed values should be compared to PY evaluation and revised as necessary

4.2.5 ENERGY STAR Convection Oven

DESCRIPTION

This measure applies to natural gas fired ENERGY STAR convection ovens installed in a commercial kitchen.

This measure was developed to be applicable to the following program types: TOS. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the installed equipment must be a natural gas convection oven with a cooking efficiency \geq 44% utilizing ASTM standard 1496 and an idle energy consumption rate < 13,000 Btu/h

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a natural gas convection oven that is not ENERGY STAR certified and is at end of life.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years⁸⁹

DEEMED MEASURE COST

The incremental capital cost for this measure is \$50⁹⁰

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

N/A

COINCIDENCE FACTOR

N/A

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

N/A

 ⁸⁹ Lifetime from ENERGY STAR commercial griddle which cites reference as "FSTC research on available models,
 2009" http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&pgw_code=COG
 ⁹⁰Measure cost from ENERGY STAR which cites reference as "EPA research on available models using AutoQuotes,
 2010" http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&pgw_code=COG

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

NATURAL GAS ENERGY SAVINGS

Custom calculation below, otherwise use deemed value of 306 therms. ⁹¹

 Δ Therms = (Δ DailyIdle Energy + Δ DailyPreheat Energy + Δ DailyCooking Energy) * Days /100000

Where:

△DailyIdleEnergy = (IdleBase* IdleBaseTime)- (IdleENERGYSTAR * IdleENERGYSTARTime)

 Δ DailyPreheatEnergy = (PreHeatNumberBase * PreheatTimeBase / 60 * PreheatRateBase) – (PreheatNumberENERGYSTAR* PreheatTimeENERGYSTAR/60 * PreheatRateENERGYSTAR)

△DailyCookingEnergy = (LB * EFOOD/ EffBase) - (LB * EFOOD/ EffENERGYSTAR)

Where:

HOURSday	= Average Daily Operation
	= custom or if unknown, use 12 hours
Days	= Annual days of operation
	= custom or if unknown, use 365.25 days a year
LB	= Food cooked per day
	= custom or if unknown, use 100 pounds
EffENERGYSTAR	= Cooking Efficiency ENERGY STAR
	= custom or if unknown, use 44%
EffBase	= Cooking Efficiency Baseline
	= custom or if unknown, use 30%
PCENERGYSTAR	= Production Capacity ENERGY STAR
	= custom or if unknown, use 80 pounds/hr
PCBase	= Production Capacity base
	= custom or if unknown, use 70 pounds/hr

⁹¹ Algorithms and assumptions derived from ENERGY STAR Oven Commercial Kitchen Equipment Savings Calculator.http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&pgw_code=COG

PreheatNumberENERGYSTAR = Number of preheats per day		
	= custom or if unknown, use 1	
PreheatNumberBase	= Number of preheats per day	
	= custom or if unknown, use 1	
PreheatTimeENERGYSTA	R = preheat length	
	= custom or if unknown, use 15 minutes	
PreheatTimeBase	= preheat length	
	= custom or if unknown, use 15 minutes	
PreheatRateENERGYSTA	R = preheat energy rate high efficiency	
	= custom or if unknown, use 44000 btu/h	
PreheatRateBase	= preheat energy rate baseline	
	= custom or if unknown, use 76000 btu/h	
IdleENERGYSTAR	= Idle energy rate	
	= custom or if unknown, use 13000 btu/h	
IdleBase	= Idle energy rate	
	= custom or if unknown, use 18000 btu/h	
IdleENERGYSTARTime	= ENERGY STAR Idle Time	
	=HOURsday-LB/PCENERGYSTAR –PreHeatTimeENERGYSTAR/60	
	=12 - 100/80 - 15/60	
	=10.5 hours	
IdleBaseTime	= BASE Idle Time	
	= HOURsday-LB/PCbase – PreHeatTimeBase/60	
	=Custom or if unknown, use	
	=12 - 100/70-15/60	
	=10.3 hours	
EFOOD	= ASTM energy to food	
	= 250 btu/pound	

EXAMPLE

For example, an ENERGY STAR Oven with a cooking energy efficiency of 44% and default values from above would save.

```
\DeltaTherms = (\DeltaIdle Energy + \DeltaPreheat Energy + \DeltaCooking Energy) * Days /100000
```

Where:

=(18000*10.3)- (13000*10.5)
= 49286 btu
= (1 * 15 / 60 *76000) – (1 * 15 / 60 *44000)
= 8000 btu
= (100 * 250/ .30) - (100 * 250/ .44)
=26515 btu
= (49286+8000+26515)* 365.25 /100000
=306 therms

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-FSE-ESCV-V01-120601

4.2.6 ENERGY STAR Dishwasher

DESCRIPTION

This measure applies to ENERGY STAR high and low temp under counter single tank door type, single tank conveyor, and multiple tank conveyor dishwashers installed in a commercial kitchen.

This measure was developed to be applicable to the following program types: TOS. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the installed equipment must be an ENERGY STAR certified dishwasher meeting idle energy rate (kW) and water consumption (gallons/rack) limits, as determined by both machine type and sanitation approach (chemical/low temp versus high temp).

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a dishwasher that's not ENERGY STAR certified and at end of life.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be⁹²

Dishwa	sher type	Equipment Life
Low	Under Counter	10
Temp	Door Type	15
	Single Tank Conventional	20
	Multi Tank Conventional	20
High	Under Counter	10
Temp	Door Type	15
	Single Tank Conventional	20
	Multi Tank Conventional	20

⁹² Lifetime from ENERGY STAR HFHC which cites reference as "FSTC research on available models, 2009" http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&pgw_code=COG

DEEMED MEASURE COST

The incremental capital cost for this measure is⁹³

Dishwasher type		Incremental Cost
Low	Under Counter	\$530
Temp	Door Type	\$530
	Single Tank Conventional	\$170
	Multi Tank Conventional	\$0
High	Under Counter	\$1000
Temp	Door Type	\$500
	Single Tank Conventional	\$270
	Multi Tank Conventional	\$0

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape C01 - Commercial Electric Cooking

SUMMER COINCIDENT PEAK DEMAND SAVINGS

Summer Peak Coincidence Factor for measure is provided below for different restaurant types⁹⁴:

Location	CF
Fast Food Limited Menu	0.32
Fast Food Expanded Menu	0.41
Pizza	0.46
Full Service Limited Menu	0.51
Full Service Expanded Menu	0.36
Cafeteria	0.36

Algorithm

ENERGY SAVINGS

ENERGY STAR dishwashers save energy in three categories, building water heating, booster water heating and idle energy. Building water heating and booster water heating could be either electric or natural gas. These deemed values are presented in a table format. Savings all water heating combinations are found in the tables below. ⁹⁵

⁹³ Measure cost from ENERGY STAR which cites reference as "EPA research on available models using AutoQuotes, 2010" http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&pgw_code=COG
⁹⁴ Minnesota 2012 Technical Reference Manual, Electric Food Service_v03.2.xls,

http://mn.gov/commerce/energy/topics/conservation/Design-Resources/Deemed-Savings.jspech

⁹⁵Algorithms and assumptions derived from ENERGY STAR Commercial Kitchen Equipment Savings Calculator.http://www.energystar.gov/index.cfm?fuseaction=find a product.showProductGroup&pgw code=COG

Electric building and booster water heating

Dishwasher type		kWh	Therms
Low	Under Counter	1,213	0
Temp	Door Type	12,135	0
	Single Tank Conventional	11,384	0
	Multi Tank Conventional	17,465	0
High	Under Counter	7471	0
Temp	Door Type	14143	0
	Single Tank Conventional	19235	0
	Multi Tank Conventional	34153	0

Electric building and natural gas booster water heating

Dishwasher type		kWh	Therms
Low	Under Counter	9089	0
Temp	Door Type	21833	0
	Single Tank Conventional	24470	0
	Multi Tank Conventional	29718	0
High	Under Counter	7208	110
Temp	Door Type	19436	205
	Single Tank Conventional	29792	258
	Multi Tank Conventional	34974	503

Natural Gas building and electric booster water heating

Dishwasher type		kWh	Therms
Low	Under Counter	0	56
Temp	Door Type	0	562
	Single Tank Conventional	0	527
	Multi Tank Conventional	0	809
High	Under Counter	2717	220
Temp	Door Type	5269	441
	Single Tank Conventional	8110	515
	Multi Tank Conventional	12419	1007

Natural Gas building and booster water heating

Dishwa	asher type	kWh	Therms
Low	Under Counter	0	56
Temp	Door Type	0	562
	Single Tank Conventional	0	527
	Multi Tank Conventional	0	809
High	Under Counter	0	330
Temp	Door Type	198	617
	Single Tank Conventional	1752	773
	Multi Tank Conventional	0	1510

WATER SAVINGS

Using standard assumptions water savings would be:

Dishwa	isher type	Savings (gallons)
Low	Under Counter	6,844
Temp	Door Type	6,8474
	Single Tank Conventional	64,240
	Multi Tank Conventional	98,550
High	Under Counter	26,828
Temp	Door Type	50,078
	Single Tank Conventional	62,780
	Multi Tank Conventional	122,640

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh / Annual Hours$

Where:

AnnualHours = Hours * Days

= 365.25 * 18

= 6575 annual hours

Example:

A low temperature undercounter dishwasher with electric building and booster water heaters would save:

$\Delta kW = \Delta kWh / Annual Hours$

= 1213/6575

= 0.184 kW

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-FSE-ESDW-V01-120601

4.2.7 ENERGY STAR Fryer

DESCRIPTION

This measure applies to natural gas fired ENERGY STAR fryer installed in a commercial kitchen.

This measure was developed to be applicable to the following program types: TOS. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the installed equipment must be a natural gas fryer with a heavy load cooking efficiency \geq 50% utilizing ASTM standard F1361 or F2144.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a natural gas fryer that is not ENERGY STAR certified at end of life.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 15 years.⁹⁶

DEEMED MEASURE COST

The incremental capital cost for this measure is \$1200.⁹⁷

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

N/A

COINCIDENCE FACTOR

N/A

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

N/A

 ⁹⁶Lifetime from ENERGY STAR commercial griddle which cites reference as "FSTC research on available models,
 2009" http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&pgw_code=COG
 ⁹⁷Measure cost from ENERGY STAR which cites reference as "EPA research on available models using AutoQuotes,
 2010" http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&pgw_code=COG

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

NATURAL GAS ENERGY SAVINGS⁹⁸

Custom calculation below, otherwise use deemed value of 505 Therms.

```
\DeltaTherms = (\DeltaDailyIdle Energy + \DeltaDailyPreheat Energy + \DeltaDailyCooking Energy) * Days /100000
```

Where:

```
△DailyIdleEnergy =(IdleBase* IdleBaseTime) – (IdleENERGYSTAR * IdleENERGYSTARTime)
```

 $\Delta DailyPreheatEnergy = (PreHeatNumberBase * PreheatTimeBase / 60 * PreheatRateBase) - (PreheatNumberENERGYSTAR* PreheatTimeENERGYSTAR/60 * PreheatRateENERGYSTAR)$

```
△DailyCookingEnergy = (LB * EFOOD/ EffBase) - (LB * EFOOD/ EffENERGYSTAR)
```

Where:

= Average Daily Operation
= custom or if unknown, use 16 hours
= Annual days of operation
= custom or if unknown, use 365.25 days a year
= Food cooked per day
= custom or if unknown, use 150 pounds
= Cooking Efficiency ENERGY STAR
= custom or if unknown, use 50%
= Cooking Efficiency Baseline
= custom or if unknown, use 35%
= Production Capacity ENERGY STAR
= custom or if unknown, use 65 pounds/hr
= Production Capacity base
= custom or if unknown, use 60 pounds/hr

⁹⁸ Algorithms and assumptions derived from ENERGY STAR fryer Commercial Kitchen Equipment Savings Calculator.http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&pgw_code=COG

PreheatNumberENERGYSTAR	= Number of preheats per day
	= custom or if unknown, use 1
PreheatNumberBase	= Number of preheats per day
	= custom or if unknown, use 1
PreheatTimeENERGYSTAR	= preheat length
	= custom or if unknown, use 15 minutes
PreheatTimeBase	= preheat length
	= custom or if unknown, use 15 minutes
PreheatRateENERGYSTAR	= preheat energy rate high efficiency
	= custom or if unknown, use 62000 btu/h
PreheatRateBase	= preheat energy rate baseline
	= custom or if unknown, use 64000 btu/h
IdleENERGYSTAR	= Idle energy rate
	= custom or if unknown, use 9000 btu/h
IdleBase	= Idle energy rate
	= custom or if unknown, use 14000 btu/h
IdleENERGYSTARTime	= ENERGY STAR Idle Time
	= HOURsday-LB/PCENERGYSTAR –PreHeatTimeENERGYSTAR/60
	=Custom or if unknown, use
	=16 - 150/65-15/60
	=13.44 hours
IdleBaseTime	= BASE Idle Time
	= HOURsday-LB/PCbase – PreHeatTimeBase/60
	=Custom or if unknown, use
	=16 - 150/60-15/60
	=13.25 hours
EFOOD	= ASTM energy to food

= 570 btu/pound

EXAMPLE

For example, an ENERGY STAR fryer with a tested heavy load cooking energy efficiency of 50% and an idle energy rate of 120,981 btu and an Idle Energy Consumption Rate 9000 btu would save.

 Δ Therms = (Δ Idle Energy + Δ Preheat Energy + Δ Cooking Energy) * Days /100000

Where:

=(18550*13.25)- (120981 * 13.44)
= 64519 btu
= (1 * 15 / 60 *64000) – (1 * 15 / 60 *62000)
= 500 btu
= (150 * 570/ .35) - (150 * 570/ .5)
=73286 btu
= (64519+500+73286)* 365.25 /100000
=508 therms

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-FSE-ESFR-V01-120601

4.2.8 ENERGY STAR Griddle

DESCRIPTION

This measure applies to electric and natural gas fired high efficiency griddle installed in a commercial kitchen.

This measure was developed to be applicable to the following program types: TOS. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the installed equipment must be an ENERGY STAR natural gas or electric griddle with a tested heavy load cooking energy efficiency of 70 percent (electric) 38 percent (gas) or greater and an idle energy rate of 2,650 Btu/h per square foot of cooking surface or less, utilizing ASTM F1275. The griddle must have an Idle Energy Consumption Rate < 2,600 Btu/h per square foot of cooking surface.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is an existing natural gas or electric griddle that's not ENERGY STAR certified and is at end of use.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years⁹⁹

DEEMED MEASURE COST

The incremental capital cost for this measure is \$0 for and electric griddle and \$60 for a gas griddle.¹⁰⁰

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape C01 - Commercial Electric Cooking

⁹⁹ Lifetime from ENERGY STAR commercial griddle which cites reference as "FSTC research on available models, 2009" http://www.energystar.gov/index.cfm?fuseaction=find a product.showProductGroup&pgw code=COG

¹⁰⁰ Measure cost from ENERGY STAR which cites reference as "EPA research on available models using AutoQuotes, 2010"

http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&pgw_code=COG

COINCIDENCE FACTOR

Summer Peak Coincidence Factor for measure is provided below for different building type¹⁰¹:

Location	CF
Fast Food Limited Menu	0.32
Fast Food Expanded Menu	0.41
Pizza	0.46
Full Service Limited Menu	0.51
Full Service Expanded Menu	0.36
Cafeteria	0.36

Algorithm

CALCULATION OF SAVINGS 102

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = (\Delta Idle Energy + \Delta Preheat Energy + \Delta Cooking Energy) * Days /1000$

Where:

ΔDailyIdleEnergy =[IdleBase * Width * Length (LB/ PCBase) – (PreheatNumberBase* PreheatTimeBase/60)]- IdleENERGYSTAR * Width * Length (LB/ PCENERGYSTAR) – (PreheatNumberENERGYSTAR* PreheatTimeENERGYSTAR/60]

ΔDailyPreheatEnergy = (PreHeatNumberBase * PreheatTimeBase / 60 * PreheatRateBase * Width * Depth) – (PreheatNumberENERGYSTAR* PreheatTimeENERGYSTAR/60 * PreheatRateENERGYSTAR * Width * Depth)

△DailyCookingEnergy = (LB * EFOOD/ EffBase) - (LB * EFOOD/ EffENERGYSTAR)

Where:

HOURSday	= Average Daily Operation
	= custom or if unknown, use 12 hours
Days	= Annual days of operation
	= custom or if unknown, use 365.25 days a year
LB	= Food cooked per day

¹⁰¹Minnesota 2012 Technical Reference Manual, <u>Electric Food Service_v03.2.xls</u>,

http://mn.gov/commerce/energy/topics/conservation/Design-Resources/Deemed-Savings.jspech ¹⁰² Algorithms and assumptions derived from ENERGY STAR Griddle Commercial Kitchen Equipment Savings Calculator.http://www.energystar.gov/index.cfm?fuseaction=find a product.showProductGroup&pgw code=COG

	= custom or if unknown, use 100 pounds	
Width	= Griddle Width	
	= custom or if unknown, use 3 feet	
Depth	= Griddle Depth	
	= custom or if unknown, use 2 feet	
EffENERGYSTAR	= Cooking Efficiency ENERGY STAR	
	= custom or if unknown, use 70%	
EffBase	= Cooking Efficiency Baseline	
	= custom or if unknown, use 65%	
PCENERGYSTAR	= Production Capacity ENERGY STAR	
	= custom or if unknown, use 6.67 pounds/hr/sq ft	
PCBase	= Production Capacity base	
	= custom or if unknown, use 5.83 pounds/hr/sq ft	
PreheatNumberENERGYS	STAR = Number of preheats per day	
	= custom or if unknown, use 1	
PreheatNumberBase	= Number of preheats per day	
	= custom or if unknown, use 1	
PreheatTimeENERGYSTAR = preheat length		
	= custom or if unknown, use 15 minutes	
PreheatTimeBase	= preheat length	
	= custom or if unknown, use 15 minutes	
PreheatRateENERGYSTAR = preheat energy rate high efficiency		
	= custom or if unknown, use 1333 W/sq ft	
PreheatRateBase	= preheat energy rate baseline	
	= custom or if unknown, use 2667 W/sq ft	
IdleENERGYSTAR	= Idle energy rate	
	= custom or if unknown, use 320 W/sq ft	

IdleBase	= Idle energy rate
	= custom or if unknown, use 400 W/sq ft
EFOOD	= ASTM energy to food
	= 139 w/pound

For example, an ENERGY STAR griddle with a tested heavy load cooking energy efficiency of 70 percent or greater and an idle energy rate of 320 W per square foot of cooking surface or less would save.

ΔDailyIdleEnergy	=[400* 3 * 2 (100/5.83) - (1* 15/60)]- [320* 3 * 2 (100/6.67) - (1* 15/60]
	= 3583 W
ΔDailyPreheatEnergy	= (1* 15 / 60 * 2667 * 3 * 2) – (1* 15/60 * 1333 * 3 * 2)
	=2000 W
ΔDailyCookingEnergy	= (100 * 139/.65) - (100 * 139/.70)
	=1527 W
ΔkWh = (2000)+1527+3583) * 365.25 /1000
	=2597 kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

kW = $\Delta kWh/Hours * CF$

For example, an ENERGY STAR griddle in a cafeteria with a tested heavy load cooking energy efficiency of 70 percent or greater and an idle energy rate of 320 W per square foot of cooking surface or less would save

=2595 kWh/4308 * .36

= 0.22 kW

NATURAL GAS ENERGY SAVINGS

Custom calculation below, otherwise use deemed value of 149 therms.

 Δ Therms = (Δ Idle Energy + Δ Preheat Energy + Δ Cooking Energy) * Days /100000

Where:

ΔDailyIdleEnergy =[IdleBase * Width * Length (LB/ PCBase) – (PreheatNumberBase* PreheatTimeBase/60)]- IdleENERGYSTAR * Width * Length (LB/ PCENERGYSTAR) – (PreheatNumberENERGYSTAR* PreheatTimeENERGYSTAR/60] ΔDailyPreheatEnergy = (PreHeatNumberBase * PreheatTimeBase / 60 * PreheatRateBase * Width * Depth) – (PreheatNumberENERGYSTAR* PreheatTimeENERGYSTAR/60 * PreheatRateENERGYSTAR * Width * Depth)

ΔDailyCookingEnergy = (LB * EFOOD/ EffBase) - (LB * EFOOD/ EffENERGYSTAR)

Where (new variables only):

EffENERGYSTAR	= Cooking Efficiency ENERGY STAR	
	= custom or if unknown, use 38%	
EffBase	= Cooking Efficiency Baseline	
	= custom or if unknown, use 32%	
PCENERGYSTAR	= Production Capacity ENERGY STAR	
	= custom or if unknown, use 7.5 pounds/hr/sq ft	
PCBase	= Production Capacity base	
	= custom or if unknown, use 4.17 pounds/hr/sq ft	
PreheatRateENERGYSTAR = preheat energy rate high efficiency		
	= custom or if unknown, use 10000 btu/h/sq ft	
PreheatRateBase	= preheat energy rate baseline	
	= custom or if unknown, use 14000 btu/h/sq ft	
IdleENERGYSTAR	= Idle energy rate	
	= custom or if unknown, use 2650 btu/h/sq ft	
IdleBase	= Idle energy rate	
	= custom or if unknown, use 3500 btu/h/sq ft	
EFOOD	= ASTM energy to food	
	= 475 btu/pound	

For example, an ENERGY STAR griddle with a tested heavy load cooking energy efficiency of 38 percent or greater and an idle energy rate of 2,650 Btu/h per square foot of cooking surface or less and an Idle Energy Consumption Rate < 2,600 Btu/h per square foot of cooking surface would save.

∆DailyIdleEnergy	=[3500* 3 * 2 (100/4.17) – (1* 15/60)]- 2650* 3 * 2 (100/7.5) – (1* 15/60]
	= 11258 Btu
∆DailyPreheatEnergy	= (1* 15 / 60 * 14,000 * 3 * 2) – (1* 15/60 * 10000 * 3 * 2)
	=6000 btu
∆DailyCookingEnergy	= (100 * 475/.32) - (100 * 475/.38)
	=23438 btu
ΔTherms	= (11258 + 6000 + 23438) * 365.25 /100000
	=149 therms

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-FSE-ESGR-V01-120601

4.2.9 ENERGY STAR Hot Food Holding Cabinets

DESCRIPTION

This measure applies to electric ENERGY STAR hot food holding cabinets (HFHC) installed in a commercial kitchen.

This measure was developed to be applicable to the following program types: TOS. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the installed equipment must be an ENERGY STAR certified HFHC.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is an electric HFHC that's not ENERGY STAR certified and at end of life.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years¹⁰³

DEEMED MEASURE COST

The incremental capital cost for this measure is¹⁰⁴

HFHC Size	Incremental Cost
Full Size (20 cubic feet)	\$1200
³ / ₄ Size (12 cubic feet)	\$1800
¹ / ₂ Size (8 cubic feet)	\$1500

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape C01 - Commercial Electric Cooking

¹⁰³ Lifetime from ENERGY STAR HFHC which cites reference as "FSTC research on available models, 2009" http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&pgw_code=COG 104 Measure cost from ENERGY STAR which cites reference as "EPA research on available models using AutoQuotes, 2010"

http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&pgw_code=COG

COINCIDENCE FACTOR

Summer Peak Coincidence Factor for measure is provided below for different building type¹⁰⁵:

Location	CF
Fast Food Limited Menu	0.32
Fast Food Expanded Menu	0.41
Pizza	0.46
Full Service Limited Menu	0.51
Full Service Expanded Menu	0.36
Cafeteria	0.36

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Custom calculation below, otherwise use deemed values depending on HFHC size¹⁰⁶

Cabinet Size	Savings (kWh)
Full Size HFHC	9308
³ ⁄ ₄ Size HFHC	3942
¹ / ₂ Size HFHC	2628

$\Delta kWh = HFHCBaselinekWh_HFHCENERGYSTARkWh$

Where:

HFHCBaselinekWh = PowerBaseline* HOURSday * Days/1000

PowerBaseline = Custom, otherwise

Cabinet Size	Power (W)
Full Size HFHC	2500
³ ⁄ ₄ Size HFHC	1200
¹ / ₂ Size HFHC	800

HOURSday

= Average Daily Operation

¹⁰⁵Minnesota 2012 Technical Reference Manual, <u>Electric Food Service_v03.2.xls</u>,

http://mn.gov/commerce/energy/topics/conservation/Design-Resources/Deemed-Savings.jspech

¹⁰⁶ Algorithms and assumptions derived from ENERGY STAR Commercial Kitchen Equipment Savings Calculator.http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&pgw_code=COG

	= custom or if unknown, use 15 hours
Days	= Annual days of operation
	= custom or if unknown, use 365.25 days a year
HFHCENERGYSTARkWh	= PowerENERGYSTAR* HOURSday * Days/1000
PowerENERGYSTAR	= Custom, otherwise
	Cabinet SizePower (W)Full Size HFHC800¾ Size HFHC480½ Size HFHC320
HOURSday	= Average Daily Operation
	= custom or if unknown, use 15 hours
Days	= Annual days of operation
	= custom or if unknown, use 365.25 days a year

For example, if a full size HFHC is installed the measure would save:

ΔkWh = (PowerBaseline* HOURSday * Days)/1000 – (PowerENERGYSTAR* HOURSday * Days)/1000

= (2500*15*365.25)/1000 - (800*15*365.25)/1000

= 9,314 kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh/Hours * CF$

Where: Hours = Hoursday *Days

For example, if a full size HFHC is installed in a cafeteria the measure would save:

= 9,314 kWh / (15*365.25)* .36

=0 .61 kW

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-FSE-ESHH-V01-120601

4.2.10 ENERGY STAR Ice Maker

DESCRIPTION

This measure relates to the installation of a new ENERGY STAR qualified commercial ice machine. The ENERGY STAR label applied to air-cooled, cube-type machines including ice-making head, self-contained, and remotecondensing units. This measure excludes flake and nugget type ice machines. This measure could relate to the replacing of an existing unit at the end of its useful life, or the installation of a new system in a new or existing building.

This measure was developed to be applicable to the following program types: TOS and NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the efficient equipment is assumed to be a new commercial ice machine meeting the minimum ENERGY STAR efficiency level standards.

DEFINITION OF BASELINE EQUIPMENT

In order for this characterization to apply, the baseline equipment is assumed to be a commercial ice machine meeting federal equipment standards established January 1, 2010.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 10 years¹⁰⁷.

DEEMED MEASURE COST

The incremental capital cost for this measure is provided below.¹⁰⁸

Harvest Rate (H)	Incremental Cost
100-200 lb ice machine	\$296
201-300 lb ice machine	\$312
301-400 lb ice machine	\$559
401-500 lb ice machine	\$981
501-1000 lb ice machine	\$1,485
1001-1500 lb ice machine	\$1,821
>1500 lb ice machine	\$2,194

DEEMED O&M COST ADJUSTMENTS

N/A

¹⁰⁷DEER 2008

¹⁰⁸These values are from electronic work papers prepared in support of San Diego Gas & Electric's "Application for Approval of Electric and Gas Energy Efficiency Programs and Budgets for Years 2009-2011", SDGE, March 2, 2009. Accessed on 7/7/10 http://www.sdge.com/regulatory/documents/ee2009-2011", SDGE, March 2, 2009. Accessed on 7/7/10 http://www.sdge.com/regulatory/documents/ee2009-2011Workpapers/SW-ComB/Food%20Service/Food%20Service%20Electic%20Measure%20Workpapers%2011-08-05.DOC.

LOADSHAPE

Loadshape C23 - Commercial Refrigeration

COINCIDENCE FACTOR

The Summer Peak Coincidence Factor is assumed to equal 0.937

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWH = [(kWh_{base} - kWh_{ee}) / 100] * (DC * H) * 365.25$

Where:

kWh_{base} = maximum kWh consumption per 100 pounds of ice for the baseline equipment

= calculated as shown in the table below using the actual Harvest Rate (H) of the efficient equipment.

kWh_{ee} = maximum kWh consumption per 100 pounds of ice for the efficient equipment

= calculated as shown in the table below using the actual Harvest Rate (H) of the efficient equipment.

Ice Machine Type	kWhbase109	kWhee110
Ice Making Head (H < 450)	10.26 - 0.0086*H	9.23 - 0.0077*H
Ice Making Head (H \ge 450)	6.89 – 0.0011*H	6.20 - 0.0010*H
Remote Condensing Unit, without remote compressor ($H < 1000$)	8.85 – 0.0038*H	8.05 - 0.0035*H
Remote Condensing Unit, without remote compressor (H \geq 1000)	5.1	4.64
Remote Condensing Unit, with remote compressor ($H < 934$)	8.85 – 0.0038*H	8.05 - 0.0035*H
Remote Condensing Unit, with remote compressor ($H \ge 934$)	5.3	4.82
Self Contained Unit (H < 175)	18 - 0.0469*H	16.7 - 0.0436*H
Self Contained Unit (H \geq 175)	9.8	9.11

100 = conversion factor to convert kWhbase and kWhee into maximum kWh consumption per pound of ice.

¹⁰⁹Baseline reflects federal standards which apply to units manufactured on or after January 1, 2010 http://ecfr.gpoaccess.gov/cgi/t/text/text-idx?c=ecfr&rgn=div6&view=text&node=10:3.0.1.4.17.8&idno=10>.

¹¹⁰ENERGY STAR Program Requirements for Commercial Ice Machines, Partner Commitments, U.S. Environmental Protection Agency, Accessed on 7/7/10

<http://www.energystar.gov/ia/partners/product_specs/program_reqs/ice_machine_prog_req.pdf>

DC = Duty Cycle of the ice machine

 $= 0.57^{111}$

н = Harvest Rate (pounds of ice made per day)

= Actual installed

365.35 = days per year

For example an ice machine with an ice making head producing 450 pounds of ice would save

$$\Delta kWH = [(6.4 - 5.8) / 100] * (0..57 * 450) * 365.25$$

= 562 kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta kW = \Delta kWh / (HOURS * DC) * CF$$

Where:

HOURS = annual operating hours = 8766¹¹²

For example an ice machine with an ice making head producing 450 pounds of ice would save

ΔkW = 562/(8766*..57) * .937

= 0.105 kW

¹¹¹Duty cycle varies considerably from one installation to the next. TRM assumptions from Vermont, Wisconsin, and New York vary from 40 to 57%, whereas the ENERGY STAR Commercial Ice Machine Savings Calculator < http://www.energystar.gov/ia/business/bulk purchasing/bpsavings calc/Calc Ice Machines.xls> assumes a value of 75%. A field study of eight ice machines in California indicated an average duty cycle of 57% ("A Field Study to Characterize Water and Energy Use of Commercial Ice-Cube Machines and Quantify Saving Potential", Food Service Technology Center, December 2007). Furthermore, a report prepared by ACEEE assumed a value of 40% (Nadel, S., Packaged Commercial Refrigeration Equipment: A Briefing Report for Program Planners and Implementers, ACEEE, December 2002). The value of 57% was utilized since it appears to represent a high quality data source.

¹¹²Unit is assumed to be connected to power 24 hours per day, 365.25 days per year.

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

While the ENERGY STAR labeling criteria require that certified commercial ice machines meet certain "maximum potable water use per 100 pounds of ice made" requirements, such requirements are intended to prevent equipment manufacturers from gaining energy efficiency at the cost of water consumptions. A review of the AHRI Certification Directory¹¹³ indicates that approximately 81% of air-cooled, cube-type machines meet the ENERGY STAR potable water use requirement. Therefore, there are no assumed water impacts for this measure.

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-FSE-ESIM-V01-120601

¹¹³AHRI Certification Directory, Accessed on 7/7/10.
<http://www.ahridirectory.org/ahridirectory/pages/home.aspx>

4.2.11 High Efficiency Pre-Rinse Spray Valve

DESCRIPTION

Pre-rise valves use a spray of water to remove food waste from dishes prior to cleaning in a dishwasher. More efficient spray valves use less water thereby reducing water consumption, water heating cost, and waste water (sewer) charges. Pre-rinse spray valves include a nozzle, squeeze lever, and dish guard bumper. The primary impacts of this measure are water savings. Reduced hot water consumption saves either natural gas or electricity, depending on the type of energy the hot water heater uses.

This measure was developed to be applicable to the following program types: TOS, RF, and DI. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the new or replacement pre-rinse spray nozzle must use less than 1.6 gallons per minute with a cleanability performance of 26 seconds per plate or less.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment will vary based on the delivery method and is defined below:

Time of Sale	Retrofit, Direct Install
The baseline equipment is assumed to be 1.6 gallons per minute. The Energy Policy Act (EPAct) of 2005 sets the maximum flow rate for pre-rinse spray valves at 1.6 gallons per minute at 60 pounds per square inch of water pressure when tested in accordance with ASTM F2324-03. This performance standard went into effect January 1, 2006 ¹¹⁴ .	The baseline equipment is assumed to be an existing pre-rinse spray valve with a flow rate of 1.9 gallons per minute. ¹¹⁵ If existing pre-rinse spray valve flow rate is unknown, then existing pre-rinse spray valve must have been installed prior to 2006. The Energy Policy Act (EPAct) of 2005 sets the maximum flow rate for pre-rinse spray valves at 1.6 gallons per minute at 60 pounds per square inch of water pressure when tested in accordance with ASTM F2324-03. This performance standard went into effect January 1, 2006 however, field data shows that not all nozzles in use have been replaced with the newer flow rate nozzle. Products predating this standard can use up to five gallons per minute

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 5 years¹¹⁶

116 Reference 2010 Ohio Technical Reference Manual, Act on Energy Business Program Technical Reference

¹¹⁵ Verification measurements taken at 195 installations showed average pre and post flowrates of 2.23 and 1.12 gallon per minute, respectively." from IMPACT AND PROCESS EVALUATION FINAL REPORT for CALIFORNIA URBAN WATER CONSERVATION COUNCIL 2004-5 PRE-RINSE SPRAY VALVE INSTALLATION PROGRAM (PHASE 2) (PG&E Program # 1198-04; SoCalGas Program 1200-04) ("CUWCC Report", Feb 2007)

DEEMED MEASURE COST

The cost of this measure is assumed to be \$100¹¹⁷

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape C01 - Commercial Electric Cooking

COINCIDENCE FACTOR

N/A

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS (NOTE WATER SAVINGS MUST FIRST BE CALCULATED)

ΔkWH = ΔGallons x 8.33 x 1 x (Tout - Tin) x (1/EFF electric) /3,413 x FLAG

Where:

ΔGallons	= amount of water saved as calculated below
8.33 lbm/gal	= specific mass in pounds of one gallon of water
1 Btu/lbm°F	= Specific heat of water: 1 Btu/lbm/°F
Tout	= Water Heater Outlet Water Temperature
	= custom, otherwise assume Tin + 70° F temperature rise from Tin 118
Tin	= Inlet Water Temperature
	= custom, otherwise assume 54.1 degree F ¹¹⁹
EFF	= Efficiency of electric water heater supplying hot water to pre-rinse spray

Manual Rev05, and Federal Energy Management Program (2004), "How to Buy a Low-Flow Pre-Rinse Spray Valve." **117**Costs range from \$60 Chicagoland (Integrys for North Shore & People's Gas) to \$150 referenced by Nicor's Resource Solutions Group Workpaper WPRSGCCODHW102 "Pre-Rinse Spray Valve." Act on Energy references \$100.

¹¹⁸If unknown, assume a 70 degree temperature rise from Tin per Food Service Technology Center calculator assumptions to account for variations in mixing and water heater efficiencies

¹¹⁹August 31, 2011 Memo of Savings for Hot Water Savings Measures to Nicor Gas from Navigant states that 54.1°F was calculated from the weighted average of monthly water mains temperatures reported in the 2010 Building America Benchmark Study for Chicago-Waukegan, Illinois.

valve

=custom, otherwise assume 97%¹²⁰

Flag = 1 if electric or 0 if gas

EXAMPLE

Time of Sale: For example, a new spray nozzle with 1.06 gal/min flow replacing a nozzle with 1.6 gal/min flow at a large institutional establishments with a cafeteria with 70 degree temperature rise of water used by the pre-rinse spray valve that is heated by electric hot water saves annually :

ΔkWH = 30,326x 8.33 x 1 x ((70+54.1) - 54.1) x (1/.97) /3,413 x 1 = 5,341kWh

Retrofit: For example, a new spray nozzle with 1.06 gal/min flow replacing a nozzle with 1.9 gal/min flow at a large institutional establishments with a cafeteria with 70 degree temperature rise of water used by the prerinse spray valve that is heated by electric hot water equals:

ΔkWH = 47,175 x 8.33 x 1 x ((70+ 54.1) - 54.1) x (1/.97) /3,413 x 1 =8309 kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

NATURAL GAS ENERGY SAVINGS

 Δ Therms = Δ Gallons x 8.33 x 1 x (Tout - Tin) x (1/EFF) /100,000 Btu

Where (new variables only):

EFF

= Efficiency of gas water heater supplying hot water to pre-rinse spray valve

= custom, otherwise assume 75%¹²¹

¹²⁰This efficiency value is based on IECC 2012 performance requirement for electric resistant water heaters rounded without the slight adjustment allowing for reduction based on size of storage tank.

¹²¹ IECC 2012, Table C404.2, Minimum Performance of Water-Heating Equipment

EXAMPLE

Time of Sale: For example, a new spray nozzle with 1.06 gal/min flow replacing a nozzle with 1.6 gal/min flow at a large institutional establishments with a cafeteria with 70 degree temperature of water used by the pre-rinse spray valve that is heated by fossil fuel hot water saves annually:

ΔTherms = 30,326 x 8.33 x 1 x ((70+54.1) - 54.1) x (1/.75)/100,000 x 1.0 = 236 Therms

Retrofit: For example, a new spray nozzle with 1.06 gal/min flow replacing a nozzle with 1.9 gal/min flow at a busy large institutional establishments with a cafeteria with 70 degree temperature rise of water used by the pre-rinse spray valve that is heated by fossil fuel hot water saves annually:

ΔTherms = 47,175 x 8.33 x 1 x ((70+54.1) - 54.1) x (1/.75)/100,000 x (1-0) =368 Therms

WATER IMPACT CALCULATION¹²²

∆Gallons = (FLObase - FLOeff)gal/min x 60 min/hr x HOURSday x DAYSyear

FLObase

= Base case flow in gallons per minute, or custom

Time of Sale	Retrofit, Direct Install	
1.6 gal/min123	1.9 gal/min124	

FLOeff

= Efficient case flow in gallons per minute or custom

Time of Sale	Retrofit, Direct Install	
1.06 gal/min ¹²⁵	1.06 gal/min ¹²⁶	

¹²²In order to calculate energy savings, water savings must first be calculated

¹²⁶1.6 gallons per minute used to be the high efficiency flow, but more efficient spray valves are available ranging down to 0.64 gallons per minute per Federal Energy Management Program which references the Food Services Technology Center web site with the added note that even more efficient models may be available since publishing

¹²³The baseline equipment is assumed to be 1.6 gallons per minute. The Energy Policy Act (EPAct) of 2005 sets the maximum flow rate for pre-rinse spray valves at 1.6 gallons per minute at 60 pounds per square inch of water pressure when tested in accordance with ASTM F2324-03. This performance standard went into effect January 1, 2006. www1.eere.energy.gov/femp/pdfs/spec_prerinsesprayvavles.pdf.

¹²⁴ Verification measurements taken at 195 installations showed average pre and post flowrates of 2.23 and 1.12 gallon per minute, respectively." from IMPACT AND PROCESS EVALUATION FINAL REPORT for CALIFORNIA URBAN WATER CONSERVATION COUNCIL 2004-5 PRE-RINSE SPRAY VALVE INSTALLATION PROGRAM (PHASE 2) (PG&E Program # 1198-04; SoCalGas Program 1200-04) ("CUWCC Report", Feb 2007)

¹²⁵1.6 gallons per minute used to be the high efficiency flow, but more efficient spray valves are available ranging down to 0.64 gallons per minute per Federal Energy Management Program which references the Food Services Technology Center web site with the added note that even more efficient models may be available since publishing the data. The average of the nozzles listed on the FSTC website is 1.06.

HOURSday = Hours per day that the pre-rinse spray valve is used at the site, custom, otherwise¹²⁷:

Application	Hours/day
Small, quick- service restaurants	1/2
Medium-sized casual dining	1.5
restaurants	
Large institutional establishments	3
with cafeteria	

DAYSyear = Days per year pre-rinse spray valve is used at the site, custom, otherwise 312 days/yr based on assumed 6 days/wk x 52 wk/yr = 312 day/yr.

EXAMPLE

Time of Sale: For example, a new spray nozzle with 1.06 gal/min flow replacing a nozzle with 1.6 gal/min flow at a large institutional establishment with a cafeteria equals

= (1.6 - 1.06) * 60 * 3 * 312 = 30,326 gal/yr

Retrofit: For example, a new spray nozzle with 106 gal/min flow replacing a nozzle with 1.9 gal/min flow at a large institutional establishments with a cafeteria equals

= (1.9 – 1.06) * 60 * 3 * 312 = 47,175 gal/yr

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-FSE-SPRY-V02-120601

the data. The average of the nozzles listed on the FSTC website is 1.06.

¹²⁷ Hours primarily based on PG& E savings estimates, algorithms, sources (2005), Food Service Pre-Rinse Spray Valves with review of 2010 Ohio Technical Reference Manual and Act on Energy Business Program Technical Resource Manual Rev05.

4.2.12 Infrared Charbroiler

DESCRIPTION

This measure applies to natural gas fired charbroilers that utilize infrared burners installed in a commercial kitchen

This measure was developed to be applicable to the following program types: TOS. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the installed equipment must be a new natural gas charbroiler with infrared burners.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is an existing natural gas charbroiler without infrared burners.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years¹²⁸

DEEMED MEASURE COST

The incremental capital cost for this measure is \$2200¹²⁹

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

N/A

COINCIDENCE FACTOR

N/A

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

N/A

¹²⁸Food Service Technology Center, ENERGY STAR and CEE do not currently provide calculators for this type of equipment therefore deemed values from Nicor Gas were used. Nicor Gas Energy Efficiency Plan 2011-2014. Revised Plan Filed Pursuant to Order Docket 10-0562, May 27, 2011 ¹²⁹Ibid.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

NATURAL GAS ENERGY SAVINGS

The annual natural gas energy savings from this measure is a deemed value equaling 661 Therms.¹³⁰

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-FSE-IRCB-V01-120601

¹³⁰ Nicor Gas Energy Efficiency Plan 2011-2014. Revised Plan Filed Pursuant to Order Docket 10-0562, May 27, 2011. These deemed values should be compared to PY evaluation and revised as necessary.

4.2.13 Infrared Rotisserie Oven

DESCRIPTION

This measure applies to natural gas fired high efficiency rotisserie ovens utilizing infrared burners and installed in a commercial kitchen.

This measure was developed to be applicable to the following program types: TOS. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the installed equipment must be a new natural gas rotisserie oven with infrared burners.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is an existing natural gas rotisserie oven without infrared burners.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years¹³¹

DEEMED MEASURE COST

The incremental capital cost for this measure is \$2700¹³²

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

N/A

COINCIDENCE FACTOR

N/A

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

N/A

¹³¹Food Service Technology Center, ENERGY STAR and CEE do not currently provide calculators for this type of equipment therefore deemed values from Nicor Gas were used. Nicor Gas Energy Efficiency Plan 2011-2014.
 Revised Plan Filed Pursuant to Order Docket 10-0562, May 27, 2011
 ¹³²Ibid.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

NATURAL GAS ENERGY SAVINGS

The annual natural gas energy savings from this measure is a deemed value equaling 554 Therms¹³³

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-FSE-IROV-V01-120601

¹³³Nicor Gas Energy Efficiency Plan 2011-2014. Revised Plan Filed Pursuant to Order Docket 10-0562, May 27, 2011. These deemed values should be compared to PY evaluation and revised as necessary.

4.2.14 Infrared Salamander Broiler

DESCRIPTION

This measure applies to natural gas fired high efficiency salamander broilers utilizing infrared burners installed in a commercial kitchen.

This measure was developed to be applicable to the following program types: TOS. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the installed equipment must be a new natural gas salamander broiler with infrared burners

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is an existing natural gas salamander broiler without infrared burners

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years¹³⁴

DEEMED MEASURE COST

The incremental capital cost for this measure is \$1000¹³⁵

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

N/A

COINCIDENCE FACTOR

N/A

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

N/A

¹³⁴Food Service Technology Center, ENERGY STAR and CEE do not currently provide calculators for this type of equipment therefore deemed values from Nicor Gas were used. Nicor Gas Energy Efficiency Plan 2011-2014.
 Revised Plan Filed Pursuant to Order Docket 10-0562, May 27, 2011
 ¹³⁵Ibid.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

NATURAL GAS ENERGY SAVINGS

The annual natural gas energy savings from this measure is a deemed value equaling 239 therms¹³⁶

WATER IMPACT DESCRIPTIONS AND CALCULATION

DEEMED O&M COST ADJUSTMENT CALCULATION

MEASURE CODE: CI-FSE-IRBL-V01-120601

¹³⁶ Nicor Gas Energy Efficiency Plan 2011-2014. Revised Plan Filed Pursuant to Order Docket 10-0562, May 27, 2011. These deemed values should be compared to PY evaluation and revised as necessary.

4.2.15 Infrared Upright Broiler

DESCRIPTION

This measure applies to natural gas fired high efficiency upright broilers utilizing infrared burners and installed in a commercial kitchen.

This measure was developed to be applicable to the following program types: TOS. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the installed equipment must be a new natural gas upright broiler with infrared burners.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is an existing natural gas upright broiler without infrared burners.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 10 years¹³⁷

DEEMED MEASURE COST

The incremental capital cost for this measure is \$5900¹³⁸

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

N/A

COINCIDENCE FACTOR

N/A

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

N/A

¹³⁷Food Service Technology Center, ENERGY STAR and CEE do not currently provide calculators for this type of equipment therefore deemed values from Nicor Gas were used. Nicor Gas Energy Efficiency Plan 2011-2014.
 Revised Plan Filed Pursuant to Order Docket 10-0562, May 27, 2011
 ¹³⁸Ibid.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

NATURAL GAS ENERGY SAVINGS

The annual natural gas energy savings from this measure is a deemed value equaling 1089 therms¹³⁹.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-FSE-IRUB-V01-120601

¹³⁹ Nicor Gas Energy Efficiency Plan 2011-2014. Revised Plan Filed Pursuant to Order Docket 10-0562, May 27, 2011.These deemed values should be compared to PY evaluation and revised as necessary

4.2.16 Kitchen Demand Ventilation Controls

DESCRIPTION

Installation of commercial kitchen demand ventilation controls that vary the ventilation based on cooking load and/or time of day.

This measure was developed to be applicable to the following program types: TOS. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the installed equipment must be a control system that varies the exhaust rate of kitchen ventilation (exhaust and/or makeup air fans) based on the energy and effluent output from the cooking appliances (i.e., the more heat and smoke/vapors generated, the more ventilation needed). This involves installing a new temperature sensor in the hood exhaust collar and/or an optic sensor on the end of the hood that sense cooking conditions which allows the system to automatically vary the rate of exhaust to what is needed by adjusting the fan speed accordingly.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is kitchen ventilation that has constant speed ventilation motor.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 15 years.¹⁴⁰

DEEMED MEASURE COST

The incremental capital cost for this measure is¹⁴¹

Measure Category	Incremental Cost , \$/fan
DVC Control Retrofit	\$1,988
DVC Control New	\$1,000

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape C23 - Commercial Ventilation

COINCIDENCE FACTOR

The measure has deemed peak kW savings therefore a coincidence factor does not apply

 ¹⁴⁰ PG&E Workpaper: Commercial Kitchen Demand Ventilation Controls-Electric, 2004 - 2005
 ¹⁴¹ Ibid.

Algorithm

CALCULATION OF SAVINGS

Annual energy use was based on monitoring results from five different types of sites, as summarized in PG&E Food Service Equipment work paper.

ELECTRIC ENERGY SAVINGS

The following table provides the kWh savings

	Annual Energy Savings Per Unit (kWh/fan)
DVC Control Retrofit	4,486
DVC Control New	4,486

SUMMER COINCIDENT PEAK DEMAND SAVINGS

The following table provides the kW savings

Measure Name	Coincident Peak Demand Reduction (kW)
DVC Control Retrofit	0.76
DVC Control New	0.76

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-FSE-VENT-V01-120601

4.2.17 Pasta Cooker

DESCRIPTION

This measure applies to natural gas fired dedicated pasta cookers as determined by the manufacturer and installed in a commercial kitchen.

This measure was developed to be applicable to the following program types: TOS. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the installed equipment must be a new natural gas fired paste cooker.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is an existing natural gas fired stove where pasta is cooked in a pan.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12¹⁴².

DEEMED MEASURE COST

The incremental capital cost for this measure is \$2400¹⁴³.

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

N/A

COINCIDENCE FACTOR

N/A

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

N/A

 ¹⁴²Food Service Technology Center, ENERGY STAR and CEE do not currently provide calculators for this type of equipment therefore deemed values from Nicor Gas were used. Nicor Gas Energy Efficiency Plan 2011-2014.
 Revised Plan Filed Pursuant to Order Docket 10-0562, May 27, 2011
 ¹⁴³Ibid.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

NATURAL GAS ENERGY SAVINGS

The annual natural gas energy savings from this measure is a deemed value equaling 1380 Therms¹⁴⁴.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-FSE-PCOK-V01-120601

¹⁴⁴Nicor Gas Energy Efficiency Plan 2011-2014. Revised Plan Filed Pursuant to Order Docket 10-0562, May 27, 2011.These deemed values should be compared to PY evaluation and revised as necessary.

4.2.18 Rack Oven - Double Oven

DESCRIPTION

This measure applies to natural gas fired high efficiency rack oven - double oven installed in a commercial kitchen.

This measure was developed to be applicable to the following program types: TOS. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the installed equipment must be a new natural gas rack oven –double oven with a baking efficiency \geq 50% utilizing ASTM standard 2093

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is an existing natural gas rack oven – double oven with a baking efficiency < 50%.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years.¹⁴⁵

DEEMED MEASURE COST

The incremental capital cost for this measure is \$8646.¹⁴⁶

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

N/A

COINCIDENCE FACTOR

N/A

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

N/A

 ¹⁴⁵Food Service Technology Center, ENERGY STAR and CEE do not currently provide calculators for this type of equipment therefore deemed values from Nicor Gas were used. Nicor Gas Energy Efficiency Plan 2011-2014.
 Revised Plan Filed Pursuant to Order Docket 10-0562, May 27, 2011
 ¹⁴⁶Ibid.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

NATURAL GAS ENERGY SAVINGS

The annual natural gas energy savings from this measure is a deemed value equaling 2064 therms¹⁴⁷

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-FSE-RKOV-V01-120601

¹⁴⁷Nicor Gas Energy Efficiency Plan 2011-2014. Revised Plan Filed Pursuant to Order Docket 10-0562, May 27, 2011. These deemed values should be compared to PY evaluation and revised as necessary

4.3 Hot Water

4.3.1 Storage Water Heater

DESCRIPTION

This measure is for upgrading from minimum code to a storage-type water heaters. Storage water heaters are used to supply hot water for a variety of commercial building types. Storage capacities vary greatly depending on the application. Large consumers of hot water include (but not limited to) industries, hotels/motels and restaurants.

This measure was developed to be applicable to the following program types: TOS, RF, ER. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

Gas, High Efficiency	Gas, Standard	Electric
In order for this characterization to	In order for this characterization to	In order for this characterization to
apply, the efficient equipment is	apply, the efficient equipment is	apply, the efficient equipment is
assumed to have heating capacity	assumed to be a gas-fired storage	assumed to have ¹⁴⁸ .:
over 75,000 Btuh and a Thermal	water heaters with 0.67 EF or better	Energy factor greater than or equal
Efficiency (TE) greater than or equal	installed in a non-residential	to 0.95 Minimum Thermal
to 88%	application	Efficiency of 0.98
	.	
	Primary applications would include	Less than 3% standby loss (standby
	(but not limited to) hotels/motels,	loss is calculated as percentage of
	small commercial spaces, offices and restaurants	annual (energy usage)
	and restaurants	Equivalant store as consolity to unit
		Equivalent storage capacity to unit
		being replaced
		Qualified units must be
		GAMA/AHRI efficiency rating
		certified
		continua

DEFINITION OF BASELINE EQUIPMENT

Gas, High Efficiency	Gas, Standard	Electric
In order for this characterization to	In order for this characterization to	In order for this characterization to
apply, the baseline condition is	apply, the baseline condition is	apply, the baseline equipment is
assumed to be a water heater with	assumed to be the minimum code	assumed to be an electric storage
heating capacity over 75,000 Btuh	compliant unit with 0.575 EF.	water heater with 50 or more gallon
and a Thermal Efficiency (TE) of	_	capacity in input wattage between
80%		12kW and 54kW.

¹⁴⁸ Act on Energy Commercial Technical Reference Manual No. 2010-4

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

Gas, High Efficiency	Gas, Standard	Electric
The expected measure life is	The expected measure life is	The expected measure life is
assumed to be 15 Years ¹⁴⁹	assumed to be 15 years ¹⁵⁰	assumed to be 5 years ¹⁵¹ .

DEEMED MEASURE COST

Gas, High Efficiency	Gas, Standard	Electric
The incremental capital cost for this measure is \$209 ¹⁵²	I The deemed measure cost is assumed to be 400^{153} The incremental capital cost for this assumed to be 154	
		Tank Size Incremental Cost
		50 gallons \$1050
		80 gallons \$1050
		100 gallons \$1950

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Gas, High Efficiency	Gas, Standard	Electric
N/A	N/A	Loadshape C02 - Non-Residential
		Electric DHW

COINCIDENCE FACTOR

Gas, High Efficiency	Gas, Standard	Electric
N/A	N/A	The measure has deemed kW savings therefor a coincidence factor is not applied

¹⁴⁹ Nicor Gas Energy Efficiency Plan 2011-2014. Revised Plan Filed Pursuant to Order Docket 10-0562, May 27,

²⁰¹¹ ¹⁵⁰ Gas Storage Water Heater 0.67. Work Paper WPRSGNGDHW106. Resource Solutions Group. December 2010 ¹⁵¹ Ibid.

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS 155

The annual electric savings the electric water storage tank and heater is a deemed value and assumed to be:

Tank Size	Savings (kWh)
50 gallons	1780.85
80 gallons	4962.69
100 gallons	8273.63

SUMMER COINCIDENT PEAK DEMAND SAVINGS

The annual kW savings from this measure is a deemed value and assumed to be:

Tank Size	Savings (kW)
50 gallons	0.20
80 gallons	0.57
100 gallons	0.94

¹⁵⁵ Ibid. ¹⁵⁶ Ibid.

NATURAL GAS ENERGY SAVINGS

Gas, High Efficiency	Gas, Standard					
The annual natural gas energy savings from this measure is a	Gas savings depend on building type and are based on measure case energy factor of 0.67 and a heating capacity of 75 MBtuh. These values are averages of qualifying units. Savings values are derived from 2008 DEER Miser, which provides MBtuh gas savings per MBtuh capacity. Savings presented here are per water heater. ¹⁵⁸					
deemed value	Building Type	Energy Savings (therms/unit)				
equaling 251 ¹⁵⁷	Assembly	185				
	Education – Primary/Secondary	124				
	Education – Post Secondary 178					
	Grocery 191					
	Health/Medical - Hospital 297					
	Lodging - Hotel 228					
	Manufacturing - Light Industrial 140					
	Office $-> 60,000 \text{ sq-ft}$ 164					
	Office - < 60,000 sq-ft 56					
	Restaurant - FastFood 109					
	Restaurant – Sit Down 166					
	Retail 105					
	Storage 150					
	Multi-Family 119					
	Other	148				

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-HW_-STWH-V01-120601

 ¹⁵⁷ Nicor Gas Energy Efficiency Plan 2011-2014. Revised Plan Filed Pursuant to Order Docket 10-0562, May 27, 2011. These deemed values should be compared to PY evaluation and revised as necessary
 ¹⁵⁸ Gas Storage Water Heater 0.67. Work Paper WPRSGNGDHW106. Resource Solutions Group. December 2010

4.3.2 Low Flow Faucet Aerators

DESCRIPTION

This measure relates to the direct installation of a low flow faucet aerator in a commercial building. Expected applications include small business, office, restaurant, or motel. For multifamily or senior housing, the residential low flow faucet aerator should be used.

This measure was developed to be applicable to the following program types, DI. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the installed equipment must be an energy efficient faucet aerator, for bathrooms rated at 1.5 gallons per minute (GPM) or less, or for kitchens rated at 2.2 GPM or less. Savings are calculated on an average savings per faucet fixture basis.

DEFINITION OF BASELINE EQUIPMENT

The baseline condition is assumed to be a standard bathroom faucet aerator rated at 2.25 GPM or more, or a standard kitchen faucet aerator rated at 2.75 GPM or more.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 9 years.¹⁵⁹

DEEMED MEASURE COST

The incremental cost for this measure is \$8¹⁶⁰ or program actual

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape C02 - Commercial Electric DHW

COINCIDENCE FACTOR

The coincidence factor for this measure is dependent on building type as presented below.

¹⁵⁹ Table C-6, Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

[&]quot;http://neep.org/uploads/EMV%20Forum/EMV%20Studies/measure_life_GDS%5B1%5D.pdf"

¹⁶⁰ Direct-install price per faucet assumes cost of aerator and install time. (2011, Market research average of \$3 and assess and install time of \$5 (20min @ \$15/hr)

```
Algorithm
```

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

NOTE THESE SAVINGS ARE *PER* **FAUCET RETROFITTED**¹⁶¹**.**

```
ΔkWh = %ElectricDHW * ((GPM_base - GPM_low)/GPM_base) * Usage * EPG_electric * ISR
```

Where:

%ElectricDHW = proportion of water heating supplied by electric resistance heating

	DHW fuel	%Electric_DHW	
	Electric	100%	
	Fossil Fuel	0%	
			-
GPM_base	= Average flow rate, in gallons = 1.2 ¹⁶² or custom based on me		seline faucet "as-used"
GPM_low	= Average flow rate, in gallons	per minute, of the l	ow-flow faucet aerator "as-
	used"		
	= 0.94^{164} or custom based on n	netering studies ¹⁶⁵	
Usage	= Estimated usage of mixed wa	•	ater from water heater line

and cold water line) per faucet (gallons per year)

= If data is available to provide a reasonable custom estimate it should be used,

¹⁶¹ This algorithm calculates the amount of energy saved per aerator by determining the fraction of water consumption savings for the upgraded fixture. Due to the distribution of water consumption by fixture type, as well as the different number of fixtures in a building, several variables must be incorporated.

¹⁶² Representative baseline flow rate for kitchen and bathroom faucet aerators from sources 2, 4, 5, and 7. This accounts for all throttling and differences from rated flow rates. The most comprehensive available studies did not disaggregate kitchen use from bathroom use, but instead looked at total flow and length of use for all faucets. This makes it difficult to reliably separate kitchen water use from bathroom water use.

¹⁶³ Measurement should be based on actual average flow consumed over a period of time rather than a onetime spot measurement for maximum flow. Studies have shown maximum flow rates do not correspond well to average flow rate due to occupant behavior which does not always use maximum flow.

¹⁶⁴ Average retrofit flow rate for kitchen and bathroom faucet aerators from sources 2, 4, 5, and 7. This accounts for all throttling and differences from rated flow rates. Assumes all kitchen aerators at 2.2 gpm or less and all bathroom aerators at 1.5 gpm or less. The most comprehensive available studies did not disaggregate kitchen use from bathroom use, but instead looked at total flow and length of use for all faucets. This makes it difficult to reliably separate kitchen water use from bathroom water use. It is possible that programs installing low flow aerators lower than the 2.2 gpm for kitchens and 1.5 gpm for bathrooms will see a lower overall average retrofit flow rate.

¹⁶⁵ Measurement should be based on actual average flow consumed over a period of time rather than a onetime spot measurement for maximum flow. Studies have shown maximum flow rates do not correspond well to average flow rate due to occupant behavior which does not always use maximum flow.

Building Type	Gallons hot water per unit per day ¹⁶⁶ (A)	Unit	Estimated % hot water from Faucets ¹⁶⁷ (B)	Multiplier ¹⁶⁸ (C)	Unit	Days per year (D)	Annual gallons mixed water per faucet (A*B*C*D)
Small Office	1	person	100%	10	employees per faucet	250	2,500
Large Office	1	person	100%	45	employees per faucet	250	11,250
Fast Food Rest	0.7	meal/day	50%	75	meals per faucet	365	6,563
Sit-Down Rest	2.4	meal/day	50%	36	meals per faucet	365	10,800
Retail	2	employee	100%	5	employees per faucet	365	2,500
Grocery	2	employee	100%	5	employees per faucet	365	2,500
Warehouse	2	employee	100%	5	employees per faucet	250	2,500
Elementary School	0.6	person	50%	50	students per faucet	200	3,750
Jr High/High School	1.8	person	50%	50	students per faucet	200	11,250
Health	90	patient	25%	2	Patients per faucet	365	11,250
Motel	20	room	25%	1	faucet per room	365	1,250
Hotel	14	room	25%	1	faucet per room	365	875
Other	1	employee	100%	20	employees per faucet	250	5,000

if not use the following defaults (or substitute custom information in to the calculation):

EPG_electric	= Energy per gallon of mixed water used by faucet (electric water heater)
	= (8.33 * 1.0 * (WaterTemp - SupplyTemp)) / (RE_electric * 3412)
	= (8.33 * 1.0 * (90 – 54.1)) / (0.98 * 3412)
	= 0.0894 kWh/gal
8.33	= Specific weight of water (lbs/gallon)
1.0	= Heat Capacity of water (btu/lb-F)
WaterTemp	= Assumed temperature of mixed water

 $= 90F^{169}$

¹⁶⁹ Temperature cited from SBW Consulting, Evaluation for the Bonneville Power Authority, 1994,

¹⁶⁶ Table 2-45 Chapter 49, Service Water Heating, 2007 ASHRAE Handbook, HVAC Applications.

¹⁶⁷ Estimated based on data provided in Appendix E; "Waste Not, Want Not: The Potential for Urban Water Conservation in California"; http://www.pacinst.org/reports/urban_usage/appendix_e.pdf ¹⁶⁸ Based on review of the Illinois plumbing code (Employees and students per faucet). Retail, grocery, warehouse

and health are estimates. Meals per faucet estimated as 4 bathroom and 3 kitchen faucets and average meals per day of 250 (based on California study above) – 250/7 = 36. Fast food assumption estimated.

http://www.bpa.gov/energy/n/reports/evaluation/residential/faucet_aerator.cfm. This is a variable that would benefit from further evaluation.

SupplyTemp	= Assumed temperature of water entering building
	= 54.1F ¹⁷⁰
RE_electric	= Recovery efficiency of electric water heater
	= 98% ¹⁷¹
3412	= Converts Btu to kWh (Btu/kWh)
ISR	= In service rate of faucet aerators dependant on install method as listed in table below ¹⁷²

Selection	ISR
Direct Install - Deemed	0.95

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = (\Delta kWh / Hours) * CF$

Where:

 ΔkWh = calculated value above on a per faucet basis

Hours = Annual electric DHW recovery hours for faucet use

= (Usage * 0.545¹⁷³)/GPH

 ¹⁷⁰ US DOE Building America Program. Building America Analysis Spreadsheet. For Chicago, IL
 <u>http://www1.eere.energy.gov/buildings/building_america/analysis_spreadsheets.html</u>.
 ¹⁷¹ Electric water heater have recovery efficiency of 98%: <u>http://www.ahrinet.org/ARI/util/showdoc.aspx?doc=576</u>

^{1/1} Electric water heater have recovery efficiency of 98%: <u>http://www.ahrinet.org/ARI/util/showdoc.aspx?doc=576</u> ¹⁷² ComEd Energy Efficiency/ Demand Response Plan: Plan Year 2 (6/1/2009-5/31/2010) Evaluation Report: All

Electric Single Family Home Energy Performance Tune-Up Program Table 3-8

Building Type	Annual Recovery Hours
Small Office	19
Large Office	84
Fast Food Rest	49
Sit-Down Rest	81
Retail	19
Grocery	19
Warehouse	19
Elementary School	28
Jr High/High School	84
Health	84
Motel	9
Hotel	7
Other	37

= Calculate if usage is custom, if using default usage use:

Where :

GPH = Gallons per hour recovery of electric water heater calculated for 65.9F temp rise (120-54.1), 98% recovery efficiency, and typical 12kW electric resistance storage tank.

= 73

CF = Coincidence Factor for electric load reduction

= Dependent on building type¹⁷⁴

Coincidence
Factor
0.0064
0.0288
0.0084
0.0184
0.0043
0.0043
0.0064
0.0096
0.0288
0.0144

¹⁷³ 54.5% is the proportion of hot 120F water mixed with 54.1F supply water to give 90F mixed faucet water.
¹⁷⁴ Calculated as follows: Assumptions for percentage of usage during peak period (1-5pm) were made and then multiplied by 65/365 (65 being the number of days in peak period) and by the number of total annual recovery hours to give an estimate of the number of hours of recovery during peak periods. There are 260 hours in the peak period so the probability you will see savings during the peak period is calculated as the number of hours of recovery during peak divided by 260. See 'C&I Faucet Aerator.xls' for details.

Motel	0.0006
Hotel	0.0004
Other	0.0128

EXAMPLE

For example, a direct installed faucet in a large office with electric DHW:

 $\Delta kW = 207/84 * 0.0064$

= 0.016 kW

For example, a direct installed faucet in a Elementary School with electric DHW:

 $\Delta kW = 69/28 * 0.0096$

= 0.024 kW

FOSSIL FUEL IMPACT DESCRIPTIONS AND CALCULATION

ΔTherms = %FossilDHW * ((GPM_base - GPM_low)/GPM_base) * Usage * EPG_gas * ISR

Where:

%FossilDHW = proportion of water heating supplied by fossil fuel heating

DHW fuel	%Fossil_DHW
Electric	0%
Fossil Fuel	100%

EPG_gas = Energy per gallon of mixed water used by faucet (gas water heater)

= (8.33 * 1.0 * (WaterTemp - SupplyTemp)) / (RE_gas * 100,000)

= 0.00446 Therm/gal

Where:

RE_gas = Recovery efficiency of gas water heater = 67% ¹⁷⁵

¹⁷⁵ Review of AHRI Directory suggests range of recovery efficiency ratings for new Gas DHW units of 70-87%. Average of existing units is estimated at 75%. Commercial properties are more similar to MF homes than SF homes. MF hot water is often provided by a larger commercial boiler. This suggests that the average recovery efficiency is somewhere between a typical central boiler efficiency of .59 and the .75 for single family home. An average is used for this analysis by default.

100,000 = Converts Btus to Therms (Btu/Therm)

Other variables as defined above.

EXAMPLE	
For example, a direct in	nstalled faucet in a large office with gas DHW:
ΔTherms	= 1 * ((1.2 - 0.94)/0.94) * 11,250 * 0.00446 * 0.95
	= 13.2 Therms
For example, a direct in	nstalled faucet in a Elementary School with gas DHW:
ΔTherms	= 1 * ((1.2 – 0.94)/0.94) * 3,750 * 0.00446 * 0.95
	= 4.4 Therms

WATER IMPACT DESCRIPTIONS AND CALCULATION

∆gallons = ((GPM_base - GPM_low)/GPM_base) * Usage * ISR

Variables as defined above

EXAMPLE	
For example, a direct	installed faucet in a large office:
Δgallons	= ((1.2 - 0.94)/0.94) * 11,250 * 0.95
	= 2956 gallons
For example, a direct	installed faucet in a Elementary School:
Δgallons	= ((1.2 - 0.94)/0.94) * 3,750 * 0.95
	= 985 gallons

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

SOURCES USED FOR GPM ASSUMPTIONS

Source ID	Reference
1	2011, DeOreo, William. California Single Family Water Use Efficiency Study. April 20, 2011.
2	2000, Mayer, Peter, William DeOreo, and David Lewis. Seattle Home Water Conservation Study. December 2000.
3	1999, Mayer, Peter, William DeOreo. Residential End Uses of Water. Published by AWWA Research Foundation and American Water Works Association. 1999.
4	2003, Mayer, Peter, William DeOreo. Residential Indoor Water Conservation Study. Aquacraft, Inc. Water Engineering and Management. Prepared for East Bay Municipal Utility District and the US EPA. July 2003.
5	2011, DeOreo, William. Analysis of Water Use in New Single Family Homes. By Aquacraft. For Salt Lake City Corporation and US EPA. July 20, 2011.
6	2011, Aquacraft. Albuquerque Single Family Water Use Efficiency and Retrofit Study. For Albuquerque Bernalillo County Water Utility Authority. December 1, 2011.
7	2008, Schultdt, Marc, and Debra Tachibana. Energy related Water Fixture Measurements: Securing the Baseline for Northwest Single Family Homes. 2008 ACEEE Summer Study on Energy Efficiency in Buildings.

MEASURE CODE: CI-HW_-LFFA-V03-130601

4.3.3 Low Flow Showerheads

DESCRIPTION

This measure relates to the direct installation of a low flow showerhead in a commercial building. Expected applications include small business, office, restaurant, or small motel. For multifamily or senior housing, the residential low flow showerhead should be used.

This measure was developed to be applicable to the following program types: DI.

If applied to other program types, the measure savings should be verified

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the installed equipment must be an energy efficient showerhead rated at 2.0 gallons per minute (GPM) or less. Savings are calculated on a per showerhead fixture basis.

DEFINITION OF BASELINE EQUIPMENT

The baseline condition is assumed to be a standard showerhead rated at 2.5 GPM.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 10 years.¹⁷⁶

DEEMED MEASURE COST

The incremental cost for this measure is \$12¹⁷⁷ or program actual.

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape C02 - Commercial Electric DHW

COINCIDENCE FACTOR

The coincidence factor for this measure is assumed to be 2.78%¹⁷⁸.

¹⁷⁶ Table C-6, Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007. Evaluations indicate that consumer dissatisfaction may lead to reductions in persistence, particularly in Multi-Family, "http://neep.org/uploads/EMV%20Forum/EMV%20Studies/measure_life_GDS%5B1%5D.pdf"

¹⁷⁷ Direct-install price per showerhead assumes cost of showerhead (Market research average of \$7 and assess and install time of \$5 (20min @ \$15/hr)

¹⁷⁸ Calculated as follows: Assume 11% showers take place during peak hours (based on:

http://www.aquacraft.com/sites/default/files/pub/DeOreo-%282001%29-Disaggregated-Hot-Water-Use-in-Single-Family-Homes-Using-Flow-Trace-Analysis.pdf). There are 65 days in the summer peak period, so the percentage of total annual aerator use in peak period is 0.11*65/365 = 1.96%. The number of hours of recovery during peak

```
Algorithm
```

CALCULATION OF SAVINGS 179

ELECTRIC ENERGY SAVINGS

Note these savings are per showerhead fixture

 $\Delta kWh =$

```
%ElectricDHW * ((GPM_base * L_base - GPM_low * L_low) * NSPD * 365.25) * EPG_electric * ISR
```

Where:

%ElectricDHW	= proportion of water heating supplied by electric resistance heating	
	= 1 if electric DHW, 0 if fuel DHW, if unknown assume 16% 180	
GPM_base	= Flow rate of the baseline showerhead	
	= 2.67 for Direct-install programs ¹⁸¹	

GPM_low = As-used flow rate of the low-flow showerhead, which may, as a result of measurements of program evaulations deviate from rated flows, see table below:

Rated Flow
2.0 GPM
1.75 GPM
1.5 GPM
Custom or Actual ¹⁸²

L base = Shower length in minutes with baseline showerhead

= 8.20 min¹⁸³

periods is therefore assumed to be 1.96% * 369 = 7.23 hours of recovery during peak period. There are 260 hours in the peak period so the probability you will see savings during the peak period is 7,23/260 = 0..0278¹⁷⁹Based on excel spreadsheet 120911.xls ...on SharePoint

¹⁸⁰ Table HC8.9. Water Heating in U.S. Homes in Midwest Region, Divisions, and States, 2009 (RECS)

¹⁸¹ Based on measured data from Ameren IL EM&V of Direct-Install program. Program targets showers that are rated 2.5 GPM or above.

¹⁸² Note that actual values may be either a) program-specific minimum flow rate, or b)program-specific evaluationbased value of actual effective flow-rate due to increased duration or temperatures. The latter increases in likelihood as the rated flow drops and may become significant at or below rated flows of 1.5 GPM. The impact can be viewed as the inverse of the throttling described in the footnote for baseline flowrate.

L_low	= Shower length in minutes with low-flow showerhead		
	= 8.20 min ¹⁸⁴		
365.25	= Days per year, on average.		
NSPD	= Estimated number of showers taken per day for one showerhead		
EPG_electric	= Energy per gallon of hot water supplied by electric		
	= (8.33 * 1.0 * (ShowerTemp - SupplyTemp)) / (RE_electric * 3412)		
	= (8.33 * 1.0 * (105 – 54.1)) / (0.98 * 3412)		
	= 0.127 kWh/gal		
8.33	= Specific weight of water (lbs/gallon)		
1.0	= Heat Capacity of water (btu/lb-F)		
ShowerTemp	= Assumed temperature of water		
	= 105F ¹⁸⁵		
SupplyTemp	= Assumed temperature of water entering house		
	= 54.1F ¹⁸⁶		
RE_electric	= Recovery efficiency of electric water heater		
	= 98% ¹⁸⁷		
3412	= Converts Btu to kWh (btu/kWh)		

¹⁸³ Representative value from sources 1, 2, 3, 4, 5, and 6 (See Source Table at end of measure section) ¹⁸⁴ Set equal to L_base.

¹⁸⁵ Shower temperature cited from SBW Consulting, Evaluation for the Bonneville Power Authority, 1994, http://www.bpa.gov/energy/n/reports/evaluation/residential/faucet_aerator.cfm ¹⁸⁶ US DOE Building America Program. Building America Analysis Spreadsheet. For Chicago, IL

http://www1.eere.energy.gov/buildings/building_america/analysis_spreadsheets.html.

ISR

= In service rate of showerhead

= Dependant on program delivery method as listed in table below

Selection	ISR ¹⁸⁸
Direct Install - Deemed	0.98

EXAMPLE

For example, a direct-installed 1.5 GPM showerhead in an office with electric DHW where the number of showers is estimated at 3 per day:

 $\Delta kWh = 1 * ((2.67*8.20) - (1.5*8.20)) * 3*365.25) * 0.127 * 0.98$

= 1308.4 kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh/Hours * CF$

Where:

 ΔkWh = calculated value above

Hours = Annual electric DHW recovery hours for showerhead use

= ((GPM_base * L_base) *NSPD * 365.25) * 0.773¹⁸⁹ / GPH

Where:

GPH = Gallons per hour recovery of electric water heater calculated for 65.9F temp rise (120-54.1), 98% recovery efficiency, and typical 4.5kW electric resistance storage tank.

= 27.51

CF = Coincidence Factor for electric load reduction

= 0.0278¹⁹⁰

¹⁸⁸ Deemed values are from ComEd Energy Efficiency/ Demand Response Plan: Plan Year 2 (6/1/2009-5/31/2010) Evaluation Report: All Electric Single Family Home Energy Performance Tune-Up Program Table 3-8. Alternative ISRs may be developed for program delivery methods based on evaluation results.

¹⁸⁹ 77.3% is the proportion of hot 120F water mixed with 54.1F supply water to give 105F shower water.

¹⁹⁰ Calculated as follows: Assume 11% showers take place during peak hours (based on:

EXAMPLE

For example, a direct-installed 1.5 GPM showerhead in an office with electric DHW where the number of showers is estimated at 3 per day:

 $\Delta kW = (1308.4 / 674.1) * 0.0278$

FOSSIL FUEL IMPACT DESCRIPTIONS AND CALCULATION

ΔTherms = %FossilDHW * ((GPM_base * L_base - GPM_low * L_low) * NSPD* 365.25) * EPG_gas * ISR

Where:

%FossilDHW

HW = proportion of water heating supplied by fossil fuel heating

	DHW fuel		%Fossil_DHW	
	Electric		0%	
	Fossil Fuel		100%	
	Unknown		84% ¹⁹¹	
EPG_gas	= Energy per gallon of Hot water supplied by gas			5
	= (8.33 * 1.0 * (Sh	owerTen	np - SupplyTemp)) / (I	RE_gas * 100,000)
	= 0.0063 Therm/g	al		
Where:				
	RE_gas	= Recove	ry efficiency of gas w	ater heater
	:	= 67% ¹⁹²		

http://www.aquacraft.com/sites/default/files/pub/DeOreo-%282001%29-Disaggregated-Hot-Water-Use-in-Single-Family-Homes-Using-Flow-Trace-Analysis.pdf). There are 65 days in the summer peak period, so the percentage of total annual aerator use in peak period is 0.11*65/365.25 = 1.96%. The number of hours of recovery during peak periods is therefore assumed to be 1.96% * 369 = 7.23 hours of recovery during peak period where 369 equals the average annual electric DHW recovery hours for showerhead use including SF and MF homes with Direct Install and Retrofit/TOS measures. There are 260 hours in the peak period so the probability you will see savings during the peak period is 7.23/260 = 0.0278

¹⁹¹ Default assumption for unknown fuel is based on EIA Residential Energy Consumption Survey (RECS) 2009 for Midwest Region, data for the state of IL. If utilities have specific evaluation results providing a more appropriate assumption for homes in a particular market or geographical area then that should be used

¹⁹² Review of AHRI Directory suggests range of recovery efficiency ratings for new Gas DHW units of 70-87%. Average of existing units is estimated at 75%. Commercial properties are more similar to MF homes than SF 100,000 = Converts Btus to Therms (btu/Therm)

Other variables as defined above.

EXAMPLE	
	a direct-installed 1.5 GPM showerhead in an office with gas DHW where the number estimated at 3 per day:
ΔTherms	= 1.0 * ((2.67 *8.2) – (1.5 * 8.2)) * 3 * 365.25 * 0.0063 * 0.98
	= 64.9 therms

WATER IMPACT DESCRIPTIONS AND CALCULATION

Δgallons = ((GPM_base * L_base - GPM_low * L_low) * NSPD * 365.25 * ISR

Variables as defined above

EXAMPLE

For example, a direct-installed 1.5 GPM showerhead in an office with where the number of showers is estimated at 3 per day:

 Δ gallons = ((2.67 * 8.20)-(1.5 * 8.20)) * 3 * 365.25 * 0.98

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

homes. MF hot water is often provided by a larger commercial boiler. This suggests that the average recovery efficiency is somewhere between a typical central boiler efficiency of .59 and the .75 for single family home. An average is used for this analysis by default.

SOURCES

Source	Reference
ID	
1	2011, DeOreo, William. California Single Family Water Use Efficiency Study. April 20, 2011.
2	2000, Mayer, Peter, William DeOreo, and David Lewis. Seattle Home Water Conservation Study. December 2000.
3	1999, Mayer, Peter, William DeOreo. Residential End Uses of Water. Published by AWWA Research Foundation and American Water Works Association. 1999.
4	2003, Mayer, Peter, William DeOreo. Residential Indoor Water Conservation Study. Aquacraft, Inc. Water Engineering and Management. Prepared for East Bay Municipal Utility District and the US EPA. July 2003.
5	2011, DeOreo, William. Analysis of Water Use in New Single Family Homes. By Aquacraft. For Salt Lake City Corporation and US EPA. July 20, 2011.
6	2011, Aquacraft. Albuquerque Single Family Water Use Efficiency and Retrofit Study. For Albuquerque Bernalillo County Water Utility Authority. December 1, 2011.
7	2008, Schultdt, Marc, and Debra Tachibana. Energy related Water Fixture Measurements: Securing the Baseline for Northwest Single Family Homes. 2008 ACEEE Summer Study on Energy Efficiency in Buildings.

MEASURE CODE: CI-HW_-LFSH-V02-120601

4.3.4 Commercial Pool Covers

DESCRIPTION

This measure refers to the installation of covers on commercial use pools that are heated with gas-fired equipment located either indoors or outdoors. By installing pool covers, the heating load on the pool boiler will be reduced by reducing the heat loss from the water to the environment and the amount of actual water lost due to evaporation (which then requires additional heated water to make up for it).

The main source of energy loss in pools is through evaporation. This is particularly true of outdoor pools where wind plays a larger role. The point of installing pool covers is threefold. First, it will reduce convective losses due to the wind by shielding the water surface. Second, it will insulate the water from the colder surrounding air. And third, it will reduce radiative losses to the night sky. In doing so, evaporative losses will also be minimized, and the boiler will not need to work as hard in replenishing the pool with hot water to keep the desired temperature.

This measure can be used for pools that (1) currently do not have pool covers, (2) have pool covers that are past the useful life of the existing cover, or (3) have pool covers that are past their warranty period and have failed.

DEFINITION OF EFFICIENT EQUIPMENT

For indoor pools, the efficient case is the installation of an indoor pool cover with a 5 year warranty on an indoor pool that operates all year.

For outdoor pools, the efficient case is the installation of an outdoor pool cover with a 5 year warranty on an outdoor pool that is open through the summer season.

DEFINITION OF BASELINE EQUIPMENT

For indoor pools, the base case is an uncovered indoor pool that operates all year.

For outdoor pools, the base case is an outdoor pool that is uncovered and is open through the summer season.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The useful life of this measure is assumed to be 6 years ¹⁹³

DEEMED MEASURE COST

The table below shows the costs for the various options and cover sizes. Since this measure covers a mix of various sizes, the average cost of these options is taken to be the incremental measure cost.¹⁹⁴.

¹⁹³ The effective useful life of a pool cover is typically one year longer than its warranty period. SolaPool Covers. Pool Covers Website, FAQ- "How long will my SolaPool cover blanket last?". Pool covers are typically offered with 3 and 5 year warranties with at least one company offering a 6 year warranty. Conversation with Trade Ally. Knorr Systems

¹⁹⁴ Pool Cover Costs: Lincoln Commercial Pool Equipment website. Accessed 8/26/11. <u>http://www.lincolnaquatics.com/shop/catalog/Pool+and+Spa+Covers+and+Accessories/product.html?ProductID=84-010</u>

	Edge Style	
Cover Size	Hemmed (indoor)	Weighted (outdoor)
1000-1,999 sq. ft.	\$2.19	\$2.24
2,000-2,999 sq. ft.	\$2.01	\$2.06
3,000+ sq. ft.	\$1.80	\$1.83
Average	\$2.00	\$2.04

DEEMED O&M COST ADJUSTMENTS

There are no O&M cost adjustments for this measure.

LOADSHAPE

N/A

COINCIDENCE FACTOR

N/A

NET TO GROSS RATIO

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

N/A

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

NATURAL GAS SAVINGS

The calculations are based on modeling runs using RSPEC! Energy Smart Pools Software that was created by the U.S. Department of Energy. 195

ΔTherms = SavingFactor x Size of Pool

Where

Savings factor = dependant on pool location and listed in table below¹⁹⁶

 ¹⁹⁵
 ¹⁹⁵ Full method and supporting information found in reference document: IL TRM - Business Pool Covers WorkPaper.docx
 ¹⁹⁶ Business Pool Covers.xlsx

Location	Therm / sq-ft
Chicago - indoor	2.61
Chicago - outdoor	1.01

Size of Pool = custom input

WATER IMPACT DESCRIPTIONS AND CALCULATION

ΔTherms = WaterSavingFactor x Size of Pool

Where

WaterSavingFactor = Water savings for this measure dependant on pool location and listed in table below.¹⁹⁷.

Location	Annual Savings Gal / sq-ft
Chicago - indoor	15.28
Chicago - outdoor	8.94

Size of Pool = Custom input

DEEMED O&M COST ADJUSTMENT CALCULATION

There are no O&M cost adjustments for this measure.

MEASURE CODE: CI-HW_-PLCV-V01-130601

¹⁹⁷ Ibid.

4.3.5 Tankless Water Heater

DESCRIPTION

This measure covers the installation of on-demand or instantaneous tankless water heaters. Tankless water heaters function similar to standard hot water heaters except they do not have a storage tank. When there is a call for hot water, the water is heated instantaneously as it passes through the heating element and then proceeds to the user or appliance calling for hot water. Tankless water heaters achieve savings by eliminating the standby losses that occur in stand-alone or tank-type water heaters and by being more efficient than the baseline storage hot water heater.

This measure was developed to be applicable to the following program types: TOS, RF, ER. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

Electric	Gas
To qualify for this measure, the tankless water heater	To qualify for this measure, the tankless water heater
shall be a new electric powered tankless hot water	shall meet or exceed the efficiency requirements for
heater with an energy factor greater than or equal to	tankless hot water heaters mandated by the
0.98 with an output greater than or equal to 5 GPM	International Energy Conservation Code (IECC) 2012,
output at 70° F temperature rise	Table C404.2.

DEFINITION OF BASELINE EQUIPMENT

Electric	Gas
The baseline condition is assumed to be an electric commercial-grade tanked water heater 50 or more gallon storage capacity with an energy factor less than or equal to 0.9 or the water heater is five or more years old	The baseline condition is assumed to be a gas-fired tank-type water heater meeting the efficiency requirements mandated by the International Energy conservation Code (IECC) 2012, Table C404.2.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

Electric	Gas
The expected measure life is assumed to be 5 years ¹⁹⁸ .	The expected measure life is assumed to be 20 years ¹⁹⁹

DEEMED MEASURE COST

The incremental capital cost for an electric tankless heater this measure is assumed to be²⁰⁰

¹⁹⁸ Ohio Technical Reference Manual 8/2/2010 referencing CenterPoint Energy-Triennial CIP/DSM Plan 2010-2012 Report; Additional reference stating >20 years is at Energy Savers.Gov online at

http://www.energysavers.gov/your_home/water_heating/index.cfm/mytopic=12820

²⁰⁰ Act on Energy Technical Reference Manual, Table 9.6.2-3

Output (gpm) at delta T 70	Incremental Cost
5	\$1050
10	\$1050
15	\$1950

The incremental capital cost for a gas fired tankless heater is as follows:

Program	Capital Cost, \$ per unit
Retrofit	\$3,255 ²⁰¹
Time of Sale or New Construction	\$2,526 ²⁰²

DEEMED O&M COST ADJUSTMENTS

\$100²⁰³

LOADSHAPE

Loadshape CO2 - Commercial Electric DHW

COINCIDENCE FACTOR

The measure has deemed kW savings therefor a coincidence factor is not applied

 ²⁰¹ Based on AOE historical average installation data of 42 tankless gas hot water heaters
 ²⁰²<u>http://www.mncee.org/getattachment/7b8982e9-4d95-4bc9-8e64-f89033617f37/</u>, Low contractor estimate used to reflect less labor required in new construction of venting.

²⁰³ Water heaters (WH) require annual maintenance. There are different levels of effort for annual maintenance depending if the unit is gas or electric, tanked or tankless. Electric and gas tank water heater manufacturers recommend an annual tank drain to clear sediments. Also recommended are "periodic" inspections by qualified service professionals of operating controls, heating element and wiring for electric WHs and thermostat, burner, relief valve internal flue-way and venting systems for gas WHs. Tankless WH require annual maintenance by licensed professionals to clean control compartments, burners, venting system and heat exchangers. This information is from WH manufacturer product brochures including GE, Rennai, Rheem, Takagi and Kenmore. References for incremental O&M costs were not found, therefore the incremental cost of the additional annual maintenance for tankless WH is estimated at \$100.

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS 204

The annual electric savings from an electric tankless heater is a deemed value and assumed to be:

Output (gpm) at delta T 70	Savings (kWh)
5.0	2,991.98
10.0	7,904.82
15.0	12,878.51

SUMMER COINCIDENT PEAK DEMAND SAVINGS 205

The annual kW savings from an electric tankless heater is a deemed value and assumed to be:

Output (gpm) at delta T 70	Savings (kW)
5.0	0.34
10.0	0.90
15.0	1.47

NATURAL GAS ENERGY SAVINGS

ΔTherms=[[Wgal x 8.33 x 1 x (Tout - Tin) x [(1/Eff base) - (1/Eff ee)]]/100,000] +[[(SL x 8,766)/Eff base]] / 100,000 Btu/Therms]

Where:

Wgal	= Annual water use for equipment in gallons	
	= custom, otherwise assume 21,915 gallons ²⁰⁶	
8.33 lbm/gal	= weight in pounds of one gallon of water	
1 Btu/lbm°F	= Specific heat of water: 1 Btu/lbm/°F	
8,766 hr/yr	= hours a year	
Tout	= Unmixed Outlet Water Temperature	

²⁰⁴ Act on Energy Technical Reference Manual, Table 9.6.2-3

²⁰⁵ Ibid.

²⁰⁶ 21,915 gallons is an estimate of 60 gal/day for 365.25 days/yr. If building type is known, reference 2007 ASHRAE Handbook HVAC Applications p. 49.14 Table 7 Hot Water Demands and Use for Various Types of Buildings to help estimate hot water consumption.

= custom, otherwise assume 130 degree F^{207}

- Tin = Inlet Water Temperature
 - = custom, otherwise assume 54.1 degree F²⁰⁸
- Eff base = Rated efficiency of baseline water heater expressed as Energy Factor (EF) or Thermal Efficiency (Et); see table below²⁰⁹

Input Btuh of existing, tanked water heater	Eff base	Units
Size: \leq 75,000 Btu/h	0.67 - 0.0019*Tank Volume	Energy Factor
Size: >75,000 Btu/h and ≤ 155,000 Btu/h	80%	Thermal Efficiency
Size: >155,000 Btu/h	80%	Thermal Efficiency

Where Tank Volume = custom input, if unknown assume 60 gallons for Size: \leq 75,000 Btu/h

Please note: Units in base case must match units in efficient case. If Energy Factor used in base case, Energy Factor to be used in efficient case. If Themal Efficiency is used in base case, Thermal Efficiency must be used in efficient case.

- Eff ee = Rated efficiency of efficient water heater expressed as Energy Factor (EF) or Thermal Efficiency (Eff t)
 - = custom input, if unknown assume 0.84²¹⁰
- SL

= Stand-by Loss in Base Case Btu/hr

= custom input based on formula in table below, if unknown assume unit size in table below $^{\rm 211}$

Input Btu/h of new, tankless water heater	Standby Loss (SL)
Size: ≤ 75,000 Btu/h	0
Size: >75,000 Btu/h	(Input rating/800)+(110*√Tank

 ²⁰⁷ Based on 2010 Ohio Techical Reference Manual and NAHB Research Center, (2002) Performance Comparison of Residential hot Water Systems. Prepared for National Renewable Energy Laboratory, Golden, Colorado.
 ²⁰⁸ August 31, 2011 Memo of Savings for Hot Water Savings Measures to Nicor Gas from Navigant states that

^{54.1°}F was calculated from the weighted average of monthly water mains temperatures reported in the 2010 Building America Benchmark Study for Chicago-Waukegan, Illinois.

²⁰⁹ IECC 2012, Table C404.2, Minimum Performance of Water-Heating Equipment

²¹⁰ Specifications of energy efficient tankless water heater. Reference Consortium for Energy Efficiency (CEE) which maintains a list of high efficiency tankless water heaters which currently have Energy Factors up to .96. Ameren currently requires minimum .82 energy factor.

²¹¹ Stand-by loss is provided 2012 International Energy Conservation Code (IECC2012), Table C404.2, Minimum Performance of Water-Heating Equipment

Volume))

Where:

Tank Volume = custom input, if unknown assume, 60 gallons for <75,000 Btu/hr, 75 gallons for >75,000 Btu/h and \leq 155,000 Btu/h and 150 for Size >155,000 Btu/h

Input Value = nameplate Btu/hr rating of water heater

EXAMPLE

For example, a 75,000 Btu/h tankless unit using 21,915 gal/yr with outlet temperature at 130.0 and inlet temperature at 54.1, replacing a baseline unit with 0.8 thermal efficiency and standby losses of 1008.3 btu/hr:

 $\Delta Therms = [[(21,915 \times 8.33 \times 1 \times (130 - 54.1) \times [(1/.8) - (1/.84)]/100,000] + [(1008.3 \times 8,766)/.8]] / 100,000 = 115 Therms$

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

The deemed O&M cost adjustment for a gas fired tankless heater is \$100

REFERENCE TABLES

Minimum Performance Water Heating Equipment²¹²

²¹² International Energy Conservation Code (IECC)2012

MINIMUM PERFORMANCE OF WATER-HEATING EQUIPMENT								
EQUIPMENTTYPE	SIZE CATEGORY (input)	SUBCATEGORY OR RATING CONDITION	PERFORMANCE REQUIRED**	TEST PROCEDURE				
	≤12 kW	Resistance	0.97 - 0.00 1 32 V, EF	DOE 10 CFR Part 430				
Water heaters. electric	> 1 2 KW	Resistance 1.73 V4 155 SL, Btu/h		ANSI Z21.10.3				
electric	≤ 24 amps and ≤ 250 volts	Heatpump 0.93-0.00132 V, EF I		DOE 10 CFR Part 430				
	≤75,000 Bա/հ	≥ 20 gal	0.67 - 0.0019 V EF	DOE 10 CFR Part 430				
Stopage water heaters. gas	> 75,000 Btu/h and ≤155,000 Btu/h	< 4,000 Btu/h/gal (Q/800 + 110 ./ V) SL. Btu/h		ANSI Z21.10.3				
_	>155,000 Btu/h	< 4,000 Btu/Wgal	80% E, (Q/800 + 110 √V) SL, Btu/h					
	> 50,000 Btu/h and < 200,000 Btu/h°	≥4,000 (Btu/h)/gəl ənd < 2 gəl	0.62 - 0.00 19 V, EF	DOE 10 CFR Part 430				
Instantaneous water heaters, gas	≥ 200,000 Btu/h	≥4,000 Btu/h/gal and < 10 gal	80% E,	ANSI Z21.10.3				
	≥ 200,000 Btu/h	≥4,000 Btu/h/gəl ənd ≥10 gəl	80% <i>Е,</i> (Q/800 + 110 / Й) SL, Btu/h					
Storage water heaters.	≤105,000 Btu/h	≥ 20 gal	0.59 - 0.0019 V EF	DOE 10 CFR Part 430				
oil	≥105,000 Btu/h	$< 4.000 \text{ Btwh/gal}$ $(Q/800 + 110 \sqrt{V}) \text{ SL, Btwh}$		ANSI Z21.10.3				
	≤210,000 Btu/h	≥4,000 Btu/h/gəl ənd < 2 gəl	0.59 - 0.0019V, EF	DOE 10 CFR Part 430				
Instanjaneous water heaters, oil	>210,000 Btu/h	≥4,000 Btu/h/gal and < 10 gal	80% E,	ANSI Z21.10.3				
	>210,000 Btu/h	≥4,000 Btu/h/gəl ənd ≥10 gəl	78% E, (Q/800 + 110 √V) SL, Btu/h	AI431 221.10.3				
Hotwater supply boilers, gas and oil	≥ 300,000 Btu/h and < 12,500,000 Btu/h	≥4,000 Btu/h/gal and < 10 gal	80% E _r					
Hotwatersupply boilers. gas	≥ 300,000 Btu/h and < 12,500,000 Btu/h	≥4,000 Btu/h/galand ≥10 gal	80% <i>Е,</i> (Q/800 + 110 √Й) SL, Btu/h	ANSI Z21.10.3				
Hotwater supply boilers, oil	> 300,000 Btu/h and < 12,500,000 Btu/h	>4,000 Btu/Mgaland >10 gal	78% E, (Q/800 + 110 √V) SL, Btu/h					
Pool heaters, gas and oil	All	_	78% E _r	ASHRAE 146				
Heat pump pool heaters	All	_	4.0 COP	AHRI 1160				
Unfired storage tanks	All	_	Minimum insulation requirement R-12.5 (h · ft ² · °F)/Btu	(none)				

TABLE C404.2 MINIMUM PERFORMANCE OF WATER-HEATING EQUIPMENT

ForSI: *C = [(*F) - 32]/1.8, 1 British thermal unit per hour = 0.2931 W, 1 gallon = 3.785 L, 1 British thermal unit per hour per gallon = 0.078 W/L.

a. Energy factor (EF) and thermal efficiency (E_i) are minimum requirements. In the EF equation, V is the rated volume in gallons.

b. Standby loss (SL) is the maximum Bu/h based on a nominal 70°F temperature difference between stored water and ambient requirements. In the SL equation, Q is the maximum Bu/h based on a nominal 70°F temperature difference between stored water and ambient requirements. In the SL equation, Q is the maximum Bu/h based on a nominal 70°F temperature difference between stored water and ambient requirements. In the SL equation, Q is the maximum Bu/h based on a nominal 70°F temperature difference between stored water and ambient requirements. In the SL equation, the state of the store o

c. Instantaneous water heaters with input rates below 200,000 Btu/h must comply with these requirements if the water heater is designed to heat water to temperatures 180°F or higher.

MEASURE CODE: CI-HW_-TKWH-V02-120601

4.4 HVAC End Use

4.4.1 Air Conditioner Tune-up

DESCRIPTION

An air conditioning system that is operating as designed saves energy and provides adequate cooling and comfort to the conditioned space

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the efficient equipment is assumed to be a unitary or split system air conditioner least 3 tons and preapproved by program. The measure requires that a certified technician performs the following items:

- Check refrigerant charge
- · Identify and repair leaks if refrigerant charge is low
- Measure and record refrigerant pressures
- Measure and record temperature drop at indoor coil
- · Clean condensate drain line
- · Clean outdoor coil and straighten fins
- Clean and straighten indoor and outdoor fan blades
- Clean indoor coil with spray-on cleaner and straighten fins
- Repair damaged insulation suction line
- · Change air filter
- Measure and record blower amp draw
- · Measure and record compressor integrity (MOhm)
- Measure and record condenser fan motor amp draw

A copy of contractor invoices that detail the work performed to identify tune-up items, as well as additional labor and parts to improve/repair air conditioner performance must be submitted to the program

DEFINITION OF BASELINE EQUIPMENT

In order for this characterization to apply, the baseline condition is assumed to be an AC system that that does not have a standing maintenance contract or a tune up within in the past 36 months.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 3 years.²¹³

DEEMED MEASURE COST

The incremental capital cost for this measure is \$35²¹⁴ per ton.

 ²¹³Act on Energy Commercial Technical Reference Manual No. 2010-4
 ²¹⁴Ibid.

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape C03 - Commercial Cooling

COINCIDENCE FACTOR

The measure has deemed peak kW savings therefore a coincidence factor does not apply

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

The measure has a deemed savings which applies to all building types and air conditioning unit size and equals an average value of 878 kWh a year.²¹⁵

SUMMER COINCIDENT PEAK DEMAND SAVINGS

The measure has a deemed savings which applies to all building types and air conditioning unit size and equals an average value 0.39 kW a year.²¹⁶

NATURAL GAS ENERGY SAVINGS

WATER IMPACT DESCRIPTIONS AND CALCULATION

DEEMED O&M COST ADJUSTMENT CALCULATION

MEASURE CODE: CI-HVC-ACTU-V01-120601

²¹⁵Ibid.

²¹⁶Act on Energy Commercial Technical Reference Manual No. 2010-4. These deemed values should be compared to PY evaluation and revised as necessary.

4.4.2 Space Heating Boiler Tune-up ²¹⁷

DESCRIPTION

This measure is for a non-residential boiler that provides space heating. The tune-up will improve boiler efficiency by cleaning and/or inspecting burners, combustion chamber, and burner nozzles. Adjust air flow and reduce excessive stack temperatures, adjust burner and gas input. Check venting, safety controls, and adequacy of combustion air intake. Combustion efficiency should be measured before and after tune-up using an electronic flue gas analyzer.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the facility must, as applicable, complete the tune-up requirements²¹⁸ listed below, by approved technician:

- Measure combustion efficiency using an electronic flue gas analyzer
- Adjust airflow and reduce excessive stack temperatures
- Adjust burner and gas input, manual or motorized draft control
- Check for proper venting
- Complete visual inspection of system piping and insulation
- Check safety controls
- Check adequacy of combustion air intake
- Clean fireside surfaces.
- Inspect all refractory. Patch and wash coat as required.
- Inspect gaskets on front and rear doors and replace as necessary.
- Seal and close front and rear doors properly.
- Clean low and auxiliary low water cut-off controls, then re-install using new gaskets.
- Clean plugs in control piping.
- Remove all hand hole and man hole plates. Flush boiler with water to remove loose scale and sediment.
- Replace all hand hole and man hole plates with new gaskets.
- Open feedwater tank manway, inspect and clean as required. Replace manway plate with new gasket.
- Clean burner and burner pilot.
- Check pilot electrode and adjust or replace.
- Clean air damper and blower assembly.
- Clean motor starter contacts and check operation.
- Make necessary adjustments to burner for proper combustion.
- Perform all flame safeguard and safety trip checks.
- Check all hand hole plates and man hole plates for leaks at normal operating temperatures and pressures.
- Troubleshoot any boiler system problems as reQuested by on-site personnel

DEFINITION OF BASELINE EQUIPMENT

The baseline condition of this measure is a boiler that has not had a tune-up within the past 36 months

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The life of this measure is 3 years²¹⁹

²¹⁷High Impact Measure

²¹⁸Act on Energy Commercial Technical Reference Manual No. 2010-4, 9.2.2 Gas Boiler Tune-up

²¹⁹Act on Energy Commercial Technical Reference Manual No. 2010-4, 9.2.2 Gas Boiler Tune-up

Illinois Statewide Technical Reference Manual - 4.4.2 Space Heating Boiler Tune-up							
DEEMED MEASURE COST							
The cost of this measure is \$0.83/MBtuh ²²⁰ per tune-up							
DEEMED O&M COST ADJUSTMENTS							
N/A							
LOADSHAPE							
N/A							
COINCIDENCE FACTOR							
N/A							
Algorithm							
CALCULATION OF ENERGY SAVINGS							
CALCULATION OF ENERGY SAVINGS ELECTRIC ENERGY SAVINGS							
ELECTRIC ENERGY SAVINGS							
ELECTRIC ENERGY SAVINGS							
Electric Energy Savings N/A Summer Coincident Peak Demand Savings							
ELECTRIC ENERGY SAVINGS N/A SUMMER COINCIDENT PEAK DEMAND SAVINGS							
ELECTRIC ENERGY SAVINGS N/A N/A NATURAL GAS ENERGY SAVINGS							

= custom

SF = Savings factor

Note: Savings factor is the percentage reduction in gas consumption as a result of the tune-up

= 1.6%²²¹ or custom

²²⁰Work Paper – Tune up for Boilers serving Space Heating and Process Load by Resource Solutions Group, January 2012

²²¹Work Paper WPRRSGNGRO301 Resource Solutions Group "Boiler Tune-Up" which cites Focus on Energy Evaluation Business Programs: Deemed Savings Manual V1.0, PA Consulting, KEMA, March 22, 2010

	EFLH							
Building Type	Zone 1 (Rockford)	Zone 2 (Chicago)	Zone 3 (Springfield)	Zone 4 (Belleville/	Zone 5 (Marion)			
Office - High Rise	2,746	2,768	2,656	2,155	2,420			
Office - Mid Rise	996	879	824	519	544			
Office - Low Rise	797	666	647	343	329			
Convenience	696	550	585	272	297			
Healthcare Clinic	1,118	1,036	1,029	694	737			
Manufacturing Facility	1,116	1,123	904	771	857			
Lodging Hotel/Motel	2,098	2,050	1,780	1,365	1,666			
High School	969	807	999	569	674			
Hospital	2,031	1,929	1,863	1,497	1,800			
Elementary	970	840	927	524	637			
Religious Facility	1,830	1,657	1,730	1,276	1,484			
Restaurant	1,496	1,379	1,291	872	1,185			
Retail - Strip Mall	1,266	1,147	1,151	732	863			
Retail - Department Store	1,065	927	900	578	646			
College/University	373	404	376	187	187			
Warehouse	416	443	427	226	232			
Unknown	1,249	1,163	1,130	786	910			

EFLH = Equivalent Full Load Hours for heating 222

Effpre = Boiler Combustion Efficiency Before Tune-Up

²²²Equivalent full load hours for heating were developed using eQuest models for various building types averaged across each climate zones for Illinois for the following building types: office, healthcare/clinic, manufacturing, lodging, high school, hospital, elementary school, religious/assembly, restaurant, retail, college and warehouse. eQuest models werer those developed for IL lighting interactive effects.

= 80%²²³ or custom

EXAMPLE

For example, a 1050 kBtu boiler in Chicago at a high rise office:

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

Measure Code: CI-HVC-BLRT-V02-130601

²²³Work Paper WPRRSGNGRO301 Resource Solutions Group "Boiler Tune-Up" which cites Focus on Energy Evaluation Business Programs: Deemed Savings Manual V1.0, PA Consulting, KEMA, March 22, 2010

4.4.3 Process Boiler Tune-up²²⁴

DESCRIPTION

This measure is for a non-residential boiler for process loads. For space heating, see measure 5.2.1. The tune-up will improve boiler efficiency by cleaning and/or inspecting burners, combustion chamber, and burner nozzles. Adjust air flow and reduce excessive stack temperatures, adjust burner and gas input. Check venting, safety controls, and adequacy of combustion air intake. Combustion efficiency should be measured before and after tune-up using an electronic flue gas analyzer.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the facility must, as applicable, complete the tune-up requirements²²⁵ by approved technician, as specified below:

- Measure combustion efficiency using an electronic flue gas analyzer
- Adjust airflow and reduce excessive stack temperatures
- Adjust burner and gas input, manual or motorized draft control
- Check for proper venting
- Complete visual inspection of system piping and insulation
- Check safety controls
- Check adequacy of combustion air intake
- Clean fireside surfaces
- Inspect all refractory. Patch and wash coat as required.
- Inspect gaskets on front and rear doors and replace as necessary.
- Seal and close front and rear doors properly.
- Clean low and auxiliary low water cut-off controls, then re-install using new gaskets.
- Clean plugs in control piping.
- Remove all hand hole and man hole plates. Flush boiler with water to remove loose scale and sediment.
- Replace all hand hole and man hole plates with new gaskets.
- Open feedwater tank manway, inspect and clean as required. Replace manway plate with new gasket.
- Clean burner and burner pilot.
- Check pilot electrode and adjust or replace.
- Clean air damper and blower assembly.
- Clean motor starter contacts and check operation.
- Make necessary adjustments to burner for proper combustion.
- Perform all flame safeguard and safety trip checks.
- Check all hand hole plates and man hole plates for leaks at normal operating temperatures and pressures.
- Troubleshoot any boiler system problems as reQuested by on-site personnel

DEFINITION OF BASELINE EQUIPMENT

The baseline condition of this measure is a boiler that has not had a tune-up within the past 36 months

²²⁴High Impact Measure

²²⁵Act on Energy Commercial Technical Reference Manual No. 2010-4, 9.2.2 Gas Boiler Tune-up

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The life of this measure is 3 years²²⁶

DEEMED MEASURE COST

The cost of this measure is \$0.83/MBtuh²²⁷ per tune-up

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

N/A

COINCIDENCE FACTOR

N/A

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

N/A

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

NATURAL GAS ENERGY SAVINGS

Δtherms=((Ngi * 8766*UF)/100) * (1- (Eff_{pre}/Eff_{measured}))

Where:

Ngi = Boiler gas input size (kBTU/hr)

= custom

UF = Utilization Factor

= 41.9%²²⁸ or custom

²²⁶Act on Energy Commercial Technical Reference Manual No. 2010-4, 9.2.2 Gas Boiler Tune-up

²²⁷Work Paper – Tune up for Boilers serving Space Heating and Process Load by Resource Solutions Group, January 2012

Eff_{pre} = Boiler Combustion Efficiency Before Tune-Up

= 80%²²⁹ or custom

Eff_{measured} = Boiler Combustion Efficiency After Tune-Up

= 81.3%²³⁰ or custom

EXAMPLE

For example, a 1050 kBtuboiler:

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

Measure Code: CI-HVC-PBTU-V02-130601

²²⁸Work Paper – Tune up for Boilers serving Space Heating and Process Load by Resource Solutions Group, January 2012

 ²²⁹Work Paper – Tune up for Boilers serving Space Heating and Process Load by Resource Solutions Group, January
 2012, which cites Focus on Energy Evaluation Business Programs: Deemed Savings Manual V1.0, PA Consulting,
 KEMA, March 22, 2010

 ²³⁰Work Paper – Tune up for Boilers serving Space Heating and Process Load by Resource Solutions Group, January
 2012, which cites Focus on Energy Evaluation Business Programs: Deemed Savings Manual V1.0, PA Consulting,
 KEMA, March 22, 2010

4.4.4 Boiler Lockout/Reset Controls

DESCRIPTION

This measure relates to improving combustion efficiency by adding controls to non-residential building heating boilers to vary the boiler entering water temperature relative to heating load as a function of the outdoor air temperature to save energy. Energy is saved by increasing the temperature difference between the water temperature entering the boiler in the boiler's heat exchanger and the boiler's burner flame temperature. The flame temperature remains the same while the water temperature leaving the boiler decreases with the decrease in heating load due to an increase in outside air temperature. A lockout temperature is also set to prevent the boiler from turning on when it is above a certain temperature outdoors.

This measure was developed to be applicable to the following program types: RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

Natural gas customer adding boiler reset controls capable of resetting the boiler supply water temperature in an inverse linear fashion with outdoor air temperature. Boiler lockout temperatures should be set to 55 F at this time as well, to turn the boiler off when the temperature goes above a certain setpoint.

DEFINITION OF BASELINE EQUIPMENT

Existing boiler without boiler reset controls, any size with constant hot water flow.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The life of this measure is **20** years²³¹

DEEMED MEASURE COST

The cost of this measure is \$612²³²

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

N/A

COINCIDENCE FACTOR

N/A

²³¹Resource Solutions Group references the Brooklyn Union Gas Company, High Efficiency Heating and Water and Controls, Gas Energy Efficiency Program Implementation Plan.

²³²Nexant. Questar DSM Market Characterization Report. August 9, 2006.

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

N/A

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

NATURAL GAS ENERGY SAVINGS

Therm Savings = Binput * SF * EFLH /(Effpre * 100)

Where:

Binput = Boiler Input Capacity (kBTU)

= custom

SF = Savings factor

= 8%²³³ or custom

²³³Savings factor is the estimate of annual gas consumption that is saved due to adding boiler reset controls. The Resource Solutions Group uses a boiler tuneup savings value derived from Xcel Energy "DSM Biennial Plan-Technical Assumptions," Colorado. Focus on Energy uses 8%, citing multiple sources. Vermont Energy Investment Corporation's boiler reset savings estimates for custom projects further indicate 8% savings estimate is better reflection of actual expected savings.

	EFLH						
Building Type	Zone 1 (Rockford)	Zone 2 (Chicago)	Zone 3 (Springfield)	Zone 4 (Belleville/	Zone 5 (Marion)		
Office - High Rise	2,746	2,768	2,656	2,155	2,420		
Office - Mid Rise	996	879	824	519	544		
Office - Low Rise	797	666	647	343	329		
Convenience	696	550	585	272	297		
Healthcare Clinic	1,118	1,036	1,029	694	737		
Manufacturing Facility	1,116	1,123	904	771	857		
Lodging Hotel/Motel	2,098	2,050	1,780	1,365	1,666		
High School	969	807	999	569	674		
Hospital	2,031	1,929	1,863	1,497	1,800		
Elementary	970	840	927	524	637		
Religious Facility	1,830	1,657	1,730	1,276	1,484		
Restaurant	1,496	1,379	1,291	872	1,185		
Retail - Strip Mall	1,266	1,147	1,151	732	863		
Retail - Department							
Store	1,065	927	900	578	646		
College/University	373	404	376	187	187		
Warehouse	416	443	427	226	232		
Unknown	1,249	1,163	1,130	786	910		

EFLH :	Equivalent Full Load Hours for heating ²³⁴ (I	hr)
--------	--	-----

Effpre = Boiler Efficiency or custom

= 80%²³⁵ or custom

EXAMPLE

For example, a 800 kBtu boiler at a restaurant in Rockford, IL

ΔTherms = 800 * 0.08 * 1,496 / (0.80 * 100) = 1197 Therms

²³⁴Equivalent full load hours for heating were developed using eQuest models for various building types averaged across each climate zones for Illinois for the following building types: office, healthcare/clinic, manufacturing, lodging, high school, hospital, elementary school, religious/assembly, restaurant, retail, college and warehouse. eQuest models were those developed for IL lighting interactive effects.

²³⁵Work Paper WPRRSGNGRO301 Resource Solutions Group "Boiler Tune-Up" which cites Focus on Energy Evaluation Business Programs: Deemed Savings Manual V1.0, PA Consulting, KEMA, March 22, 2010

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-HVC-BLRC-V01-120601

4.4.5 Condensing Unit Heaters

DESCRIPTION

This measure applies to a gas fired condensing unit heater installed in a commercial application.

This measure was developed to be applicable to the following program types: TOS, NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the efficient equipment is assumed to be a condensing unit heater up to 300 MBH with a Thermal Efficiency > 90% and the heater must be vented, and condensate drained per manufacturer specifications. The unit must be replacing existing natural gas equipment.

DEFINITION OF BASELINE EQUIPMENT

In order for this characterization to apply, the baseline condition is assumed to be a non-condensing natural gas unit heater at end of life.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years²³⁶

DEEMED MEASURE COST

The incremental capital cost for a unit heater is \$676²³⁷

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

N/A

COINCIDENCE FACTOR

N/A

²³⁶DEER 2008

²³⁷ENERGY STAR and CEE do not currently provide calculators for this type of equipment therefore deemed values from Nicor Gas were used. Nicor Gas Energy Efficiency Plan 2011-2014. Revised Plan Filed Pursuant to Order Docket 10-0562, May 27, 2011

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

N/A

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

NATURAL GAS ENERGY SAVINGS

The annual natural gas energy savings from this measure is a deemed value equaling 266 Therms.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-HVC-CUHT-V01-120601

4.4.6 Electric Chiller

DESCRIPTION

This measure relates to the installation of a new electric chiller meeting the efficiency standards presented below. This measure could relate to the replacement of an existing unit at the end of its useful life, or the installation of a new system in an existing building (i.e. time of sale). Only single-chiller applications should be assessed with this methodology. The characterization is not suited for multiple chillers projects or chillers equipped with variable speed drives (VSDs).

This measure was developed to be applicable to the following program types: TOS, NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the efficient equipment is assumed to exceed the efficiency requirements of the 2009 International Energy Conservation Code, Table 503.2.3(7)

DEFINITION OF BASELINE EQUIPMENT

In order for this characterization to apply, the baseline equipment is assumed to meet the efficiency requirements of the 2009 International Energy Conservation Code, Table 503.2.3(7).

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 20 years ²³⁸.

DEEMED MEASURE COST

The incremental capital cost for this measure is provided below.

Equipment Type	Size Category	Incremental Cost (\$/ton)239
Air cooled, electrically operated	All capacities	\$127/ton ²⁴⁰
Water cooled, electrically operated, positive displacement (reciprocating)	All capacities	\$22/ton
Water appled algorrigally operated positive	< 150 tons	\$128/ton
Water cooled, electrically operated, positive displacement (rotary screw and scroll)	>= 150 tons and < 300 tons	\$70/ton
displacement (lotary screw and scron)	>= 300 tons	\$48/ton

²³⁸2008 Database for Energy-Efficiency Resources (DEER), Version 2008.2.05, "Effective/Remaining Useful Life Values", California Public Utilities Commission, December 16, 2008

⁽http://deeresources.com/deer0911planning/downloads/EUL_Summary_10-1-08.xls)

²³⁹2008 Database for Energy-Efficiency Resources (DEER), Version 2008.2.05, "Cost Values and Summary Documentation", California Public Utilities Commission, December 16, 2008

⁽http://deeresources.com/deer0911planning/downloads/DEER2008_Costs_ValuesAndDocumentation_080530Rev 1.zip)

²⁴⁰Calculated as the simple average of screw and reciprocating air-cooled chiller incremental costs from DEER2008. This assumes that baseline shift from IECC 2006 to IECC 2009 carries the same incremental costs. Values should be verified during evaluation

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape C03 - Commercial Cooling

COINCIDENCE FACTOR

The summer peak coincidence factor for cooling is provided in two different ways below. The first is used to estimate peak savings during the utility peak hour and is most indicative of actual peak benefits, and the second represents the *average* savings over the defined summer peak period, and is presented so that savings can be bid into PJM's Forward Capacity Market. Both values provided are based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren.

CF_{SSP} = Summer System Peak Coincidence Factor for Commercial cooling (during system peak hour)

= 91.3% ²⁴¹

CF_{PJM} = PJM Summer Peak Coincidence Factor for Commercial cooling (average during peak period)

= 47.8%²⁴²

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

ΔkWH = TONS * ((12/IPLVbase) – (12/IPLVee)) * EFLH

Where:

- TONS = chiller nominal cooling capacity in tons (note: 1 ton = 12,000 Btu/h)
 - = Actual installed
- 12 = conversion factor to express Integrated Part Load Value (IPLV) EER in terms of kW per ton

IPLVbase = efficiency of baseline equipment expressed as Integrated Part Load Value EER. Dependent on chiller type. See Baseline Efficiency Values by Chiller Type and Capacity in the Reference Tables section.

 $IPLVee^{243}$ = efficiency of high efficiency equipment expressed as Integrated Part Load Value EER²⁴⁴

²⁴¹Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The AC load during the utility's peak hour is divided by the maximum AC load during the year.

²⁴²Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year

= Actual installed

EFLH = equivalent full load hours dependent on location as below:

	EFLH by Zon	EFLH by Zone ²⁴⁶							
245	1								
System Type ²⁴⁵	(Rockford)	2 (Chicago)	3 (Springfield)	4 (Belleville)	5 (Marion)				
CV reheat, no economizer	2,723	4,206	3,341	3,872	2,734				
CV reheat, economizer	870	1,343	1,067	1,237	873				
VAV reheat, economizer	803	1,241	985	1,142	806				

For example, a 100 ton air cooled, with condenser, electrically operated chiller with 3 IPLV, 3 COP of in Rockford with and economizer and CV reheat would save:

$$\Delta kWH = 100 * ((12/12.5) - (12/14)) * 870$$

= 8949 kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

ΔkW _{SSP}	= TONS * ((12/PEbase) – (12/PEee)) * CF _{SSP}
	····· ((==)·····) (==)/ ······

 ΔkW_{PJM} = TONS * ((12/PEbase) – (12/PEee)) * CF_{PJM}

Where:

PEbase = Peak efficiency of baseline equipment expressed as Full Load EER

PEee	= Peak efficiency of high efficiency equipment expressed as Full Load EER
	= Actual installed
CF _{SSP} hour)	= Summer System Peak Coincidence Factor for Commercial cooling (during system peak
	= 91.3%
СҒ _{РЈМ} period)	= PJM Summer Peak Coincidence Factor for Commercial cooling (average during peak

 ²⁴³Integrated Part Load Value is a seasonal average efficiency rating calculated in accordance with ARI Standard
 550/590. It may be calculated using any measure of efficiency (EER, kW/ton, COP), but for consistency with IECC
 2006, it is expressed in terms of COP here.

²⁴⁴Can determine IPLV from standard testing or looking at engineering specs for design conditions. Standard data is available from AHRnetI.org. http://www.ahrinet.org/

²⁴⁵CV= Constant Volume, VAV=Variable Air Volume

²⁴⁶Cooling EFLHs have been modified from the "Technical Reference Manual (TRM) for Ohio and adjusted by CDD for IL locations. These appear reasonable, but are recommended for further study.

= 47.8%

For example, a 100 ton air cooled, with condenser, electrically operated chiller with 3 IPLV, 3 COP of in Rockford with and economizer and CV reheat would save:

 $\Delta kW_{SSP} = 100 * ((12/9.562) - (12/10.0)) * .913$

=5.0 kW

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

REFERENCE TABLES

Baseline Efficiency Values by Chiller Type and Capacity²⁴⁷

²⁴⁷ International Energy Conservation Code (IECC)2009

		WATER CHIL	LING PACKAG	GES, EFFICIE	NCY REQUIRE	EMENTS*			
			BEFORE	1/1/2010	AS OF 1/1/2010 ^c				
					PAT	TH A	PAT	нв	
EQUIPMENT TYPE	SIZE CATEGORY	UNITS	FULL LOAD	IPLV	FULL LOAD	IPLV	FULL LOAD	IPLV	TEST PROCEDURE
	< 150 tons	EER			≥ 9.562	≥ 12.500	NAd	NAd	
Air-cooled chillers	≥ 150 tons	EER	≥ 9.562	≥10.416	≥ 9.562	≥ 12.750	NAd	NAd]
Air cooled without condenser, electrical operated	All capacities	EER	≥ 10.586	≥11.782	be rated with	ed chillers without condensers must with matching condensers and with the air-cooled chiller efficiency ents		d	
Water cooled, electrically operated, reciprocating	All capacities	kW/ton	≤ 0.837	≤ 0.696		g units must co ve displaceme			
	<75 tons	kW/ton			≤ 0.780	≤ 0.630	≤ 0.800	≤ 0.600	
Water cooled,	\geq 75 tons and < 150 tons	kW/ton	≤ 0.790	≤ 0.676	≤ 0.775	≤ 0.615	≤ 0.790	≤ 0.586	AHRI
electrically operated, positive displacement	\geq 150 tons and < 300 tons	kW/ton	≤ 0.717	≤ 0.627	≤ 0.680	≤ 0.580	≤ 0.718	≤ 0.540	
	$\geq 300 \text{ tons}$	kW/ton	≤ 0.639	≤ 0.571	≤ 0.620	≤ 0.540	≤ 0.639	≤ 0.490	
	< 150 tons	kW/ton	≤ 0.703	≤ 0.669					
Water cooled,	≥ 150 tons and < 300 tons	kW/ton	≤ 0.634	≤ 0.596	≤ 0.634	≤ 0.596	≤ 0.639	≤ 0.450	
electrically operated, centrifugal	≥ 300 tons and < 600 tons	kW/ton	≤ 0.576	≤ 0.549	≤ 0.576	≤ 0.549	≤ 0.600	≤ 0.400	
	$\geq 600 \text{ tons}$	kW/ton	≤ 0.576	≤ 0.549	≤ 0.570	≤ 0.539	≤ 0.590	≤ 0.400	
Air cooled, absorption single effect	All capacities	COP	≥ 0.600	NRe	≥ 0.600	NR ^e	NAd	NAd	
Water-cooled, absorption single effect		NRe	NAd	NAd	AHRI 560				
Absorption double effect, indirect-fired	All capacities	COP	≥ 1.000	≥ 1.050	≥1.000	≥ 1.050	NAd	NAd	
Absorption double effect, direct fired	All capacities	COP	≥ 1.000	≥ 1.000	≥1.000	≥ 1.000	NAd	NAd	

	TABLE 5	03.2.3(7)		
VATER CHILLING	PACKAGES.	EFFICIENCY	REQUIREM	ENTS

For SI: 1 ton = 3517 W, 1 British thermal unit per hour = 0.2931 W.

For SI: 1 ton = 3517 W, 1 British thermal unit per hour = 0.2931 W.
a. The chiller equipment requirements do not apply for chillers used in low-temperature applications where the design leaving fluid temperature is < 40°F.
b. Section 12 contains a complete specification of the referenced test procedure, including the referenced year version of the test procedure.
c. Compliance with this standard can be obtained by meeting the minimum requirements of Path A or B. However, both the full load and IPLV must be met to fulfill the requirements of Path A or B.
d. NA means that this requirement is not applicable and cannot be used for compliance.
e. NR means that there are no minimum requirements for this category.

MEASURE CODE: CI-HVC-CHIL-V01-120601

4.4.7 ENERGY STAR and CEE Tier 1 Room Air Conditioner

DESCRIPTION

This measure relates to the purchase and installation of a room air conditioning unit that meets either the ENERGY STAR or CEE TIER 1 minimum qualifying efficiency specifications, in place of a baseline unit meeting minimum Federal Standard efficiency ratings presented below:²⁴⁸

Product Class (Btu/H)	Federal Standard EER, with louvered sides	Federal Standard EER, without louvered sides	ENERGY STAR EER, with louvered sides	ENERGY STAR EER, without louvered sides	CEE TIER 1 EER
< 8,000	9.7	9	10.7	9.9	11.2
8,000 to 13,999	9.8	8.5	10.8	9.4	11.3
14,000 to 19,999	9.7	8.5	10.7	9.4	11.2
>= 20,000	8.5	8.5	9.4	9.4	9.8

Casement	Federal Standard (EER)	ENERGY STAR (EER)
Casement-only	8.7	9.6
Casement-slider	9.5	10.5

Reverse Cycle - Product Class (Btu/H)	Federal Standard EER, with louvered sides	Federal Standard EER, without louvered sides	ENERGY STAR EER, with louvered sides	ENERGY STAR EER, without louvered sides
< 14,000	N/A	8.5	N/A	9.4
>= 14,000	N/A	8	N/A	8.8
< 20,000	9	N/A	9.9	N/A
>= 20,000	8.5	N/A	9.4	N/A

This measure was developed to be applicable to the following program types: TOS. If applied to other program types, the measure savings should be verified.

²⁴⁸http://www.energystar.gov/index.cfm?c=roomac.pr_crit_room_ac and http://www.cee1.org/resid/seha/rm-ac/rm-ac_specs.pdf

Side louvers that extend from a room air conditioner model in order to position the unit in a window. A model without louvered sides is placed in a built-in wall sleeveand are commonly referred to as "through-the-wall" or "built-in" models.

Casement-only refers to a room air conditioner designed for mounting in a casement window of a specific size. Casement-slider refers to a room air conditioner with an encased assembly designed for mounting in a sliding or casement window of a specific size.

Reverse cycle refers to the heating function found in certain room air conditioner models.

http://www.energystar.gov/ia/partners/product_specs/program_reqs/room_air_conditioners_prog_req.pdf

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the new room air conditioning unit must meet the ENERGY STAR efficiency standards presented above.

DEFINITION OF BASELINE EQUIPMENT

The baseline assumption is a new room air conditioning unit that meets the current minimum federal efficiency standards presented above.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The measure life is assumed to be 9 years.²⁴⁹

DEEMED MEASURE COST

The incremental cost for this measure is assumed to be \$40 for an ENERGY STAR unit and \$80 for a CEE TIER 1 unit. 250

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape C03 - Commercial Cooling

COINCIDENCE FACTOR

The summer peak coincidence factor for cooling is provided in two different ways below. The first is used to estimate peak savings during the utility peak hour and is most indicative of actual peak benefits, and the second represents the *average* savings over the defined summer peak period, and is presented so that savings can be bid into PJM's Forward Capacity Market. Both values provided are based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren.

CF_{SSP} = Summer System Peak Coincidence Factor for Commercial cooling (during system peak hour)

= 91.3% ²⁵¹

CF_{PJM} = PJM Summer Peak Coincidence Factor for Commercial cooling (average during peak period)

= 47.8%²⁵²

http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&pgw_code=AC

http://neep.org/uploads/EMV%20Forum/EMV%20Studies/measure_life_GDS%5B1%5D.pdf

²⁴⁹ Energy Star Room Air Conditioner Savings Calculator,

²⁵⁰ Based on field study conducted by Efficiency Vermont

²⁵¹Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The AC load during the utility's peak hour is divided by the maximum AC load during the year.

²⁵²Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during

	Algorithm
ALCULATION OF SAVINGS	
NERGY SAVINGS	
∆kWh = (FLŀ	H _{RoomAC} * Btu/H * (1/EERbase - 1/EERee))/1000
Where:	
FLH _{RoomAC}	= Full Load Hours of room air conditioning unit
	= dependent on location: ²⁵³
	Zone FLH _{RoomAC} 1 (Rockford) 253 2-(Chicago) 254 3 (Springfield) 310 4-(Belleville) 391 5-(Marion) 254
Btu/H	= Size of unit
	= Actual. If unknown assume 8500 BTU/hour ²⁵⁴
EERbase	= Efficiency of baseline unit
	= As provided in tables above
EERee	= Efficiency of ENERGY STAR or CEE Tier 1 unit
	= Actual. If unknown assume minimum qualifying standard as provided in tables above
For example for a	n 8,500 BTU/H capacity ENERGY STAR unit, with louvered sides, in Rockford:
$\Delta kWH_{energy star}$	= (253 * 8500 * (1/9.8 – 1/10.8)) / 1000
= 20.3 kWh	

the year

²⁵³Full load hours for room AC is significantly lower than for central AC. The average ratio of FLH for Room AC (provided in RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008:

http://www.puc.nh.gov/Electric/Monitoring%20and%20Evaluation%20Reports/National%20Grid/117_RLW_CF%2 ORes%20RAC.pdf) to FLH for Central Cooling for the same location (provided by AHRI:

http://www.energystar.gov/ia/business/bulk purchasing/bpsavings calc/Calc CAC.xls) is 31%. This ratio has been applied to the FLH from the unitary and split system air conditioning measure. 254 Based on maximum capacity average from the RLW Report: Final Report Coincidence Factor Study Residential Room Air

Conditioners, June 23, 2008

SUMMER COINCIDENT PEAK DEMAND SAVINGS

```
ΔkW = Btu/H * ((1/EERbase - 1/EERee))/1000) * CF
```

Where:

- CF_{SSP} = Summer System Peak Coincidence Factor for Commercial cooling (during system peak hour) = 91.3% ²⁵⁵
- CF_{PJM} = PJM Summer Peak Coincidence Factor for Commercial cooling (average during peak period)

= 47.8%²⁵⁶

Other variable as defined above

For example for an 8,500 BTU/H capacity ENERGY STAR unit, with louvered sides, in Rockford during system peak

 $\Delta k W_{\text{ENERGY STAR}} = (8500 * (1/9.8 - 1/10.8)) / 1000 * 0.913$

= 0.073 kW

FOSSIL FUEL SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-HVC-ESRA-V01-120601

²⁵⁵Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The AC load during the utility's peak hour is divided by the maximum AC load during the year.

²⁵⁶Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year

4.4.8 Guest Room Energy Management (PTAC & PTHP)

DESCRIPTION

This measure applied to the installation of a temperature setback and lighting control system for individual guest rooms. The savings are achieved based on Guest Room Energy Management's (GREM's) ability to automatically adjust the guest room's set temperatures and control the HVAC unit for various occupancy modes.

This measure was developed to be applicable to the following program types: TOS, NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

Guest room temperature set point must be controlled by automatic occupancy detectors or keycard that indicates the occupancy status of the room. During unoccupied periods the default setting for controlled units differs by at least 5 degrees from the operating set point. Theoretically, the control system may also be tied into other electric loads, such as lighting and plug loads to shut them off when occupancy is not sensed. This measure bases savings on improved HVAC controls. If system is connected to lighting and plug loads, additional savings would be realized. The incentive is per guestroom controlled, rather than per sensor, for multi-room suites. Replacement or upgrades of existing occupancy-based controls are not eligible for an incentive.

DEFINITION OF BASELINE EQUIPMENT

Manual Heating/Cooling Temperature Setpoint and Fan On/Off/Auto Thermostat

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The measure life for GREM is 15 years ²⁵⁷.

DEEMED MEASURE COST

\$260/unit

The IMC documented for this measure is \$260 per room HVAC controller, which is the cost difference between a non-programmable thermostat and a GREM²⁵⁸.

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape C03 - Commercial Cooling

COINCIDENCE FACTOR²⁵⁹

The coincidence factor for this measure is 0.67

²⁵⁹KEMA

²⁵⁷DEER 2008 value for energy management systems

²⁵⁸This value was extracted from Smart Ideas projects in PY1 and PY2.

Algorithm

CALCULATION OF SAVINGS

Below are the annual kWh savings per installed EMS for different sizes and types of HVAC units. The savings are achieved based on GREM's ability to automatically adjust the guest room's set temperatures and control the HVAC unit to maintain set temperatures for various occupancy modes. These values are from the Michigan savings database using Michigan's 574 annual CDD and 6,676 annual HDD, which are conservative when compared to 857 CDD and 6,418 HDD in Zon2 1 (Chicago).

ELECTRIC ENERGY SAVINGS

Measure Savings for GREM

Cooling Type	Cooling kWh		Heating (kWh & Therms)		Total kWh	
	3/4 ton	1 ton	3/4 ton	1 ton	3/4 ton	1 ton
			1,234	1,645		
PTAC	208	287	kWh	kWh	1,441	1,932
PTHP	181	263	721 kWh	988 kWh	902	1,251
FCU with Gas Heat/Elec			53	70		
Cool	407	542	Therms	Therms	407	542

On average, the annual kWh saving for a 0.75 ton and 1 ton HVAC unit with electric cooling and electric heating is 1,117 kWh per room. For non-electric heating, it is assumed the savings are approximately one third at 334 kWh per room. The average between 0.75 and 1 tons is used for a conservative estimate. However, it is assumed that most PTAC units in hotel rooms are sized to 1 ton.

Measure Savings Analysis

Savings estimate shall be verified using an eQuest model. The Michigan work paper assumes a 30% savings with the GREM. The model outputs will be validated by actual monitored projects, as they become available. Once the model is calibrated, its outputs will be used to update the work paper. The inputs for simulating average occupancy and setback temperatures are as follows (90% occupancy rate is assumed):

Base case: 72°F all the time

Cooling Type	Cooling, °F		Heating, °F	
	Occupied Rooms	Unoccupied Rooms	Occupied Rooms	Unoccupied Rooms
6pm-11pm	72	85	72	65
11pm- 7am	78	85	65	65
7am- 9am	72	85	72	65
9am- 6pm	78	85	65	65

Proposed case:

SUMMER COINCIDENT PEAK DEMAND SAVINGS

The coincident kW impacts for this measure have not been sufficiently studied or modeled to provide a confident estimate. In the meantime the following kW impacts are estimated for systems that control cooling operation.

kW Savings per ton = (12/HVAC EER) x average on peak uncontrolled load factor of 50% (estimated from anecdotal observations by KEMA for NV Energy) x estimated cycling reduction of 30% (estimated by KEMA from empirical observations and logging from manufacturers for NV Energy)

kW = (12/8.344) x 0.5 x 0.3 = 1.25 kW per ton or room

where,

HVAC EER = is based on a 1 ton unit at code baseline efficiency of PTAC,

defined as EER = 10.9 - (0.213 x 12000 btu/hr/1000) = 8.344

In addition, a coincident factor for cooling needs to be included to consider that not all room PTAC units are operating at the same. It is estimated as 0.67 (Ref: Pennsylvania Technical Resource Manual (12/23/09 version) for HVAC Measures, Table 6.17 p 55) This factor will be used pending further study.

Coincident kW Savings = 1.25 x 0.67 = 0.84 kW per unit-ton or per room

NATURAL GAS ENERGY SAVINGS

Heating	Heating (Therms)		
	3/4 ton	1 ton	
FCU with Gas Heat/Elec			
Cool	53 Therms	70 Therms	

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-HVC-GREM-V01-120601

4.4.9 Heat Pump Systems

DESCRIPTION

This measure applies to the installation of high-efficiency air cooled, water source, ground water source, and ground source heat pump systems. This measure could apply to replacing an existing unit at the end of its useful life, or installation of a new unit in a new or existing building

This measure was developed to be applicable to the following program types: TOS NC., If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the efficient equipment is assumed to be a high-efficiency air cooled, water source, ground water source, or ground source heat pump system that exceeds the energy efficiency requirements of the International Energy Conservation Code (IECC) 2006, Table 503.2.3(2).

DEFINITION OF BASELINE EQUIPMENT

In order for this characterization to apply, the baseline equipment is assumed to be a standard-efficiency air cooled, water source, ground water source, or ground source heat pump system that meets the energy efficiency requirements of the International Energy Conservation Code (IECC) 2006, Table 503.2.3(2). The rating conditions for the baseline and efficient equipment efficiencies must be equivalent

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 15 years.²⁶⁰

DEEMED MEASURE COST

For analysis purposes, the incremental capital cost for this measure is assumed as \$100 per ton for air-cooled units.²⁶¹ The incremental cost for all other equipment types should be determined on a site-specific basis

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape C05 - Commercial Electric Heating and Cooling

²⁶⁰Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, Inc., June 2007.

²⁶¹Based on a review of TRM incremental cost assumptions from Vermont, Wisconsin, and California.

COINCIDENCE FACTOR

The summer peak coincidence factor for cooling is provided in two different ways below. The first is used to estimate peak savings during the utility peak hour and is most indicative of actual peak benefits, and the second represents the *average* savings over the defined summer peak period, and is presented so that savings can be bid into PJM's Forward Capacity Market. Both values provided are based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren.

CF_{SSP} = Summer System Peak Coincidence Factor for Commercial cooling (during system peak hour)

= 91.3% ²⁶²

CF_{PJM} = PJM Summer Peak Coincidence Factor for Commercial cooling (average during peak period)

= 47.8%²⁶³

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

For units with cooling capacities less than 65 kBtu/h:

$$\begin{split} \Delta k W h &= \text{Annual kWh Savings}_{\text{cool}} + \text{Annual kWh Savings}_{\text{heat}} \\ \text{Annual kWh Savings}_{\text{cool}} &= (\text{kBtu/h}_{\text{cool}}) * [(1/\text{SEERbase}) - (1/\text{SEERee})] * \text{EFLH}_{\text{cool}} \\ \text{Annual kWh Savings}_{\text{heat}} &= (\text{kBtu/h}_{\text{cool}}) * [(1/\text{HSPFbase}) - (1/\text{HSPFee})] * \text{EFLH}_{\text{heat}} \\ \end{split}$$

For units with cooling capacities equal to or greater than 65 kBtu/h:

 $\Delta kWh = Annual kWh Savings_{cool} + Annual kWh Savings_{heat}$

Annual kWh Savings _{cool}	= (kBtu/ h_{cool}) * [(1/EERbase) – (1/EERee)] * EFLH _{cool}
Annual kWh Savings _{heat}	= (kBtu/h _{heat})/3.412 * [(1/COPbase) – (1/COPee)] * EFLH _{heat}

Where:

kBtu/h _{cool}	= capacity of the cooling equipment in kBtu per hour (1 ton of cooling capacity equals 12 kBtu/h).
	= Actual installed
SEERbase	=Seasonal Energy Efficiency Ratio of the baseline equipment; see table below for values. 264

²⁶²Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The AC load during the utility's peak hour is divided by the maximum AC load during the year.

²⁶³Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year

²⁶⁴ International Energy Conservation Code (IECC) 2009

EQUIPMENT TYPE	SIZE CATEGORY	IG UNITS, ELECTRICALLY OPE SUBCATEGORY OR RATING CONDITION	MINIMUM EFFICIENCY ^b	TEST PROCEDURE*	
		Split system	13.0 SEER		
	< 65,000 Btu/h ^d	Single package	13.0 SEER		
	≥ 65,000 Btu/h and < 135,000 Btu/h	Split system and single package	10.1 EER ^e (before Jan 1, 2010) 11.0 EER ^e (as of Jan 1, 2010)	AHRI 210/240	
Air cooled, (Cooling mode)	≥ 135,000 Btu/h and < 240,000 Btu/h	Split system and single package	9.3 EER ^c (before Jan 1, 2010) 10.6 EER ^c (as of Jan 1, 2010)		
	≥ 240,000 Btu/h	Split system and single package	9.0 EER [∈] 9.2 IPLV [¢] (before Jan 1, 2010) 9.5 EER [¢] 9.2 IPLV [¢] (as of Jan 1, 2010)	AHRI 340/360	
Through-the-Wall (Air cooled, cooling	< 30.000 Btu/hd	Split system	10.9 SEER (before Jan 23, 2010) 12.0 SEER (as of Jan 23, 2010)	AHRI 210/240	
(Air cooled, cooling mode)	< 30,000 Bhi/hª Single package		10.6 SEER (before Jan 23, 2010) 12.0 SEER (as of Jan 23, 2010)	AHKI 210/240	
	< 17,000 Btu/h	86°F entering water	11.2 EER	AHRI/ASHRAE 13256-1	
Water Source (Cooling mode)	≥ 17,000 Btu/h and 86°F entering water 12.0 EER < 135,000 Btu/h		AHRIASHRAE 13256-1		
Groundwater Source (Cooling mode)	<135,000 Btu/h	59ºF entering water	16.2 EER	AHRI/ASHRAE 13256-1	
Ground source (Cooling mode)	<135,000 Btu/h	77°F entering water	13.4 EER	AHRI/ASHRAE 13256-1	
	< 65,000 Btu/h ^d	Split system	7.7 HSPF		
	(Cooling capacity)	Single package	7.7 HSPF		
Air cooled (Heating mode)	≥ 65,000 Btu/h and < 135,000 Btu/h (Cooling capacity)	47°F db/43°F wb Outdoor atr	3.2 COP (before Jan 1, 2010) 3.3 COP (as of Jan 1, 2010)	AHRI 210/240	
	≥ 135,000 Btu/h (Cooling capacity)	47°F db/43°F wb Outdoor air	3.1 COP (before Jan 1, 2010) 3.2 COP (as of Jan 1, 2010)	AHRI 340/360	

UNITARY AIR CONDITIONERS AND CONDENSING UNITS, ELECTRICALLY OPERATED, MINIMUM EFFICIENCY REQUIREMENTS			TABLE 503.2.3(2)		
	UNITARY AIR CONDIT	ONERS AND CONDENSIN	G UNITS, ELECTRICALLY OPI	ERATED, MINIMUM EFFICIE	NCY REQUIREMENTS

EQUIPMENT TYPE	SIZE CATEGORY	SUBCATEGORY OR RATING CONDITION	MINIMUM EFFICIENCY ^b	TEST PROCEDURE*
Through-the-wall	an ann De b	Split System	7.1 HSPE (before Jan 23, 2010) 7.4 HSPF (as of Jan 23, 2010)	
(Air cooled, heating mode)	< 30,000 Btu/h Single package		7.0 HSPF (before Jan 23, 2010) 7.4 HSPF (as of Jan 23, 2010)	AHRI 210/240
Water source (Heating mode)	< 135,000 Btu/h (Cooling capacity)	68°F entering water	4.2 COP	AHRI/ASHRAE 13256-1
Groundwater source (Heating mode)	< 135,000 Btu/h (Cooling capacity)	50°F entering water	3.6 COP	AHRI/ASHRAE 13256-1
Ground source (Heating mode)	< 135,000 Btu/h (Cooling capacity)	32°F entering water	3.1 COP	AHRI/ASHRAE 13256-1

TABLE 503.2.3(2)—continued UNITARY AIR CONDITIONERS AND CONDENSING UNITS, ELECTRICALLY OPERATED, MINIMUM EFFICIENCY REQUIREMENTS

For SI: °C = [(°F) - 32]/1.8, 1 British thermal unit per hour = 0.2931 W.

db = dry-bulb temperature, °F; wb = wet-bulb temperature, °F.

a. Chapter 6 contains a complete specification of the referenced test procedure, including the referenced year version of the test procedure.

b. IPLVs and Part load rating conditions are only applicable to equipment with capacity modulation.

c. Deduct 0.2 from the required EERs and IPLVs for units with a heating section other than electric resistance heat.

d. Single-phase air-cooled heat pumps < 65,000 Btu/h are regulated by the National Appliance Energy Conservation Act of 1987 (NAECA), SEER and HSPF values are those set by NAECA.</p>

SEERee = Seasonal Energy Efficiency Ratio of the energy efficient equipment.

= Actual installed

EFLH_{cool} = cooling mode equivalent full load hours; see table below for default values:

Zone	Equivalent Full Load Hours Cooling (EFLHI)265	Equivalent Full Load heating Cooling (EFLH)
1 (Rockford)	816	1153
2 (Chicago)	819	1069
3 (Springfield)	1001	885
4 (Belleville)	1261	621
5 (Marion)	819	623

HSPFbase = Heating Seasonal Performance Factor of the baseline equipment; see table above for values.

HSPFee = Heating Seasonal Performance Factor of the energy efficient equipment.

= Actual installed

²⁶⁵Heating and cooling EFLH data based on a series of prototypical small commercial building simulation runs for the Ohio TRM. Values shown are weighted averages across fast food restaurant, full service restaurant, assembly, big box retail, small retail, small office, light industrial and school building models. The prototypes are based on the California DEER study prototypes, modified for local construction practices. Simulations were run using TMY3 weather data for each of the cities listed. Building prototypes used in the energy modeling are described in Appendix A - Prototypical Building Energy Simulation Model Development. The Ohio values were adjusted base on CCD and HDD for IL locations. Further study recommended for IL specific building types.

EFLH _{heat}	= heating mode equivalent full load hours; see table above for default values.
EERbase	= Energy Efficiency Ratio of the baseline equipment; see the table above for values. Since IECC 2006 does not provide EER requirements for air-cooled heat pumps < 65 kBtu/h, assume the following conversion from SEER to EER: EER≈SEER/1.1.
EERee	= Energy Efficiency Ratio of the energy efficient equipment. For air-cooled air conditioners < 65 kBtu/h, if the actual EERee is unknown, assume the following conversion from SEER to EER: EER≈SEER/1.1.
	= Actual installed
kBtu/h _{heat}	= capacity of the heating equipment in kBtu per hour.
	= Actual installed
3.412	= Btu per Wh.
COPbase	= coefficient of performance of the baseline equipment; see table above for values.
COPee	= coefficient of performance of the energy efficient equipment.
	= Actual installed
Annua	kWh Savings _{cool} = (kBtu/h _{cool}) * [(1/SEERbase) – (1/SEERee)] * EFLH _{cool}
Annua	l kWh Savings _{heat} = (kBtu/h _{heat}) * [(1/HSPFbase) – (1/HSPFee)] * EFLH _{heat}
For example a 5 ton co saves	oling unit with 60 kbtu heating with an efficient EER of 14 and an efficient HSPF of 9

= 649 kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta kW$$
 = (kBtu/h_{cool}) * [(1/EERbase) - (1/EERee)] *CF

Where CF value is chosen between:

CF_{SSP} = Summer System Peak Coincidence Factor for Commercial cooling (during system peak hour)

= 91.3% ²⁶⁶

CF_{PJM} = PJM Summer Peak Coincidence Factor for Commercial cooling (average during peak period)

²⁶⁶Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The AC load during the utility's peak hour is divided by the maximum AC load during the year.

= 47.8%²⁶⁷

For example a 5 ton cooling unit with 60 kbtu heating with an efficient EER of 14 and an efficient HSPF of 9 saves

ΔkW

= [(60) * [(1/13) – (1/14)] *.913

= 0.3

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-HVC-HPSY-V01-120601

²⁶⁷Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year

4.4.10 High Efficiency Boiler²⁶⁸

DESCRIPTION

To qualify for this measure the installed equipment must be replacement of an existing boiler at the end of its service life, in a commercial or multifamily space with a high efficiency, gas-fired steam or hot water boiler. High efficiency boilers achieve gas savings through the utilization of a sealed combustion chamber and multiple heat exchangers that remove a significant portion of the waste heat from flue gasses. Because multiple heat exchangers are used to remove waste heat from the escaping flue gasses, some of the flue gasses condense and must be drained.

This measure was developed to be applicable to the following program types: TOS, RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the installed equipment must be a boiler used 80% or more for space heating, not process, and boiler AFUE, TE (thermal efficiency), or Ec (combustion efficiency) rating must be rated greater than or equal to 85% for hot water boilers and 81% for steam boilers.

DEFINITION OF BASELINE EQUIPMENT

Dependent on when the unit is installed and whether the unit is hot water or steam. The baseline efficiency source is the Energy Independence and Security Act of 2007 with technical amendments from Federal Register, volume 73, Number 145, Monday, July 28, 2008 for boilers <300,000 Btu/h and is Final Rule, Federal Register, volume 74, Number 139, Wednesday, July 22, 2009 for boiler ≥300,000 Btu/h.

Hot water boiler baseline:

Year	Efficiency
Hot Water <300,000 Btu/h < June 1, 2013 ²⁶⁹	80% AFUE
Hot Water $<300,000$ Btu/h \ge June 1, 2013	82% AFUE
Hot Water ≥300,000 & ≤2,500,000 Btu/h	80% TE
Hot Water >2,500,000 Btu/h	82% Ec

²⁶⁸High Impact Measure

²⁶⁹ The Federal baseline for boilers <300,000 btu/hr changes from 80% to 82% in September 2012. To prevent a change in baseline mid-program, the increase in efficiency is delayed until June 2013 when a new program year starts.

Steam boiler baseline:

Year	Efficiency
Steam <300,000 Btu/h < June 1, 2013 ²⁷⁰	75% AFUE
Steam <300,000 Btu/h ≥June 1, 2013	80% AFUE
Steam - all except natural draft ≥300,000 & ≤2,500,000 Btu/h	79% TE
Steam - natural draft ≥300,000 & ≤2,500,000 Btu/h	77% TE
Steam - all except natural draft >2,500,000 Btu/h	79% TE
Steam - natural draft >2,500,000 Btu/h	77% TE

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 20 years²⁷¹

DEEMED MEASURE COST

The incremental capital cost for this measure depends on efficiency as listed below²⁷²

Measure Tier	Incr. Cost,
	per unit
ENERGY STAR® Minimum	\$1,470
AFUE 90%	\$2,400
AFUE 95%	\$3,370
$AFUE \ge 96\%$	\$4,340
Boilers > 300,000 Btu/h with TE	Custom
(thermal efficiency) rating	

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

N/A

²⁷⁰ Ibid.

²⁷¹ The Technical support documents for federal residential appliance standards:

http://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/fb_fr_tsd/appendix_e.pdf Note that this value is below the 20 years used by CA's DEER and the range of 20-40 year estimate made by the Consortium for Energy Efficiency in 2010

²⁷²Average of low and high incremental cost based on Nicor Gas program data for non-condensing and condensing boilers. Nicor Gas Energy Efficiency Plan 2011 - 2014, May 27, 2011 \$1,470 for ≤ 300,000 Btu/hr for non-condensing hydronic boilers >85% AFUE & \$3,365 for condensing boilers > 90% AFUE. The exception is \$4,340 for AFUE ≥ 96% AFUE which was obtained from extrapolation above the size range that Nicor Gas Energy Efficiency Plan provided for incremental cost.

COINCIDENCE FACTOR

N/A

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

N/A

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

NATURAL GAS ENERGY SAVINGS

EFH

ΔTherms = EFLH * Capacity * (1/EfficiencyRating(base)) – (1/EfficiencyRating(actual)) / 100,000

Where:

= Eauiv	alent Full Load	Hours for	heating ²⁷³ (hr)

	EFLH				
Building Type	Zone 1 (Rockford)	Zone 2 (Chicago)	Zone 3 (Springfield)	Zone 4 (Belleville/	Zone 5 (Marion)
Office - High Rise	2,746	2,768	2,656	2,155	2,420
Office - Mid Rise	996	879	824	519	544
Office - Low Rise	797	666	647	343	329
Convenience	696	550	585	272	297
Healthcare Clinic	1,118	1,036	1,029	694	737
Manufacturing Facility	1,116	1,123	904	771	857
Lodging Hotel/ Motel/ Multifamily	2,098	2,050	1,780	1,365	1,666
High School	969	807	999	569	674
Hospital	2,031	1,929	1,863	1,497	1,800
Elementary	970	840	927	524	637
Religious Facility	1,830	1,657	1,730	1,276	1,484
Restaurant	1,496	1,379	1,291	872	1,185
Retail - Strip Mall	1,266	1,147	1,151	732	863
Retail - Department Store	1,065	927	900	578	646
College/University	373	404	376	187	187
Warehouse	416	443	427	226	232
Unknown	1,249	1,163	1,130	786	910

²⁷³Equivalent full load hours for heating were developed using eQuest models for various building types averaged across each climate zones for Illinois for the following building types: office, healthcare/clinic, manufacturing, lodging, high school, hospital, elementary school, religious/assembly, restaurant, retail, college and warehouse. eQuest models were those developed for IL lighting interactive effects.

Capacity = Nominal Heating Capacity Boiler Size (btuh)

= custom Boiler input capacity in Btu/hr

EfficiencyRating(base) = Baseline Boiler Efficiency Rating, dependant on year and boiler type. Baseline efficiency values by boiler type and capacity are found in the Definition of Baseline Equipment Section

EfficiencyRating(actual) = Efficent Boiler Efficiency Rating use actual value

Measure Type	Actual AFUE
ENERGY STAR® Minimum	85%
AFUE 90%	90%
AFUE 95%	95%
$AFUE \ge 96\%$	\geq 96%
Custom	Value to one significant digit i.e. 95.7%

EXAMPLE

For example, a 150,000 btu/hr water boiler meeting AFUE 90% in Rockford at a high rise office building , in the year 2012

∆Therms

= 2,746* 150,000 * (1/.80 - 1/.90) / 100,000 Btu/Therm = 572 Therms

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-HVC-BOIL-V03-130601

4.4.11 High Efficiency Furnace²⁷⁴

DESCRIPTION

This measure covers the installation of a high efficiency gas furnace in lieu of a standard efficiency gas furnace in a commercial or industrial space. High efficiency gas furnaces achieve savings through the utilization of a sealed, super insulated combustion chamber, more efficient burners, and multiple heat exchangers that remove a significant portion of the waste heat from the flue gasses. Because multiple heat exchangers are used to remove waste heat from the escaping flue gasses, most of the flue gasses condense and must be drained. Furnaces equipped with ECM fan motors can save additional electric energy

This measure was developed to be applicable to the following program types: TOS RF and EREP. If applied to other program types, the measure savings should be verified.

Time of sale:

a. The installation of a new high efficiency, gas-fired condensing furnace in a commercial location. This could relate to the replacement of an existing unit at the end of its useful life, or the installation of a new system.

Early replacement:

- a. The early removal of an existing functioning AFUE 75% or less furnace from service, prior to its natural end of life, and replacement with a new high efficiency unit. Savings are calculated between existing unit and efficient unit consumption during the remaining life of the existing unit, and between new baseline unit and efficient unit consumption for the remainder of the measure life. At time of writing, the DOE had rescinded the next Federal Standard change for furnaces, however it is likely that a new standard will be in effect after the assumed remaining useful life of the existing unit. For the purposes of this measure- the new baseline is assumed to be 90%.
- b. The assumption of the existing unit efficiency in the Early Replacement section of this TRM is based upon the average efficiency of units that were classified in Ameren's PY3-PY4 as functioning and AFUE <=75%. Therefore it is only appropriate to use these Early Replacement assumptions where those conditions are met. The TAC defined "functioning" as the unit is fully operational providing sufficient space conditioning (i.e. heat exchanger, compressors, pumps work effectively) and/or the cost of repair is under 20% of the new baseline replacement cost. Therefore in order to apply early replacement assumptions the programs should apply the following eligibility criteria: AFUE <=75% and cost of any repairs <\$528.</p>

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the installed equipment must be a furnace with input energy less than 225,000 BTUh rated natural gas fired furnace with an Annual Fuel Utilization Efficiency (AFUE) rating and fan electrical efficiency exceeding the program requirements:

DEFINITION OF BASELINE EQUIPMENT

Time of Sale: Although the current Federal Standard for gas furnaces is an AFUE rating of 78%, based upon review of available product in the AHRI database, the baseline efficiency for this characterization is assumed to be 80%.

²⁷⁴ High Impact Measure

The baseline will be adjusted when the Federal Standard is updated.

Early replacement: The baseline for this measure is the efficiency of the existing equipment for the assumed remaining useful life of the unit and a new baseline unit for the remainder of the measure life. As discussed above we estimate that the new baseline unit that could be purchased in the year the existing unit would have needed replacing is 90%

DEFINITION OF MEASURE LIFE

The expected measure life is assumed to be 16.5 years²⁷⁵

Remaining life of existing equipment is assumed to be 5.5 years²⁷⁶.

DEEMED MEASURE COST

Time of Sale: The incremental capital cost for this measure depends on efficiency as listed below²⁷⁷:

AFUE	Installation Cost	Incremental Install Cost
80%	\$2011	n/a
90%	\$2641	\$630
91%	\$2727	\$716
92%	\$2813	\$802
93%	\$3049	\$1,038
94%	\$3286	\$1,275
95%	\$3522	\$1,511
96%	\$3758	\$1,747

Early Replacement: The full installation cost is provided in the table above. The assumed deferred cost (after 5.5 years) of replacing existing equipment with a new baseline unit is assumed to be \$2641. This cost should be discounted to present value using the utilities discount rate.

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

N/A

²⁷⁵ Average of 15-18 year lifetime estimate made by the Consortium for Energy Efficiency in 2010.

²⁷⁶ Assumed to be one third of effective useful life

²⁷⁷ Based on data from Appendix E of the Appliance Standards Technical Support Documents including equipment cost and installation labor

⁽http://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/fb_fr_tsd/appendix_e.pdf). Where efficiency ratings are not provided, the values are interpolated from those that are.

COINCIDENCE FACTOR

N/A

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

ΔkWh = Heating Savings + Cooling Savings + Shoulder Season Savings

Where:

Heating Savings	= Brushless DC motor or I = 418 kWh ²⁷⁸	Electronically commutated motor (EC	M)
Cooling Savings savings during cooling se		or electronically commutated motor	ECM)
	If air conditioning	= 263 kWh	
	If no air conditioning	= 175 kWh	
	If unknown (weighted ave	erage)= 241 kWh ²⁷⁹	
Shoulder Season Savings savings during shoulder s		or electronically commutated moto	or (ECM)

= 51 kWh

EXAMPLE

For example, a blower motor in an office building where air conditioning presence is unknown:ΔkWh= Heating Savings + Cooling Savings + Shoulder Season Savings= 418 +251 + 51= 721 kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

For units that have evaporator coils and condensing units and are cooling in the summer in addition to heating in the winter the summer coincident peak demand savings should be calculated. If the unit is not equipment with

²⁷⁸To estimate heating, cooling and shoulder season savings for Illinois, VEIC adapted results from a 2009 Focus on Energy study of BPM blower motor savings in Wisconsin. This study included effects of behavior change based on the efficiency of new motor greatly increasing the amount of people that run the fan continuously. The savings from the Wisconsin study were adjusted to account for different run hour assumptions (average values used) for Illinois. See: FOE to IL Blower Savings.xlsx.

²⁷⁹The weighted average value is based on assumption that 75% of buildings installing BPM furnace blower motors have Central AC.

coils or condensing units, the summer peak demand savings will not apply.

 $\Delta kW = (\Delta kWh/HOURSyear) * CF$

Where:

HOURSyear = Actual hours per year if known, otherwise use hours from Table below for building type.

Building Type	Pumps and fans (h/yr)
College/University	4216
Grocery	5840
Heavy Industry	3585
Hotel/Motel	6872
Light Industry	2465
Medical	6871
Office	1766
Restaurant	4654
Retail/Service	3438
School(K-12)	2203
Warehouse	3222
Average=Miscellaneous	4103

CF =Summer Peak Coincidence Factor for measure is provided below for different building types²⁸⁰:

Location	CF
Restaurant	0.80
Office	0.66
School (K-12)	0.22
College/University	0.56
Medical	0.75

EXAMPLE

For example, a blower motor in an office building where air conditioning presence is unknown:

ΔkW = (721 kWh/1766) * 0.66 = 0.27 kW

NATURAL GAS ENERGY SAVINGS

Time of Sale:

²⁸⁰Based on DEER 2008 values

ΔTherms = EFLH * Capacity * (1/AFUE(base) - 1/AFUE(eff)) / 100,000 Btu/Therm

Early replacement²⁸¹:

ΔTherms for remaining life of existing unit (1st 5.5 years):

ΔTherms = EFLH * Capacity * (1/AFUE(exist) - 1/AFUE(eff)) / 100,000 Btu/Therm

ΔTherms for remaining measure life (next 11 years):

ΔTherms = EFLH * Capacity * (1/AFUE(base) - 1/AFUE(eff)) / 100,000 Btu/Therm

Where:

```
EFLH = Equivalent Full Load Hours for heating ^{282} (hr)
```

	EFLH				
Building Type	Zone 1 (Rockford)	Zone 2 (Chicago)	Zone 3 (Springfield)	Zone 4 (Belleville/	Zone 5 (Marion)
Office - High Rise	2,746	2,768	2,656	2,155	2,420
Office - Mid Rise	996	879	824	519	544
Office - Low Rise	797	666	647	343	329
Convenience	696	550	585	272	297
Healthcare Clinic	1,118	1,036	1,029	694	737
Manufacturing Facility	1,116	1,123	904	771	857
Lodging Hotel/Motel	2,098	2,050	1,780	1,365	1,666
High School	969	807	999	569	674
Hospital	2,031	1,929	1,863	1,497	1,800
Elementary	970	840	927	524	637
Religious Facility	1,830	1,657	1,730	1,276	1,484
Restaurant	1,496	1,379	1,291	872	1,185
Retail - Strip Mall	1,266	1,147	1,151	732	863
Retail - Department					
Store	1,065	927	900	578	646
College/University	373	404	376	187	187
Warehouse	416	443	427	226	232
Unknown	1,249	1,163	1,130	786	910

²⁸¹ The two equations are provided to show how savings are determined during the initial phase of the measure (existing to efficient) and the remaining phase (new baseline to efficient). In practice, the screening tools used may either require a First Year savings (using the first equation) and then a "number of years to adjustment" and "savings adjustment" input which would be the (new base to efficient savings)/(existing to efficient savings).
²⁸²Equivalent full load hours for heating were developed using eQuest models for various building types averaged across each climate zones for Illinois for the following building types: office, healthcare/clinic, manufacturing, lodging, high school, hospital, elementary school, religious/assembly, restaurant, retail, college and warehouse. eQuest models were those developed for IL lighting interactive effects.

Capacity = Nominal Heating Capacity Furnace Size (btuh)

= custom Furnace input capacity in Btu/hr or if unknown 150,000

AFUE(exist) = Existing Furnace Annual Fuel Utilization Efficiency Rating

= Use actual AFUE rating where it is possible to measure or reasonably estimate.

If unknown, assume 64.4 AFUE%

AFUE(base) = Baseline Furnace Annual Fuel Utilization Efficiency Rating, dependant on year as listed below:

Dependent on program type as listed below²⁸⁴:

Program Year	AFUE(base)	
Time of Sale	80%	
Early Replacement	90%	

AFUE(eff) = Efficent Furnace Annual Fuel Utilization Efficiency Rating.

= Actual. If Unknown, assume 95%²⁸⁵

EXAMPLE For example, a 150,000 btu/hr 92% efficient furnace at a low rise office building in Rockford, in the year 2012 ΔTherms = 797 * 150,000 * (1/80% - 1/92%) / 100,000 Btu/Therm = 195 Therms

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

²⁸³ Average nameplate efficiencies of all Early Replacement qualifying equipment in Ameren PY3-PY4.

²⁸⁴ Though the Federal Minimum AFUE is 78%, there were only 50 models listed in the AHRI database at that level. At AFUE 79% the total rises to 308. There are 3,548 active furnace models listed with AFUE ratings between 78 and 80.

²⁸⁵ Minimum ENERGY STAR efficiency after 2.1.2012.

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-HVC-FRNC-V02-130601

4.4.12 Infrared Heaters (all sizes), Low Intensity

DESCRIPTION

This measure applies to natural gas fired low-intensity infrared heaters with an electric ignition that use nonconditioned air for combustion

This measure was developed to be applicable to the following program types: TOS, NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the installed equipment must be a natural gas heater with an electric ignition that uses non-conditioned air for combustion

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a standard natural gas fired heater warm air heater.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years²⁸⁶

DEEMED MEASURE COST

The incremental capital cost for this measure is \$1716²⁸⁷

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

N/A

COINCIDENCE FACTOR

N/A

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

N/A

²⁸⁶ENERGY STAR and CEE do not currently provide calculators for this type of equipment therefore deemed values from Nicor Gas were used. Nicor Gas Energy Efficiency Plan 2011-2014. Revised Plan Filed Pursuant to Order Docket 10-0562, May 27, 2011 ²⁸⁷Ibid.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

NATURAL GAS ENERGY SAVINGS

The annual natural gas energy savings from this measure is a deemed value equaling 451 Therms²⁸⁸

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-HVC-IRHT-V01-120601

²⁸⁸Nicor Gas Energy Efficiency Plan 2011-2014. Revised Plan Filed Pursuant to Order Docket 10-0562, May 27, 2011. These deemed values should be compared to PY evaluation and revised as necessary.

4.4.13 Package Terminal Air Conditioner (PTAC) and Package Terminal Heat Pump (PTHP)

DESCRIPTION

A PTAC is a packaged terminal air conditioner that cools and sometimes provides heat through an electric resistance heater (heat strip). A PTHP is a packaged terminal heat pump. A PTHP uses its compressor year round to heat or cool. In warm weather, it efficiently captures heat from inside your building and pumps it outside for cooling. In cool weather, it captures heat from outdoor air and pumps it into your home, adding heat from electric heat strips as necessary to provide heat.

This measure was developed to be applicable to the following program types: TOS NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the efficient equipment is assumed to be PTACs or PTHPs that exceed baseline efficiencies replacing existing equipment at the end of its useful life.

DEFINITION OF BASELINE EQUIPMENT

In order for this characterization to apply, the baseline conditions must be met as listed in the reference table.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 15 years. 289

DEEMED MEASURE COST

The incremental capital cost for this equipment is estimated to be \$84/ton.²⁹⁰

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape C03 - Commercial Cooling

COINCIDENCE FACTOR

The summer peak coincidence factor for cooling is provided in two different ways below. The first is used to estimate peak savings during the utility peak hour and is most indicative of actual peak benefits, and the second represents the *average* savings over the defined summer peak period, and is presented so that savings can be bid into PJM's Forward Capacity Market. Both values provided are based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren.

²⁸⁹Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, Inc., June 2007

²⁹⁰DEER 2008 This assumes that baseline shift from IECC 2006 to IECC 2012 carries the same incremental costs. Values should be verified during evaluation

CF _{SSP}	= Summer System Peak Coincidence Factor for Commercial cooling (during system peak hour)
	= 91.3% ²⁹¹
CF_{PJM}	= PJM Summer Peak Coincidence Factor for Commercial cooling (average during peak period)
	= 47.8% ²⁹²
	Algorithm
CALCULATION OF SAV	lings
ELECTRIC ENERGY SA	VINGS
Electric savings	for PTACs and PTHPs should be calculated using the following algorithms
ENERGY SAVINGS	
	PTAC ΔkWh^{293} = Annual kWh Savings _{cool}
	PTHP ΔkWh = Annual kWh Savings _{cool +} Annual kWh Savings _{heat}
	Annual kWh Savings _{cool} = (kBtu/ h_{cool}) * [(1/EERbase) – (1/EERee)] * EFLH _{cool}
	Annual kWh Savings _{heat} = (kBtu/h _{heat})/3.412 * [(1/COPbase) – (1/COPee)] * EFLH _{heat}
Where:	
kBtu/h	= capacity of the cooling equipment in kBtu per hour (1 ton of cooling capacity equals 12 kBtu/h).
	= Actual installed

²⁹¹Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The AC load during the utility's peak hour is divided by the maximum AC load during the year.

²⁹²Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year

²⁹³ There are no heating efficiency improvements for PTACs since although some do provide heating, it is always through electric resistance and therefore the COPbase and COPee would be 1.0.

TABLE C 403 2.3(3) MINIMUM EFFICIENCY REQUIREMENTS: ELECTRICALLY OPERATED PACKAGED TERMINAL AIR CONDITIONERS, PACKAGED TERMINAL HEAT PUMPS, SINGLE-PACKAGE VERTICAL AIR CONDITIONERS, SINGLE VERTICAL HEAT PUMPS, ROOM AIR CONDITIONERS AND ROOM AIR CONDITIONER HEAT PUMPS.

EQUIPMENT TYPE	SIZE CATEGORY	SUBCATEGORY OR	MINIMUME	FFICIENCY	TEST
	(INPUT)	RATING CONDITION	Before 10/08/2012	As of 10/08/2012	PROCEDURE
PTAC (cooling mode) new construction	All Capacities	95°F đb outdoor air	12.5 - (0.213 × Cap/1000) EER	13.8 - (0.300 × Cap/1000) EER	
PTAC (cooling mode) replacements ⁶	All Capacities	95°F db outdoor air	10.9 - (0.213 × Cap/1000) EER	10.9 - (0.213 × Cap/1000) EER	
PTHP (cooling mode) new construction	All Capacities	95°F db outdoor air	12.3 - (0.213 × Cap/1000) EER	14.0 - (0.300 × Cap/1000) EER	AHRI
PTHP (cooling mode) replacements ⁶	All Capacities	95°F db outdoor air	10.8 - (0.213 × Cap/1000) EER	10.8 - (0.213 × Cap/1000) EER	310/380
PTHP (heating mode) new construction	All Capacities	_	3.2 - (0.26 × Cap/1000) COP	3.2 - (0.26 × Cap/1000) COP	ſ
PTHP (heating mode) replacements ⁶	All Capacities	_	2.9 - (0.26 × Cap/1000) COP	2.9 - (0.26 × Cap/1000) COP	

For SI: 1 British thermal unit per hour = 0.2931 W, °C = [(°F) - 32]/1.8.

"Cap" = The rated cooling capacity of the project in Btu/h. If the unit's capacity is less than 7000 Btu/h, use 7000 Btu/h in the calculation. If the unit's capacity is greater than 15,000 Btu/h, use 15,000 Btu/h in the calculations.

a. Chapter 6 of the referenced standard contains a complete specification of the referenced test procedure, including the referenced year version of the test procedure.

b. Replacement unit shall be factory labeled as follows: "MANUFACTURED FOR REPLACEMENT APPLICATIONS ONLY: NOT TO BE INSTALLED IN NEW CONSTRUCTION PROJECTS." Replacement efficiencies apply only to units with existing sleeves less than 16 inches (406 mm) in height and less than 42 inches (1067 mm) in width.

EFLH_{cool} = cooling mode equivalent full load hours; see table below for default values:

Zone	Equivalent Full Load Hours Cooling (EFLHI) ²⁹⁴	Equivalent Full Load heating Cooling (EFLH)
1 (Rockford)	816	1153
2 (Chicago)	819	1069
3 (Springfield)	1001	885
4 (Belleville)	1261	621
5 (Marion)	819	623

EFLH_{heat} = heating mode equivalent full load hours; see table above for default values.

EERbase = Energy Efficiency Ratio of the baseline equipment; see the table above for values.

EERee = Energy Efficiency Ratio of the energy efficient equipment. For air-cooled air conditioners < 65 kBtu/h, if the actual EERee is unknown, assume the following

²⁹⁴Heating and cooling EFLH data based on a series of prototypical small commercial building simulation runs for the Ohio TRM. Values shown are weighted averages across fast food restaurant, full service restaurant, assembly, big box retail, small retail, small office, light industrial and school building models. The prototypes are based on the California DEER study prototypes, modified for local construction practices. Simulations were run using TMY3 weather data for each of the cities listed. Building prototypes used in the energy modeling are described in Appendix A - Prototypical Building Energy Simulation Model Development. The Ohio values were adjusted base on CCD and HDD for IL locations. Further study recommended for IL specific building types.

	conversion from SEER to EER: EER≈SEER/1.1.
	= Actual installed
kBtu/h _{heat}	= capacity of the heating equipment in kBtu per hour.
	= Actual installed
3.412	= Btu per Wh.
COPbase	= coefficient of performance of the baseline equipment; see table above for values.
COPee	= coefficient of performance of the energy efficient equipment.
	= Actual installed

For example a 1 ton replacement cooling unit with no heating with an efficient SEER of 12 in Rockford saves

= [(12) * [(1/7.7) - (1/12)] * 816

= 455 kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 ΔkW = (kBtu/h_{cool}) * [(1/EERbase) - (1/EERee)] *CF

Depending on situation:

CF_{SSP} = Summer System Peak Coincidence Factor for Commercial cooling (during system peak hour)

= 91.3% ²⁹⁵

CF_{PJM} = PJM Summer Peak Coincidence Factor for Commercial cooling (average during peak period)

= **47.8%**²⁹⁶

²⁹⁵Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The AC load during the utility's peak hour is divided by the maximum AC load during the year.

²⁹⁶ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year

Illinois Statewide Technical Reference Manual - 4.4.13 Package Terminal Air Conditioner (PTAC) and Package Terminal Heat Pump (PTHP)

For example a 1 ton replacement cooling unit with no heating with an efficient EER of 12 in Rockford saves

 $\Delta kW = (12) * [(1/7.7) - (1/12)] *0.913$

=0.51

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-HVC-PTAC-V03-130601

4.4.14 Pipe Insulation

DESCRIPTION

This measure provides rebates for installation of $\geq 1^{"}$ or $\geq 2^{"}$ fiberglass, foam, calcium silicate or other similar types of insulation to existing bare pipe systems for all non-residential installations.

Default per linear foot savings estimates are provided for the both exposed indoor or above ground outdoor piping distributing fluid in the following system types:

- Hydronic heating systems (with or without outdoor reset controls), including:
 - boiler systems that do not circulate water around a central loop and operate upon demand from a thermostat ("non-recirculation")
 - systems that recirculate during heating season only ("Recirculation heating season only")
 - systems recirculating year round ("Recirculation year round")
- Domestic hot water
- Low and high-pressure steam systems
 - o non-recirculation
 - recirculation heating season only
 - recirculation year round

Process piping can also use the algorithms provided but requires custom entry of hours.

Minimum qualifying pipe diameter is 1". Indoor piping must have at least 1" of insulation and outdoor piping must have at least 2" of insulation and include an all-weather protective jacket.

This measure was developed to be applicable to the following program types: RF, DI If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient case is installing pipe wrap insulation to a length of pipe. Indoor piping must have at least 1" of insulation and outdoor piping must have at least 2" of insulation and include an all-weather protective jacket. Minimum qualifying pipe diameter is 1".

DEFINITION OF BASELINE EQUIPMENT

The base case for savings estimates is a bare pipe. Pipes are required by new construction code to be insulated but are still commonly found uninsulated in older commercial buildings.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The measure life is assumed to be 15 years²⁹⁷.

DEEMED MEASURE COST

The measure costs provided below are based on RS Means¹ pricing reference materials. The following table summarizes the estimated costs for this measure per foot of insulation added and include installation costs:

²⁹⁷ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007. http://neep.org/uploads/EMV%20Forum/EMV%20Studies/measure_life_GDS%5B1%5D.pdf

	INSULATION THICKNESS		
	1 INCH (INDOOR) 2 INCHES (OUTDOO		
Pipe- RS Means #	220719.10.5170	220719.10.5530	
Jacket- RS Means #	220719.10.0156	220719.10.0320	
Jacket Type	PVC	Aluminum	
Insulation Cost per			
foot	\$9.40	\$13.90	
Jacket Cost per foot	\$4.57	\$7.30	
Total Cost per foot	\$13.97	\$21.20	

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

N/A

COINCIDENCE FACTOR

N/A

Algorithm
CALCULATION OF SAVINGS
ELECTRIC ENERGY SAVINGS
N/A
Summer Coincident Peak Demand Savings
N/A
Natural Gas Savings
$\Delta therms per foot = ((Q_{base} - Q_{eff}) * HOURS) / (100,000 * \eta Boiler)$
Where:
HOURS = annual operating time, in hours
= Actual or defaults by piping use and building type below:

		EFLH	EFLH						
Piping Use	Building Type	Zone 1 (Rockford)	Zone 2 (Chicago)	Zone 3 (Springfield)	Zone 4 (Belleville/	Zone 5 (Marion)			
	Office - High Rise	2,746	2,768	2,656	2,155	2,420			
	Office - Mid Rise	996	879	824	519	544			
	Office - Low Rise	797	666	647	343	329			
	Convenience	696	550	585	272	297			
	Healthcare Clinic	1,118	1,036	1,029	694	737			
	Manufacturing Facility	1,116	1,123	904	771	857			
	Lodging Hotel/ Motel/ Multifamily	2,098	2,050	1,780	1,365	1,666			
298	High School	969	807	999	569	674			
ting	Hospital	2,031	1,929	1,863	1,497	1,800			
	Elementary	970	840	927	524	637			
circ	Religious Facility	1,830	1,657	1,730	1,276	1,484			
I-re	Restaurant	1,496	1,379	1,291	872	1,185			
Non	Retail - Strip Mall	1,266	1,147	1,151	732	863			
Space Heating - Non-recirculating ²⁹⁸	Retail - Department Store	1,065	927	900	578	646			
Tea	College/University	373	404	376	187	187			
ceł	Warehouse	416	443	427	226	232			
Spa	Unknown	1,249	1,163	1,130	786	910			
Space Heating – recirculation heating season only ²⁹⁹	All buildings (Hours below 55F)	5,039	4,963	4,495	4,021	4,150			
Space Heating – recirculation year round ³⁰⁰	All buildings (All hours)	8,760	8,760	8,760	8,760	8,760			
Domestic Hot Water	Recirculation loop	8,760	8,760	8,760	8,760	8,760			
Process	Custom	Custom							

Q _{base}	= Heat Loss from Bare Pipe (Btu/hr/ft)
	= See table below
Q _{eff}	= Heat Loss from Insulated Pipe (Btu/hr/ft)
	= See table below
100,000	= conversion factor (1 therm = 100,000 Btu)
ηBoiler	= Efficiency of the boiler being used to generate the hot water or steam in the pipe

²⁹⁸Equivalent full load hours for heating were developed using eQuest models for various building types averaged across each climate zones for Illinois for the following building types: office, healthcare/clinic, manufacturing, lodging, high school, hospital, elementary school, religious/assembly, restaurant, retail, college and warehouse. eQuest models were those developed for IL lighting interactive effects.
²⁹⁹These hours of use represent the number of hours in each climate zone that the outside temperature is below 55 degrees F.

²⁹⁹ These hours of use represent the number of hours in each climate zone that the outside temperature is below 55 degrees F. This is a consistent assumption of heating set point for commercial buildings. Hourly temperature data is obtained from the National Climactic Data Center (NCDC).

³⁰⁰ For example reheat systems such as VAV and constant volume systems.

= 81.9% for water boilers³⁰¹

= 80.7% for steam boilers³⁰²

The heat loss estimates (Q_{base} and Q_{eff}) were developed using the 3E Plus v4.0 software program³⁰³. The energy savings analysis is based on adding 1-inch (indoor) or 2-inch (outdoor) thick insulation around bare pipe. The thermal conductivity of pipe insulation varies by material and temperature rating; to obtain a typical value, a range of materials allowed for this measure were averaged.

Insulation Type	Conductivity (Btu.in / hr.ft ² .ºF @ 75F)	Max temp (ºF)
Polyethylene foam	0.25	200
Flexible polyurethane-based foam	0.27	200
Fiberglass	0.31	250
Melamine foam	0.26	350
Flexible silicon foam	0.40	392
Calcium silicate	0.40	1200
Cellular glass	0.31	400
Average conductivity of all these materials (Btu.in / hr.ft ² .ºF @ 75ºF)	0.31	

The pipe fluid temperature assumption used depends upon both the system type and whether there is outdoor reset controls:

System Type	Fluid temperature
System Type	•
	assumption
	(degrees F)
Hot Water space heating with outdoor reset -	145
Non recirculation	
Hot Water space heating without outdoor reset -	170
Non recirculation	
Hot Water space heating with outdoor reset –	145
Recirculation heating season only	
Hot Water space heating without outdoor reset -	170
Recirculation heating season only	
Hot Water space heating with outdoor reset –	130
Recirculation year round	
Hot Water space heating without outdoor reset –	170
Recirculation year round	
Domestic Hot Water	125
Low Pressure Steam	225
High Pressure Steam	312

The other inputs used for the analysis are described below showing the savings result for one example – Office – High Rise, in Rockford:

³⁰¹ Average efficiencies of units from the California Energy Commission (CEC).

³⁰² Ibid.

³⁰³ 3E Plus is a heat loss calculation software provided by the NAIMA (North American Insulation Manufacturer Association).

	Indoor Insulation,	Indoor Insulation,	Indoor Insulation,	Domestic Hot	Outdoor Insulation.	Outdoor Insulation.	Outdoor Insulation.
	Hot Water	Low Pressure Steam	High Pressure Steam	Water	Hot Water	Low Pressure Steam	High Pressure Steam
Insulation thickness (inch)	1	1	1	1	2	2	2
Temperature, Fluid in Pipe (°F)	170 (w/o reset)	225	312	125	170 (w/o reset)	225	312
	145 (w/ reset heat)				145 (w/ reset heat)		
	130 (w/reset year)				130 (w/reset year)		
Av. steam pressure (psig)	n/a	10.9	82.8	n/a	n/a	10.9	82.8
Operating Time (hrs/yr)			2	2,746 (non-recirc)			
			5,039	(recirc heating se	ason)		
			8,76	0 (recirc year rou	nd)		
Ambient Temperature (°F) ³⁰⁴	75	75	75	75	48.6	48.6	48.6
Wind speed (mph) ³⁰⁵	0	0	0	0	9.4	9.4	9.4
			Pipe parameters				
Pipe material	Copper	Steel	Steel	Copper	Copper	Steel	Steel
Pipe size for Heat Loss Calc	2″	2″	2″	2″	2″	2″	2″
Outer Diameter, Pipe, actual	2.38″	2.38″	2.38″	2.38″	2.38″	2.38″	2.38″
Heat Loss, Bare Pipe (from	114 (w/o reset)	232	432	52	460 (w/o reset)	710	1101
3EPlus) (Btu/hr.ft)	78 (w/ reset heat)				363 (w/ reset heat)		
	58 (w/reset year)				306 (w/reset year)		
	-		Insulation paramete	rs	-		
Outer diameter, insulation	4.38″	4.38″	4.38"	4.38″	4.38"	4.38"	4.38"
Average Heat Loss, Insulation	24 (w/o reset)	40	70	13.25	21 (w/o reset)	32	52
(from 3EPlus) (Btu/hr.ft)	17 (w/ reset heat)				16 (w/ reset heat)		
	13 (w/reset year)				13 (w/reset year)		
	1	Γ	Annual Energy Saving		1	ſ	ſ
Boiler / Water Heater efficiency	81.9%	80.7%	80.7%	67%	81.9%	80.7%	80.7%
Annual Gas Use, Base Case	3.8 (w/o reset)	7.9 (non recirc)	14.7 (non recirc)	6.76	15.4 (w/o reset)	24.1 (non recirc)	37.5 (non recirc)
(therms/yr/ft)	4.8 (w/ reset heat)	14.5 (recirc heat)	27.0 (recirc heat)		22.5 (w/ reset heat)	44.3 (recirc heat)	68.7 (recirc heat)
	6.2 (w/reset year)	25.2 (recirc year)	46.9 (recirc year)		32.7 (w/reset year)	77.0 (recirc year)	119.5 (recirc year)
Annual Gas Use, Measure case	0.8 (w/o reset)	1.4 (non recirc)	2.4 (non recirc)	1.73	0.7 (w/o reset)	1.1 (non recirc)	1.8 (non recirc)
(therms/yr/ft)	1.1 (w/ reset heat)	2.5 (recirc heat)	4.4 (recirc heat)		1.0 (w/ reset heat)	2.0 (recirc heat)	3.2 (recirc heat)
	1.4 (w/reset year)	4.4 (recirc year)	7.6 (recirc year)		1.4 (w/reset year)	3.4 (recirc year)	5.6 (recirc year)
Annual Gas Savings	3.0 (w/o reset)	6.5 (non recirc)	12.3 (non recirc)	5.0	14.7 (w/o reset)	23.1 (non recirc)	35.7 (non recirc)
(therms/yr/ft)	3.7 (w/ reset heat)	12.0 (recirc heat)	22.6 (recirc heat)		21.4 (w/ reset heat)	42.3 (recirc heat)	65.5 (recirc heat)
	4.8 (w/reset year)	20.8 (recirc year)	39.3 (recirc year)		31.3 (w/reset year)	73.6 (recirc year)	113.9 (recirc year)

³⁰⁴ DOE Weather Data.

http://apps1.eere.energy.gov/buildings/energyplus/weatherdata/4_north_and_central_america_wmo_region_4/1_usa/USA_IL_Aurora.Muni.AP.744655_TMY3.stat ³⁰⁵ Ibid.

Heat = heating season only, year = year round

All variables were the same except for hours of operation in the calculation of the default savings per foot for the various building types and applications as presented in the table below:

			Annual therm Savings per linear foot (therm /ft) (2" pipe / 1" insulation for hot water, 2" insulation for steam)					
Location	System Type	Building Type	Zone 1 (Rockford)	Zone 2 (Chicago)	Zone 3 (Springfield)	Zone 4 (Belleville)	Zone 5 (Marion)	
		Office - High Rise	2.04	2.05	1.97	1.60	1.79	
		Office - Mid Rise	0.74	0.65	0.61	0.38	0.40	
		Office - Low Rise	0.59	0.49	0.48	0.25	0.24	
		Convenience	0.52	0.41	0.43	0.20	0.22	
		Healthcare Clinic	0.83	0.77	0.76	0.51	0.55	
		Manufacturing Facility	0.83	0.83	0.67	0.57	0.64	
		Lodging Hotel/ Motel/ Multifamily	1.55	1.52	1.32	1.01	1.23	
	Hot Water Space Heating with	High School	0.72	0.60	0.74	0.42	0.50	
	outdoor reset –	Hospital	1.51	1.43	1.38	1.11	1.33	
	non-recirculation	Elementary	0.72	0.62	0.69	0.39	0.47	
		Religious Facility	1.36	1.23	1.28	0.95	1.10	
		Restaurant	1.11	1.02	0.96	0.65	0.88	
		Retail - Strip Mall	0.94	0.85	0.85	0.54	0.64	
		Retail - Department Store	0.79	0.69	0.67	0.43	0.48	
		College/University	0.28	0.30	0.28	0.14	0.14	
		Warehouse	0.31	0.33	0.32	0.17	0.17	
		Unknown	0.93	0.86	0.84	0.58	0.67	
		Office - High Rise	3.00	3.03	2.91	2.36	2.65	
Indoor		Office - Mid Rise	1.09	0.96	0.90	0.57	0.60	
		Office - Low Rise	0.87	0.73	0.71	0.38	0.36	
		Convenience	0.76	0.60	0.64	0.30	0.32	
		Healthcare Clinic	1.22	1.13	1.13	0.76	0.81	
		Manufacturing Facility	1.22	1.23	0.99	0.84	0.94	
		Lodging Hotel/ Motel/ Multifamily	2.30	2.24	1.95	1.49	1.82	
	Hot Water Space Heating without	High School	1.06	0.88	1.09	0.62	0.74	
	outdoor reset –	Hospital	2.22	2.11	2.04	1.64	1.97	
	non-recirculation	Elementary	1.06	0.92	1.01	0.57	0.70	
		Religious Facility	2.00	1.81	1.89	1.40	1.62	
		Restaurant	1.64	1.51	1.41	0.95	1.30	
		Retail - Strip Mall	1.39	1.25	1.26	0.80	0.94	
		Retail - Department Store	1.17	1.01	0.98	0.63	0.71	
		College/University	0.41	0.44	0.41	0.20	0.20	
		Warehouse	0.46	0.48	0.47	0.25	0.25	
		Unknown	1.37	1.27	1.24	0.86	1.00	
	Hot Water with outdoor reset - Recirculation heating season only	All buildings (Hours below 55F)	3.73	3.68	3.33	2.98	3.08	

Savings Summary by Building Type and System Type

			Annual therm Savings per linear foot (therm /ft) (2" pipe / 1" insulation for hot water, 2" insulation for steam)					
Location	System Type	Building Type	Zone 1 (Rockford)	Zone 2 (Chicago)	Zone 3 (Springfield)	Zone 4 (Belleville)	Zone 5 (Marion)	
	Hot Water without outdoor reset- Recirculation heating season only	All buildings (Hours below 55F)	5.51	5.43	4.92	4.40	4.54	
	Hot Water with outdoor reset- Recirculation year round	All buildings (All hours)	4.79	4.79	4.79	4.79	4.79	
	Hot Water without outdoor reset- Recirculation year round	All buildings (All hours)	9.58	9.58	9.58	9.58	9.58	
	Domestic Hot Water	DHW circulation loop	5.02	5.02	5.02	5.02	5.02	
		Office - High Rise	6.53	6.59	6.32	5.13	5.76	
		Office - Mid Rise	2.37	2.09	1.96	1.23	1.29	
		Office - Low Rise	1.90	1.58	1.54	0.82	0.78	
		Convenience	1.66	1.31	1.39	0.65	0.71	
		Healthcare Clinic	2.66	2.47	2.45	1.65	1.75	
		Manufacturing Facility	2.66	2.67	2.15	1.83	2.04	
		Lodging Hotel/ Motel/ Multifamily	4.99	4.88	4.24	3.25	3.96	
	LP Steam – non-	High School	2.31	1.92	2.38	1.35	1.60	
	recirculation	Hospital	4.83	4.59	4.43	3.56	4.28	
		Elementary	2.31	2.00	2.21	1.25	1.52	
		Religious Facility	4.35	3.94	4.12	3.04	3.53	
		Restaurant	3.56	3.28	3.07	2.07	2.82	
		Retail - Strip Mall	3.01	2.73	2.74	1.74	2.05	
		Retail - Department Store	2.53	2.21	2.14	1.38	1.54	
		College/University	0.89	0.96	0.89	0.44	0.44	
		Warehouse	0.99	1.05	1.02	0.54	0.55	
		Unknown	2.97	2.77	2.69	1.87	2.17	
	LP Steam- Recirculation heating season only	All buildings (Hours below 55F)	11.99	11.81	10.70	9.57	9.88	
	LP Steam- Recirculation year round	All buildings (All hours)	20.84	20.84	20.84	20.84	20.84	
	HP Steam – non- recirculation	Office - High Rise	12.33	12.42	11.92	9.67	10.86	
		Office - Mid Rise	4.47	3.95	3.70	2.33	2.44	
		Office - Low Rise	3.58	2.99	2.90	1.54	1.48	
		Convenience	3.12	2.47	2.63	1.22	1.33	
		Healthcare Clinic	5.02	4.65	4.62	3.12	3.31	
		Manufacturing Facility	5.01	5.04	4.06	3.46	3.85	
		Lodging Hotel/ Motel/ Multifamily	9.42	9.20	7.99	6.13	7.48	

			Annual therm Savings per linear foot (therm /ft) (2" pipe / 1" insulation for hot water, 2" insulation for steam)					
Location	System Type	Building Type	Zone 1 (Rockford)	Zone 2 (Chicago)	Zone 3 (Springfield)	Zone 4 (Belleville)	Zone 5 (Marion)	
		High School	4.35	3.62	4.48	2.55	3.03	
		Hospital	9.12	8.66	8.36	6.72	8.08	
		Elementary	4.35	3.77	4.16	2.35	2.86	
		Religious Facility	8.21	7.44	7.77	5.73	6.66	
		Restaurant	6.71	6.19	5.79	3.91	5.32	
		Retail - Strip Mall	5.68	5.15	5.17	3.29	3.87	
		Retail - Department Store	4.78	4.16	4.04	2.59	2.90	
		College/University	1.67	1.81	1.69	0.84	0.84	
		Warehouse	1.87	1.99	1.92	1.01	1.04	
		Unknown	5.61	5.22	5.07	3.53	4.08	
	HP Steam- Recirculation heating season only	All buildings (Hours below 55F)	22.62	22.28	20.18	18.05	18.63	
	HP Steam- Recirculation year round	All buildings (All hours)	39.32	39.32	39.32	39.32	39.32	

			Annual therm Savings per linear foot (therm /ft) (2" pipe / 1" insulation for hot water, 2" insulation for steam)						
Location	System Type	Building Type	Zone 1 (Rockford)	Location	System Type	Building Type	Zone 1 (Rockford)		
		Office - High Rise	11.65	11.74	11.27	9.14	10.27		
		Office - Mid Rise	4.23	3.73	3.50	2.20	2.31		
		Office - Low Rise	3.38	2.83	2.74	1.46	1.40		
		Convenience	2.95	2.33	2.48	1.15	1.26		
		Healthcare Clinic	4.74	4.40	4.37	2.94	3.13		
		Manufacturing Facility	4.73	4.76	3.84	3.27	3.64		
		Lodging Hotel/ Motel/ Multifamily	8.90	8.70	7.55	5.79	7.07		
	Hot Water Space	High School	4.11	3.42	4.24	2.41	2.86		
	Heating with outdoor reset –	Hospital	8.62	8.18	7.90	6.35	7.64		
	non-recirculation	Elementary	4.12	3.56	3.93	2.22	2.70		
		Religious Facility	7.76	7.03	7.34	5.41	6.30		
Outdoor		Restaurant	6.35	5.85	5.48	3.70	5.03		
		Retail - Strip Mall	5.37	4.87	4.88	3.11	3.66		
		Retail - Department Store	4.52	3.93	3.82	2.45	2.74		
		College/University	1.58	1.71	1.60	0.79	0.79		
		Warehouse	1.76	1.88	1.81	0.96	0.98		
		Unknown	5.30	4.93	4.79	3.33	3.86		
		Office - High Rise	14.74	14.86	14.26	11.57	12.99		
	Hot Water Space	Office - Mid Rise	5.35	4.72	4.42	2.79	2.92		
	Heating without	Office - Low Rise	4.28	3.57	3.47	1.84	1.77		
	outdoor reset –	Convenience	3.74	2.95	3.14	1.46	1.59		
	non-recirculation	Healthcare Clinic	6.00	5.56	5.52	3.73	3.96		
		Manufacturing Facility	5.99	6.03	4.85	4.14	4.60		

			Annual therm Savings per linear foot (therm /ft) (2" pipe / 1" insulation for hot water, 2" insulation for steam)					
			Zone 1	e / 1" insulation	for hot water, a	2" insulation for	steam) Zone 1	
Location	System Type	Building Type	(Rockford)	Location	System Type	Building Type	(Rockford)	
		Lodging Hotel/ Motel/ Multifamily	11.26	11.00	9.55	7.33	8.94	
		High School	5.20	4.33	5.36	3.05	3.62	
		Hospital	10.90	10.35	10.00	8.04	9.66	
		Elementary	5.21	4.51	4.98	2.81	3.42	
		Religious Facility	9.82	8.89	9.29	6.85	7.97	
		Restaurant	8.03	7.40	6.93	4.68	6.36	
		Retail - Strip Mall	6.80	6.16	6.18	3.93	4.63	
		Retail - Department Store	5.72	4.98	4.83	3.10	3.47	
		College/University	2.00	2.17	2.02	1.00	1.00	
		Warehouse	2.23	2.38	2.29	1.21	1.25	
		Unknown	6.70	6.24	6.07	4.22	4.88	
	Hot Water with outdoor reset - Recirculation heating season only	All buildings (Hours below 55F)	21.38	21.06	19.07	17.06	17.61	
	Hot Water without outdoor reset- Recirculation heating season only	All buildings (Hours below 55F)	27.05	26.64	24.13	21.58	22.28	
	Hot Water with outdoor reset- Recirculation year round	All buildings (All hours)	37.16	37.16	37.16	37.16	37.16	
	Hot Water without outdoor reset- Recirculation year round	All buildings (All hours)	47.02	47.02	47.02	47.02	47.02	
		Office - High Rise	23.07	23.25	22.31	18.10	20.33	
		Office - Mid Rise	8.37	7.38	6.92	4.36	4.57	
		Office - Low Rise	6.70	5.59	5.44	2.88	2.76	
		Convenience	5.85	4.62	4.91	2.29	2.50	
		Healthcare Clinic	9.39	8.70	8.64	5.83	6.19	
		Manufacturing Facility	9.38	9.43	7.59	6.48	7.20	
		Lodging Hotel/ Motel/ Multifamily	17.63	17.22	14.95	11.47	14.00	
	LP Steam – non-	High School	8.14	6.78	8.39	4.78	5.66	
	recirculation	Hospital	17.06	16.21	15.65	12.58	15.12	
		Elementary	8.15	7.06	7.79	4.40	5.35	
		Religious Facility	15.37	13.92	14.53	10.72	12.47	
		Restaurant	12.57	11.58	10.85	7.33	9.96	
		Retail - Strip Mall	10.64	9.64	9.67	6.15	7.25	
		Retail - Department Store	8.95	7.79	7.56	4.86	5.43	
		College/University	3.13	3.39	3.16	1.57	1.57	
		Warehouse	3.49	3.72	3.59	1.90	1.95	
		Unknown	10.49	9.77	9.49	6.60	7.64	
	LP Steam- Recirculation heating season only	All buildings (Hours below 55F)	42.33	41.69	37.76	33.78	34.86	

			Annual therm Savings per linear foot (therm /ft) (2" pipe / 1" insulation for hot water, 2" insulation for steam)					
Location	System Type	Building Type	Zone 1 (Rockford)	Location	System Type	Building Type	Zone 1 (Rockford)	
	LP Steam- Recirculation year round	All buildings (All hours)	73.59	73.59	73.59	73.59	73.59	
		Office - High Rise	35.71	36.00	34.54	28.02	31.47	
		Office - Mid Rise	12.95	11.43	10.72	6.75	7.07	
		Office - Low Rise	10.36	8.66	8.41	4.46	4.28	
		Convenience	9.05	7.15	7.61	3.54	3.86	
		Healthcare Clinic	14.54	13.47	13.38	9.03	9.58	
		Manufacturing Facility	14.51	14.60	11.76	10.03	11.14	
		Lodging Hotel/ Motel/ Multifamily	27.28	26.66	23.15	17.75	21.67	
		High School	12.60	10.49	12.99	7.40	8.76	
	HP Steam – non- recirculation	Hospital	26.41	25.09	24.23	19.47	23.41	
	recirculation	Elementary	12.61	10.92	12.06	6.81	8.28	
		Religious Facility	23.80	21.55	22.50	16.59	19.30	
		Restaurant	19.45	17.93	16.79	11.34	15.41	
		Retail - Strip Mall	16.46	14.92	14.97	9.52	11.22	
		Retail - Department Store	13.85	12.06	11.70	7.52	8.40	
		College/University	4.85	5.25	4.89	2.43	2.43	
		Warehouse	5.41	5.76	5.55	2.94	3.02	
		Unknown	16.24	15.12	14.69	10.22	11.83	
	HP Steam- Recirculation heating season only	All buildings (Hours below 55F)	65.53	64.54	58.45	52.29	53.97	
	HP Steam- Recirculation year round	All buildings (All hours)	113.92	113.92	113.92	113.92	113.92	

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-HWE-PINS-V01-130601

Illinois Statewide Technical Reference Manual - 4.4.15 Pipe Insulation Description

This measure provides rebates for installation of $\geq 1^{"}$ or $\geq 2^{"}$ fiberglass, foam, calcium silicate or other similar types of insulation to existing bare pipe systems for all non-residential installations.

Default per linear foot savings estimates are provided for the both exposed indoor or above ground outdoor piping distributing fluid in the following system types:

- Hydronic heating systems (with or without outdoor reset controls), including:
 - boiler systems that do not circulate water around a central loop and operate upon demand from a thermostat ("non-recirculation")
 - systems that recirculate during heating season only ("Recirculation heating season only")
 - systems recirculating year round ("Recirculation year round")
- Domestic hot water
- Low and high-pressure steam systems
 - o non-recirculation
 - recirculation heating season only
 - recirculation year round

Process piping can also use the algorithms provided but requires custom entry of hours.

Minimum qualifying pipe diameter is 1". Indoor piping must have at least 1" of insulation and outdoor piping must have at least 2" of insulation and include an all-weather protective jacket.

This measure was developed to be applicable to the following program types: RF, DI If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient case is installing pipe wrap insulation to a length of pipe. Indoor piping must have at least 1'' of insulation and outdoor piping must have at least 2'' of insulation and include an all-weather protective jacket. Minimum qualifying pipe diameter is 1''.

4.4.15 Single-Package and Split System Unitary Air Conditioners

DESCRIPTION

This measure promotes the installation of high-efficiency unitary air-, water-, and evaporatively cooled air conditioning equipment, both single-package and split systems. Air conditioning (AC) systems are a major consumer of electricity and systems that exceed baseline efficiencies can save considerable amounts of energy. This measure could apply to the replacing of an existing unit at the end of its useful life or the installation of a new unit in a new or existing building.

This measure was developed to be applicable to the following program types: TOS, NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the efficient equipment is assumed to be a high-efficiency air-, water-, or evaporatively cooled air conditioner that exceeds the energy efficiency requirements of the International Energy Conservation Code (IECC) 2009, Table 503.2.3(1).

DEFINITION OF BASELINE EQUIPMENT

In order for this characterization to apply, the baseline equipment is assumed to be a standard-efficiency air-, water, or evaporatively cooled air conditioner that meets the energy efficiency requirements of the International

This measure provides rebates for installation of $\geq 1^{"}$ or $\geq 2^{"}$ fiberglass, foam, calcium silicate or other similar types of insulation to existing bare pipe systems for all non-residential installations.

Default per linear foot savings estimates are provided for the both exposed indoor or above ground outdoor piping distributing fluid in the following system types:

- Hydronic heating systems (with or without outdoor reset controls), including:
 - boiler systems that do not circulate water around a central loop and operate upon demand from a thermostat ("non-recirculation")
 - systems that recirculate during heating season only ("Recirculation heating season only")
 - systems recirculating year round ("Recirculation year round")
- Domestic hot water
- Low and high-pressure steam systems
 - o non-recirculation
 - recirculation heating season only
 - recirculation year round

Process piping can also use the algorithms provided but requires custom entry of hours.

Minimum qualifying pipe diameter is 1". Indoor piping must have at least 1" of insulation and outdoor piping must have at least 2" of insulation and include an all-weather protective jacket.

This measure was developed to be applicable to the following program types: RF, DI If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient case is installing pipe wrap insulation to a length of pipe. Indoor piping must have at least 1'' of insulation and outdoor piping must have at least 2'' of insulation and include an all-weather protective jacket. Minimum qualifying pipe diameter is 1''.

Energy Conservation Code (IECC) 2006, Table 503.2.3(1). The rating conditions for the baseline and efficient equipment efficiencies must be equivalent.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 15 years.³⁰⁶

DEEMED MEASURE COST

The incremental capital cost for this measure is assumed to be \$100 per ton.³⁰⁷

DEEMED O&M COST ADJUSTMENTS

N/A

³⁰⁶Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, Inc., June 2007.

³⁰⁷Based on a review of TRM incremental cost assumptions from Vermont, Wisconsin, and California. This assumes that baseline shift from IECC 2006 to IECC 2009 carries the same incremental costs. Values should be verified during evaluation

This measure provides rebates for installation of $\geq 1^{"}$ or $\geq 2^{"}$ fiberglass, foam, calcium silicate or other similar types of insulation to existing bare pipe systems for all non-residential installations.

Default per linear foot savings estimates are provided for the both exposed indoor or above ground outdoor piping distributing fluid in the following system types:

- Hydronic heating systems (with or without outdoor reset controls), including:
 - boiler systems that do not circulate water around a central loop and operate upon demand from a thermostat ("non-recirculation")
 - systems that recirculate during heating season only ("Recirculation heating season only")
 - systems recirculating year round ("Recirculation year round")
- Domestic hot water
- Low and high-pressure steam systems
 - o non-recirculation
 - recirculation heating season only
 - recirculation year round

Process piping can also use the algorithms provided but requires custom entry of hours.

Minimum qualifying pipe diameter is 1". Indoor piping must have at least 1" of insulation and outdoor piping must have at least 2" of insulation and include an all-weather protective jacket.

This measure was developed to be applicable to the following program types: RF, DI If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient case is installing pipe wrap insulation to a length of pipe. Indoor piping must have at least 1'' of insulation and outdoor piping must have at least 2'' of insulation and include an all-weather protective jacket. Minimum qualifying pipe diameter is 1''.

LOADSHAPE

Loadshape C03 - Commercial Cooling

COINCIDENCE FACTOR

The summer peak coincidence factor for cooling is provided in two different ways below. The first is used to estimate peak savings during the utility peak hour and is most indicative of actual peak benefits, and the second represents the *average* savings over the defined summer peak period, and is presented so that savings can be bid into PJM's Forward Capacity Market. Both values provided are based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren.

CF_{SSP} = Summer System Peak Coincidence Factor for Commercial cooling (during system peak hour)

= 91.3% ³⁰⁸

CF_{PJM} = PJM Summer Peak Coincidence Factor for Commercial cooling (average during peak period)

= 47.8% ³⁰⁹

³⁰⁸Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The AC load during the utility's peak hour is divided by the maximum AC load during the year.

This measure provides rebates for installation of $\geq 1^{"}$ or $\geq 2^{"}$ fiberglass, foam, calcium silicate or other similar types of insulation to existing bare pipe systems for all non-residential installations.

Default per linear foot savings estimates are provided for the both exposed indoor or above ground outdoor piping distributing fluid in the following system types:

- Hydronic heating systems (with or without outdoor reset controls), including:
 - boiler systems that do not circulate water around a central loop and operate upon demand from a thermostat ("non-recirculation")
 - systems that recirculate during heating season only ("Recirculation heating season only")
 - systems recirculating year round ("Recirculation year round")
- Domestic hot water
- Low and high-pressure steam systems
 - o non-recirculation
 - recirculation heating season only
 - o recirculation year round

Process piping can also use the algorithms provided but requires custom entry of hours.

Minimum qualifying pipe diameter is 1". Indoor piping must have at least 1" of insulation and outdoor piping must have at least 2" of insulation and include an all-weather protective jacket.

This measure was developed to be applicable to the following program types: RF, DI If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient case is installing pipe wrap insulation to a length of pipe. Indoor piping must have at least 1'' of insulation and outdoor piping must have at least 2'' of insulation and include an all-weather protective jacket. Minimum qualifying pipe diameter is 1''.

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

For units with cooling capacities less than 65 kBtu/h:

 $\Delta kWH = (kBtu/h) * [(1/SEERbase) - (1/SEERee)] * EFLH$

For units with cooling capacities equal to or greater than 65 kBtu/h:

 $\Delta kWH = (kBtu/h) * [(1/EERbase) - (1/EERee)] * EFLH$

Where:

kBtu/h = capacity of the cooling equipment actually installed in kBtu per hour (1 ton of cooling capacity equals 12 kBtu/h).

³⁰⁹Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year

This measure provides rebates for installation of $\geq 1^{"}$ or $\geq 2^{"}$ fiberglass, foam, calcium silicate or other similar types of insulation to existing bare pipe systems for all non-residential installations.

Default per linear foot savings estimates are provided for the both exposed indoor or above ground outdoor piping distributing fluid in the following system types:

- Hydronic heating systems (with or without outdoor reset controls), including:
 - boiler systems that do not circulate water around a central loop and operate upon demand from a thermostat ("non-recirculation")
 - systems that recirculate during heating season only ("Recirculation heating season only")
 - systems recirculating year round ("Recirculation year round")
- Domestic hot water
- Low and high-pressure steam systems
 - o non-recirculation
 - recirculation heating season only
 - recirculation year round

Process piping can also use the algorithms provided but requires custom entry of hours.

Minimum qualifying pipe diameter is 1". Indoor piping must have at least 1" of insulation and outdoor piping must have at least 2" of insulation and include an all-weather protective jacket.

This measure was developed to be applicable to the following program types: RF, DI If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient case is installing pipe wrap insulation to a length of pipe. Indoor piping must have at least 1'' of insulation and outdoor piping must have at least 2'' of insulation and include an all-weather protective jacket. Minimum qualifying pipe diameter is 1''.

SEERbase = Seasonal Energy Efficiency Ratio of the baseline equipment; see table below for default values³¹⁰::

³¹⁰ International Energy Conservation Code (IECC) 2009

This measure provides rebates for installation of $\geq 1^{"}$ or $\geq 2^{"}$ fiberglass, foam, calcium silicate or other similar types of insulation to existing bare pipe systems for all non-residential installations.

Default per linear foot savings estimates are provided for the both exposed indoor or above ground outdoor piping distributing fluid in the following system types:

- Hydronic heating systems (with or without outdoor reset controls), including:
 - boiler systems that do not circulate water around a central loop and operate upon demand from a thermostat ("non-recirculation")
 - systems that recirculate during heating season only ("Recirculation heating season only")
 - systems recirculating year round ("Recirculation year round")
- Domestic hot water
- Low and high-pressure steam systems
 - o non-recirculation
 - recirculation heating season only
 - o recirculation year round

Process piping can also use the algorithms provided but requires custom entry of hours.

Minimum qualifying pipe diameter is 1". Indoor piping must have at least 1" of insulation and outdoor piping must have at least 2" of insulation and include an all-weather protective jacket.

This measure was developed to be applicable to the following program types: RF, DI If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient case is installing pipe wrap insulation to a length of pipe. Indoor piping must have at least 1'' of insulation and outdoor piping must have at least 2'' of insulation and include an all-weather protective jacket. Minimum qualifying pipe diameter is 1''.

UNITARY AIR CONDITIONERS AND CONDENSING UNITS, ELECTRICALLY OPERATED, MINIMUM EFFICIENCY REQUIREMENTS					
EQUIPMENT TYPE	SIZE CATEGORY	SUBCATEGORY OR RATING CONDITION	MINIMUM EFFICIENCY ^b	TEST PROCEDURE [®]	
	< 65,000 Btu/h ^d	Split system	13.0 SEER		
		Single package	13.0 SEER		
	≥ 65,000 Bhı/h and < 135,000 Bhı/h	Split system and single package	10.3 EER= (before Jan 1, 2010) 11.2 EER= (as of Jan 1, 2010)	AHRI 210/240	
Air conditioners.	≥ 135,000 Btu/h and < 240,000 Btu/h	≥ 135,000 Btu/h Split system and (before Jan			
Air cooled	≥ 240,000 Btu/h and < 760,000 Btu/h	Split system and single package	9.5 EER ^c 9.7 IPLV ^c (before Jan 1, 2010) 10.0 EER ^c 9.7 IPLV ^g (as of Jan 1, 2010)	AHRI 340/360	
:	≥ 760,000 Btu/h	Split system and single package	9.2 EER ^c 9.4 IPLV ^c (before Jan 1, 2010) 9.7 EER ^c 9.4 IPLV ^c (as of Jan 1, 2010)		
Through-the-wall, Air cooled	- 20 000 De-Ad	Split system	10.9 SEER (before Jan 23, 2010) 12.0 SEER (as of Jan 23, 2010)	AHRI 210/240	
	< 30,000 Btu/h ^d	Single package	10.6 SEER (before Jan 23, 2010) 12.0 SEER (as of Jan 23, 2010)	AHKI 210/240	
	< 65.000 Btu/h	Split system and	12.1 EER		

TABLE 503.2.3(1)

This measure provides rebates for installation of $\geq 1^{"}$ or $\geq 2^{"}$ fiberglass, foam, calcium silicate or other similar types of insulation to existing bare pipe systems for all non-residential installations.

Default per linear foot savings estimates are provided for the both exposed indoor or above ground outdoor piping distributing fluid in the following system types:

- Hydronic heating systems (with or without outdoor reset controls), including:
 - boiler systems that do not circulate water around a central loop and operate upon demand from a thermostat ("non-recirculation")
 - systems that recirculate during heating season only ("Recirculation heating season only")
 - systems recirculating year round ("Recirculation year round")
- Domestic hot water
- Low and high-pressure steam systems
 - o non-recirculation
 - recirculation heating season only
 - recirculation year round

Process piping can also use the algorithms provided but requires custom entry of hours.

Minimum qualifying pipe diameter is 1". Indoor piping must have at least 1" of insulation and outdoor piping must have at least 2" of insulation and include an all-weather protective jacket.

This measure was developed to be applicable to the following program types: RF, DI If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient case is installing pipe wrap insulation to a length of pipe. Indoor piping must have at least 1'' of insulation and outdoor piping must have at least 2'' of insulation and include an all-weather protective jacket. Minimum qualifying pipe diameter is 1''.

- SEERee = Seasonal Energy Efficiency Ratio of the energy efficient equipment (actually installed).
- EERbase = Energy Efficiency Ratio of the baseline equipment; see table above for default values. Since IECC 2006 does not provide EER requirements for air-cooled air conditioners < 65 kBtu/h, assume the following conversion from SEER to EER: EER≈SEER/1.1
- EERee = Energy Efficiency Ratio of the energy efficient equipment. For air-cooled air conditioners < 65 kBtu/h, if the actual EERee is unknown, assume the following conversion from SEER to EER: EER≈SEER/1.1.

= Actual installed

EFLH = cooling equivalent full load hours; see table below for default values:

Zone	Equivalent Full Load
	Hours Cooling
	(EFLHI) ³¹¹

³¹¹Heating and cooling EFLH data based on a series of prototypical small commercial building simulation runs for the Ohio TRM. Values shown are weighted averages across fast food restaurant, full service restaurant, assembly, big box retail, small retail, small office, light industrial and school building models. The prototypes are based on the California DEER study prototypes, modified for local construction practices. Simulations were run using TMY3

This measure provides rebates for installation of $\geq 1^{"}$ or $\geq 2^{"}$ fiberglass, foam, calcium silicate or other similar types of insulation to existing bare pipe systems for all non-residential installations.

Default per linear foot savings estimates are provided for the both exposed indoor or above ground outdoor piping distributing fluid in the following system types:

- Hydronic heating systems (with or without outdoor reset controls), including:
 - boiler systems that do not circulate water around a central loop and operate upon demand from a thermostat ("non-recirculation")
 - systems that recirculate during heating season only ("Recirculation heating season only")
 - systems recirculating year round ("Recirculation year round")
- Domestic hot water
- Low and high-pressure steam systems
 - o non-recirculation
 - recirculation heating season only
 - recirculation year round

Process piping can also use the algorithms provided but requires custom entry of hours.

Minimum qualifying pipe diameter is 1". Indoor piping must have at least 1" of insulation and outdoor piping must have at least 2" of insulation and include an all-weather protective jacket.

This measure was developed to be applicable to the following program types: RF, DI If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient case is installing pipe wrap insulation to a length of pipe. Indoor piping must have at least 1'' of insulation and outdoor piping must have at least 2'' of insulation and include an all-weather protective jacket. Minimum qualifying pipe diameter is 1''.

1 (Rockford)	816
2 (Chicago)	819
3 (Springfield)	1001
4 (Belleville)	1261
5 (Marion)	819

For example a 5 ton air cooled split system with a SEER of 15 in Rockford would save

$$\Delta kWH = (60) * [(1/13) - (1/15)] * 816$$

= 502 kWh

weather data for each of the cities listed. Building prototypes used in the energy modeling are described in Appendix A - Prototypical Building Energy Simulation Model Development. The Ohio values were adjusted base on CCD for IL locations. Further study recommended for IL specific building types.

This measure provides rebates for installation of $\geq 1^{"}$ or $\geq 2^{"}$ fiberglass, foam, calcium silicate or other similar types of insulation to existing bare pipe systems for all non-residential installations.

Default per linear foot savings estimates are provided for the both exposed indoor or above ground outdoor piping distributing fluid in the following system types:

- Hydronic heating systems (with or without outdoor reset controls), including:
 - boiler systems that do not circulate water around a central loop and operate upon demand from a thermostat ("non-recirculation")
 - systems that recirculate during heating season only ("Recirculation heating season only")
 - systems recirculating year round ("Recirculation year round")
- Domestic hot water
- Low and high-pressure steam systems
 - o non-recirculation
 - recirculation heating season only
 - o recirculation year round

Process piping can also use the algorithms provided but requires custom entry of hours.

Minimum qualifying pipe diameter is 1". Indoor piping must have at least 1" of insulation and outdoor piping must have at least 2" of insulation and include an all-weather protective jacket.

This measure was developed to be applicable to the following program types: RF, DI If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient case is installing pipe wrap insulation to a length of pipe. Indoor piping must have at least 1" of insulation and outdoor piping must have at least 2" of insulation and include an all-weather protective jacket. Minimum qualifying pipe diameter is 1".

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 ΔkW_{SSP} = (kBtu/h * (1/EERbase - 1/EERee)) * CF_{SSP}

 ΔkW_{PJM} = (kBtu/h * (1/EERbase - 1/EERee)) * CF_{PJM}

Where:

CF_{SSP} = Summer System Peak Coincidence Factor for Commercial cooling (during system peak hour)

= 91.3% ³¹²

CF_{PJM} = PJM Summer Peak Coincidence Factor for Commercial cooling (average during peak period)

= 47.8% ³¹³

³¹² Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The AC load during the utility's peak hour is divided by the maximum AC load during the year.

³¹³ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year

This measure provides rebates for installation of $\geq 1^{"}$ or $\geq 2^{"}$ fiberglass, foam, calcium silicate or other similar types of insulation to existing bare pipe systems for all non-residential installations.

Default per linear foot savings estimates are provided for the both exposed indoor or above ground outdoor piping distributing fluid in the following system types:

- Hydronic heating systems (with or without outdoor reset controls), including:
 - boiler systems that do not circulate water around a central loop and operate upon demand from a thermostat ("non-recirculation")
 - systems that recirculate during heating season only ("Recirculation heating season only")
 - systems recirculating year round ("Recirculation year round")
- Domestic hot water
- Low and high-pressure steam systems
 - o non-recirculation
 - recirculation heating season only
 - recirculation year round

Process piping can also use the algorithms provided but requires custom entry of hours.

Minimum qualifying pipe diameter is 1". Indoor piping must have at least 1" of insulation and outdoor piping must have at least 2" of insulation and include an all-weather protective jacket.

This measure was developed to be applicable to the following program types: RF, DI If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient case is installing pipe wrap insulation to a length of pipe. Indoor piping must have at least 1'' of insulation and outdoor piping must have at least 2'' of insulation and include an all-weather protective jacket. Minimum qualifying pipe diameter is 1''.

For example a 5 ton air cooled split system with a SEER of 15 in Rockford would save

 $\Delta kW_{SSP} = (60) * [(1/13) - (1/15)] * .913$

= 0.562

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

MEASURE CODE: CI-HVC-SPUA-V01-120601

4.4.16 Steam Trap Replacement or Repair ³¹⁴

DESCRIPTION

The measure is for the repair or replacement of faulty steam traps that are allowing excess steam to escape and thereby increasing steam generation. The measure is applicable to commercial applications, commercial HVAC (low pressure steam) including multifamily buildings, low pressure industrial applications, medium pressure industrial applications, applications and high pressure industrial applications. Maximum pressure for this measure is 300 psig.

This measure was developed to be applicable to the following program types: TOS, RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

Customers must have leaking traps to qualify for rebates. However, if a commercial customer opts to replace all traps without inspection, rebates and the savings are discounted to take into consideration the fact that some traps are being replaced that have not yet failed.

DEFINITION OF BASELINE EQUIPMENT

The baseline criterion is a faulty steam trap in need of replacing. No minimum leak rate is required. Any leaking or blow through trap can be repaired or replaced. If a commercial customer chooses to repair or replace all the steam traps at the facility without verification, the savings are adjusted. Savings for commercial full replacement projects are reduced by the percentage of traps found to be leaking on average from the studies listed. If an audit is performed on a commercial site, then the leaking and blowdown can be adjusted.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The life of this measure is 6 years³¹⁵

³¹⁴High Impact Measure

³¹⁵Source paper is the Resource Solutions Group "Steam Traps Revision #1" dated August 2011. Primary studies used to prepare the source paper include Enbridge Steam Trap Survey, KW Engineering Steam Trap Survey, Enbridge Steam Saver Program 2005, Armstrong Steam Trap Survey, DOE Federal Energy Management Program Steam Trap Performance Assessment, Oak Ridge National Laboratory Steam System Survey Guide, KEMA Evaluation of PG&E's Steam Trap Program, Sept. 2007. Communication with vendors suggested a inverted bucket steam trap life typically in the range of 5 - 7 years, float and thermostatic traps 4- 6 years, float and thermodynamic disc traps of 1 - 3 years. Cost does not include installation.

DEEMED MEASURE COST

Steam System	Cost per trap ³¹⁶ (\$)
Commercial Dry Cleaners	77
Commercial Heating (including Multifamily), low pressure steam	77
Industrial Medium Pressure >15 psig psig < 30 psig	180
Steam Trap, Industrial Medium Pressure ≥30 <75 psig	223
Steam Trap, Industrial High Pressure ≥75 <125 psig	276
Steam Trap, Industrial High Pressure ≥125 <175 psig	322
Steam Trap, Industrial High Pressure ≥175 <250 psig	370
Steam Trap, Industrial High Pressure ≥250 psig	418
Steam Trap, Industrial Medium Pressure ≥30 <75 psig	223
Steam Trap, Industrial High Pressure ≥75 <125 psig	276
Steam Trap, Industrial High Pressure ≥125 <175 psig	322
Steam Trap, Industrial High Pressure ≥175 <250 psig	370
Steam Trap, Industrial High Pressure ≥250 psig	418

DEEMED O&M COST ADJUSTMENTS

N/A

³¹⁶ Ibid.

LOADSHAPE

N/A

COINCIDENCE FACTOR

N/A

Algorithm

CALCULATION OF SAVINGS

ENERGY SAVINGS

 Δ therm = S * (Hv/B) * Hours * A * L / 100,000

Where:

S

= Maximu theoretical steam loss per trap

Steam System	Avg Steam Loss ³¹⁷ (lb/hr/trap)
Commercial Dry Cleaners	38.1
Commercial Heating (including Multifamily)LPS	13.8
Industrial Low Pressure, <15 psig	13.8
Industrial Medium Pressure >15 psig < 30 psig	12.7
Steam Trap, Industrial Medium Pressure ≥30 <75 psig	19
Steam Trap, Industrial High Pressure ≥75 <125 psig	67.9
Steam Trap, Industrial High Pressure ≥125 <175 psig	105.8
Steam Trap, Industrial High Pressure ≥175 <250 psig	143.7
Steam Trap, Industrial High	200.5

³¹⁷Resource Solutions Group "Steam Traps Revision #1" dated August 2011.

Pressure ≥250 psig	

Hv = Heat of vaporization of steam

Steam System	Heat of Vaporization ³¹⁸ (Btu/lb)
Commercial Dry Cleaners	890
Commercial Heating (including Multifamily) LPS	951
Industrial Low Pressure ≤15 psig	951
Industrial Medium Pressure >15 psig < 30 psig	945
Steam Trap, Industrial Medium Pressure ≥30 <75 psig	928
Steam Trap, Industrial High Pressure ≥75 <125 psig	894
Steam Trap, Industrial High Pressure ≥125 <175 psig	868
Steam Trap, Industrial High Pressure ≥175 <250 psig	846
Steam Trap, Industrial High Pressure ≥250 psig	820

B = Boiler efficiency

= custom, if unknown 0.8³¹⁹

³¹⁸Heat of vaporization of steam at the inlet pressure to the steam trap. Implicit assumption that the average boiler nominal pressure where the vaporization occurs, is essentially that same pressure. Reference Resource Solutions Group "Steam Traps Revision #1" dated August 2011.

³¹⁹California Energy Commission Efficiency Data for Steam Boilers as sited in Resource Solutions Group "Steam Traps Revision #1" dated August 2011.

Hours = Annual operating hours of steam plant

Steam System	Hours/Yr ³²⁰	Zone
Commercial Dry Cleaners	2,425	
Industrial Low Pressure ≤15 psig	7,752	
Industrial Medium Pressure >15 psig < 30 psig	7,752	
Steam Trap, Industrial Medium Pressure ≥30 <75 psig	7,752	
Steam Trap, Industrial High Pressure ≥75 <125 psig	7,752	
Steam Trap, Industrial High Pressure ≥125 <175 psig	7,752	
Steam Trap, Industrial High Pressure ≥175 <250 psig	7,752	
Steam Trap, Industrial High Pressure ≥250 psig	7,752	
Industrial Medium Pressure >15 psig < 30 psig	7,752	
Steam Trap, Industrial Medium Pressure ≥30 <75 psig	7,752	
	4,272	1 (Rockford)
	4,029	2 (Chicago O'Hare)
Commercial Heating (including Multifamily)LPS ³²¹	3,406	3 (Springfield)
	2,515	4 (Belleville)
	2,546	5 (Marion)

= Adjustment factor А

³²⁰Resource Solutions Group "Steam Traps Revision #1" dated August 2011, which references Enbridge service territory data and kW Engineering study. ³²¹Since commercial LPS reflect heating systems, Hours/yr are equivalent to HDD55 zone table

= 50%³²²

This factor is to account for reducing the maximum theortical steam flow (S) to the average steam flow (the Enbridge factor).

L = Leaking & blow-thru

L is 1.0 when applied to the replacment of an individual leaking trap. If a number of steam traps are replaced and the system has not been audited, the leaking and blow-thru is applied to reflect the assumed percentage of steam traps that were actually leadking and needed replaceing. A custom value can be utilized if a supported by an evaluation.

Steam System	% ³²³
Custom	Custom
Commercial Dry Cleaners	27%
Industrial Low Pressure ≤15 psig	16%
Industrial Medium Pressure >15	
psig	16%
Commercial Heating (including	
Multifamily) LPS	27%

EXAMPLE

For example, a commercial dry cleaning facility with the default hours of operation and boiler efficiency;

 Δ Therms = S * (Hv/B) * Hours * A * L

= 38.1 lbs/hr/trap * (890 Btu/lb / 80%)/100,000 * 2,425 * 50% * 27% =

138.8 therms per trap

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-HVC-STRE-V02-130601

2011.

 ³²²Enbridge adjustment factor used as referenced in Resource Solutions Group "Steam Traps Revision #1" dated
 August 2011 and DOE Federal Energy Management Program Steam Trap Performance Assessment.
 ³²³Dry cleaners survey data as referenced in Resource Solutions Group "Steam Traps Revision #1" dated August

4.4.17 Variable Speed Drives for HVAC

DESCRIPTION

This measure is applied to variable speed drives (VSD) which are installed on the following HVAC system applications: chilled water pump, hot water pumps, supply fans, return fans. All other VSD applications require custom analysis by the program administrator. The VSD will modulate the speed of the motor when it does not need to run at full load. Since the power of the motor is proportional to the cube of the speed for these types of applications, significant energy savings will result.

This measure was developed to be applicable to the following program types: TOS, RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The VSD is applied to a motor which does not have a VSD. The application must have a variable load and installation is to include the necessary controls. Savings are based on application of VSDs to a range of baseline load conditions including no control, inlet guide vanes, outlet guide vanes and throttling valves.

DEFINITION OF BASELINE EQUIPMENT

The time of sale baseline is a new motor installed without a VSD or other methods of control. Retrofit baseline is an existing motor operating as is. Retrofit baselines may or may not include guide vanes, throttling valves or other methods of control. This information shall be collected from the customer.

Installations of new equipment with VSDs which are required by IECC 2009 as adopted by the State of Illinois are not eligible for incentives.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life for HVAC application is 15 years;³²⁴ measure life for process is 10 years.³²⁵

DEEMED MEASURE COST

Customer provided costs will be used when available. Default measure costs³²⁶ are noted below for up to 20 hp motors. Custom costs must be gathered from the customer for motor sizes not listed below.

НР	Cost
1 -5 HP	\$ 1,330
7.5 HP	\$ 1,622
10 HP	\$ 1,898
15 HP	\$ 2,518
20 HP	\$ 3,059

³²⁴Efficiency Vermont TRM 10/26/11 for HVAC VSD motors

³²⁵DEER 2008

³²⁶Ohio TRM 8/6/2010 varies by motor/fan size based on equipment costs from Granger 2008 Catalog pp 286-289, average across available voltages and models. Labor costs from RS Means Data 2008 Ohio average cost adjustment applied.

DEEMED O&M COST ADJUSTMENTS

There are no expected O&M savings associated with this measure

LOADSHAPE

Loadshape C39 - VFD - Supply fans <10 HP Loadshape C40 - VFD - Return fans <10 HP Loadshape C41 - VFD - Exhaust fans <10 HP Loadshape C42 - VFD - Boiler feedwater pumps <10 HP Loadshape C43 - VFD - Chilled water pumps <10 HP Loadshape C44 - VFD Boiler circulation pumps <10 HP Loadshape C48 - VFD Boiler draft fans <10 HP Loadshape C49 - VFD Cooling Tower Fans <10 HP

COINCIDENCE FACTOR

The demand savings factor (DSF) is already based upon coincident savings, and thus there is no additional coincidence factor for this characterization.

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = kW_{connected} * Hours * ESF$

Where:

kW_{Connected} = kW of equipment is calculated using motor efficiency.

(HP * .746 kw/hp* load factor)/motor efficiency

Motors are assumed to have a load factor of 80% for calculating KW if actual values cannot be determined³²⁷. Custom load factor may be applied if known. Actual motor efficiency shall be used to calculate KW. If not known a default value of 93% shall be used.³²⁸

НР	внр		kW Connected ³²⁹
		Load Factor	Connected
5 HP	5	80%	3.23
7.5 HP	7.5	80%	4.84
10 HP	10	80%	6.45
15 HP	15	80%	9.68

³²⁷Com Ed TRM June 1, 2010

³²⁸Ohio TRM 8/6/2010 pp207-209, Com Ed Trm June 1, 2010.

³²⁹Field data from Illinois evaluations, Navigant, 2011.

НР	внр	Load Factor	kW Connected ³²⁹
20 HP	20	80%	12.90

Hours = Default hours are provided for HVAC applications which vary by HVAC application and building type³³⁰. When available, actual hours should be used.

Building Type	Pumps and fans
College/University	4216
Grocery	5840
Heavy Industry	3585
Hotel/Motel	6872
Light Industry	2465
Medical	6871
Office	1766
Restaurant	4654
Retail/Service	3438
School(K-12)	2203
Warehouse	3222
Average=Miscellaneous	4103

³³⁰Com Ed Trm June 1, 2010 page 139.

ESF = Energy savings factor varies by VFD application.

Application	ESF 331
Hot Water Pump	0.482
Chilled Water Pump	0.432
Constant Volume Fan	0.535
Air Foil/inlet Guide Vanes	0.227
Forward Curved Fan, with discharge dampers	0.179
Forward Curved Inlet Guide Vanes	0.092

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = kW_{connected} * DSF$

Where:

DSF = Demand Savings Factor varies by VFD application.³³² Values listed below are based on typical peak load for the listed application. When possible the actual Demand Savings Factor should be calculated.

Application	DSF
Hot Water Pump	0
Chilled Water Pump	0.299
Constant Volume Fan	0.348
Air Foil/inlet Guide Vanes	0.13
Forward Curved Fan, with discharge dampers	0.136
Forward Curved Inlet Guide Vanes	0.03
Custom Process	custom

FOSSIL FUEL IMPACT DESCRIPTIONS AND CALCULATION

There are no expected fossil fuel impacts for this measure.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

 ³³¹CL&P and UI Program Savings Documentation for 2008 Program Year. Average of hours across all building types.
 <u>http://www.ctsavesenergy.com/files/Final%202008%20Program%20Savings%20Document.pdf</u>.
 ³³²Ibid

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-HVC-VSDH-V01-120601

4.5 Lighting End Use

The commercial lighting measures use a standard set of variables for hours or use, waste heat factors, coincident factors and HVAC interaction effects. This table has been developed based on information provided by the various stakeholders. For ease of review, the table is included here and referenced in each measure.

Building Type	Fixture Annual Operating Hours ³³³	Screw based bulb Annual Operating hours ³³⁴	WHFe ³³⁵	CF ³³⁶	WHFd ³³⁷	IFTherms ³³⁸
Office	4,439	3,088	1.25	0.66	1.30	0.016
Grocery	5,802	3,650	1.43	0.69	1.52	0.012
Healthcare Clinic	5,095	4,207	1.34	0.75	1.57	0.008
Hospital	6,038	4,207	1.35	0.75	1.69	0.011
Heavy Industry	5,041	2,629	1.03	0.89	1.06	0.008
Light Industry	5,360	2,629	1.03	0.92	1.06	0.008
Hotel/Motel Common Areas	5,311	4,542	1.15	0.21	1.51	0.022
Hotel/Motel Guest Rooms ³³⁹	777	777	1.15	0.21	1.51	0.022
Hotel/Motel Guest Rooms with electric heat	777	777	0.69	0.21	0.09	0.00
High School/Middle School	4,311	2,327	1.23	0.22	0.74	0.017

³³³Fixtures hours of use are primarily derived from the default EPY4 values developed for ComEd based on DEER 2005, DEER 2008, EPY1 and EPY2 evaluation results. 'Lighting intro wp.doc'. Values for office, grocery, light industry, restaurant, retail/service and warehouse are an average of the EPY4 values and AmerEn Missouri, March 2011 Final Report: Evaluation of Business Energy Efficiency Program Custom and Standard Incentives. Hotel/Motel common areas is the DEER 2008 average across all non-guest room spaces and guest rooms is the average of hotel and motel guest room values from DEER 2008. Elementary School is from Ameren Missouri evaluation results. Multi-family common area value based on Focus on Energy Evaluation, ACES Deemed Savings Desk Review, November 2010. Miscellaneous is an average of all indoor spaces.

³³⁴Hours of use for screw based bulbs are derived from DEER 2008 by building type for cfls. Garage, exterior and multi-family common area values are from the Hours of Use Table in this document. Miscellaneous is an average of interior space values. Some building types are averaged when DEER has two values: these include office, restaurant and retail. Healthcare clinic uses the hospital value.

³³⁵The Waste Heat Factor for Energy is developed using EQuest models for various building types averaged across 5 climate zones for Illinois for the following building types: office, grocery, healthcare/clinic, manufacturing, motel, high school, hospital, elementary school, restaurant, retail, college and warehouse. Exterior and garage values are 1, miscellaneous is an average of all indoor spaces.

³³⁶ Coincident diversity factors are from the EPY4 values developed for ComEd based on DEER 2005, DEER 2008, EPY1 and EPY2 evaluation results. Miscellaneous value for Coincident Diversity Factor is from DEER 2008.

³³⁷ Waste Heat Factor for Demand is developed using EQuest models consistent with methodology for Waste Heat Factor for Energy.

³³⁸IF Therms value is developed using EQuest models consistent with methodology for Waste Heat Factor for Energy.

³³⁹ Hotel/Motel guest rooms are presented with either electric heat or gas heat; values chosen should match the fuel type in the space.

Building Type	Fixture Annual Operating Hours	Screw based bulb Annual Operating hours	WHFe	CF	WHFd	IFTherms
Elementary School	2,422	2,118	1.21	0.22	1.33	0.019
Restaurant	3,673	4,784	1.34	0.80	1.65	0.023
Retail/Service	4,719	2,935	1.24	0.83	1.44	0.024
College/University	3,540	2,588	1.14	0.56	1.50	0.021
Warehouse	4,746	4,293	1.16	0.70	1.17	0.015
Garage	3,540	3,540	1.00	1.00	1.00	0.000
Garage, 24/7 lighting ³⁴⁰	8,766	8,766	1.00	1.00	1.00	0.000
Exterior	4,903	4,903	1.00	0.00	1.00	0.000
Multi-family Common Areas	5,950	5,950	1.34	0.75	1.57	0.015
Religious Worship/Church ³⁴¹	1,664	1,664	1.24	0.25	1.46	0.014
Low-Use Small Business Miscellaneous ³⁴²	2,954	2,954	1.24	0.66	1.46	0.014
Miscellaneous ³⁴³	4,576	3,198	1.24	0.66	1.46	0.014
Uncooled Building	Varies	varies	1.00	varies	varies	varies
Refrigerated Cases	5,802	n/a	1.29	0.69	1.29	0
Freezer Cases	5,802	n/a	1.5	0.69	1.5	0

³⁴⁰ Use of this value requires documentation that the lighting is required to be on 24 hours a day,7 days a week for 365.25 days per year.

³⁴¹ Religious worship/church hours are based on DOE 2003 Commercial Building Energy Survey (CBECS) assumption of 32 hours 52 weeks a year. Coincident factor is estimated based on assumption that system peak times (1-5pm M-F) are not likely to be heavy usage periods for religious buildings. Other assumptions are consistent with Miscellaneous assumptions.

³⁴² Low-use small business hours are based on ComEd EPY4 Small Business Energy Savings Evaluation. Other assumptions are consistent with Miscellaneous assumptions.

³⁴³ Miscellaneous hours are based on an average of all other space types. Values for EIF, DIF and IFtherms are an average of the other values excluding garage, uncooled building and exterior. Coincident Diversity Factor is from DEER 2008

4.5.1 Commercial ENERGY STAR Compact Fluorescent Lamp (CFL)

DESCRIPTION

A low wattage ENERGY STAR qualified compact fluorescent screw-in bulb (CFL) is installed in place of a baseline screw-in bulb. This characterization assumes that the CFL is installed in a commercial location. If the implementation strategy does not allow for the installation location to be known (e.g. an upstream retail program), a deemed split of 96% Residential and 4% Commercial assumptions should be used³⁴⁴.

Federal legislation stemming from the Energy Independence and Security Act of 2007 (EISA) will require all general-purpose light bulbs between 40W and 100W to be approximately 30% more energy efficient than current incandescent bulbs. Production of 100W, standard efficacy incandescent lamps ended in 2012 followed by restrictions on 75W in 2013 and 60W and 40W in 2014. The baseline for this measure will therefore become bulbs (improved incandescent or halogen) that meet the new standard.

To account for these new standards, the expected delay in clearing retail inventory, and the potential for movement of product across state borders, the first year annual savings for this measure is reduced for 100W equivalent bulbs in June 2012, for 75W equivalent bulbs in June 2013 and for 60W and 40W equivalent bulbs in June 2014.

In addition, since during the lifetime of a CFL, the baseline bulb will be replaced multiple times, the annual savings claim must also be reduced within the life of the measure. For example, for 60W equivalent bulbs installed in 2012, the full savings (as calculated below in the Algorithm) should be claimed for the first two years, but a reduced annual savings based on the EISA-compliant baseline should be claimed for the remainder of the measure life. The appropriate adjustment factors are provided in the 'Mid Life Baseline Adjustment' section below.

Finally, a provision in the EISA regulations requires that by January 1, 2020, all lamps meet efficiency criteria of at least 45 lumens per watt, in essence making the baseline equivalent to a current day CFL. Therefore the measure life (number of years that savings should be claimed) should be reduced once the assumed lifetime of the bulb exceeds 2020. Due to expected delay in clearing retail inventory and to account for the operating life of a halogen incandescent potentially spanning over 2020, this shift is assumed not to occur until mid-2020.

This measure was developed to be applicable to the following program types: TOS, NC, RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the high-efficiency equipment must be a standard ENERGY STAR qualified compact fluorescent lamp.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is assumed to be a standard incandescent light bulb, up until when EISA regulations dictate higher efficiency baseline bulbs. A 100W baseline bulb becomes a 72W bulb in June 2012, a 75W bulb becomes 53W in June 2013 and 60W and 40W bulbs become 43W and 29W respectively in June 2014 Annual savings are reduced to account for this baseline shift within the life of a measure and the measure life is reduced to account for the baseline replacements becoming equivalent to a current day CFL by June 2020.

³⁴⁴ RES v C&I split is based on a weighted (by sales volume) average of ComEd PY3 and PY4 and Ameren PY5 in store intercept survey results.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life (number of years that savings should be claimed) should be calculated by dividing the rated life of the bulb (10,000 hours³⁴⁵) by the run hours. For example using Miscellaneous at 4,589 hours would give 2.2 years. When the number of years exceeds June 2020, the number of years to that date should be used.

DEEMED MEASURE COST

The incremental capital cost assumption for all bulbs under 2600 lumens is \$1.90, from June 2012 – May 2013, \$1.80 from June 2013 – May 2014 and \$1.50 from June 2014 – May 2015³⁴⁶.

For bulbs over 2600 lumens the assumed incremental capital cost is \$5.

DEEMED O&M COST ADJUSTMENTS

The Net Present Value of the baseline replacement costs for each CFL lumen range and installation year (2012 - 2017) are presented below³⁴⁷:

	NPV of baseline replacement costs		
Lumen Range	June 2012 - May 2013	June 2013 - May 2014	June 2014 - May 2017
1490-2600	\$11.81	\$11.81	\$11.81
1050-1489	\$8.60	\$11.81	\$11.81
750-1049	\$4.68	\$8.60	\$11.81
310-749	\$4.68	\$8.60	\$11.81

The annual levelized baseline replacement costs using the statewide real discount rate of 5.23% are presented below:

	Levelized annual replacement cost savings		
CFL wattage	June 2012 - May 2013	June 2013 - May 2014	June 2014 - May 2017
1490-2600	\$5.86	\$5.86	\$5.86
1050-1489	\$4.26	\$5.86	\$5.86
750-1049	\$2.32	\$4.26	\$5.86
310-749	\$2.32	\$4.26	\$5.86

Note incandescent bulbs greater than 2601 or less than 310 lumens are exempt from EISA. For these bulbs there is no baseline shift and so the assumption is a baseline replacement cost of \$0.50 every 0.2 year (1000 hr rated life/4589 run hours).

³⁴⁵Energy Star bulbs have a rated life of at least 8000 hours. In commercial settings you expect significantly less on/off switching than residential and so a rated life assumption of 10,000 hours is used.

³⁴⁶Based on Northeast Regional Residential Lighting Strategy (RLS) report, prepared by EFG, D&R International, Ecova and Optimal Energy, applying sales weighting and phase-in of EISA regulations. Assumption is \$2.50 for CFL over three years and \$0.6 for baseline in 2012, \$0.70 in 2013 and \$1.00 in 2014 as more expensive EISA qualified bulbs become baseline.

³⁴⁷Calculation is based on average hours of use assumption, see 'C&I Standard CFL O&M calc.xls' for more details.

LOADSHAPE

Loadshape C06 - Commercial Indoor Lighting
Loadshape C07 - Grocery/Conv. Store Indoor Lighting
Loadshape C08 - Hospital Indoor Lighting
Loadshape C09 - Office Indoor Lighting
Loadshape C10 - Restaurant Indoor Lighting
Loadshape C11 - Retail Indoor Lighting
Loadshape C12 - Warehouse Indoor Lighting
Loadshape C13 - K-12 School Indoor Lighting
Loadshape C14 - Indust. 1-shift (8/5) (e.g., comp. air, lights)
Loadshape C15 - Indust. 2-shift (16/5) (e.g., comp. air, lights)
Loadshape C16 - Indust. 3-shift (24/5) (e.g., comp. air, lights)
Loadshape C17 - Indust. 4-shift (24/7) (e.g., comp. air, lights)
Loadshape C18 - Industrial Indoor Lighting
Loadshape C19 - Industrial Outdoor Lighting
Loadshape C20 - Commercial Outdoor Lighting

COINCIDENCE FACTOR

The summer peak coincidence factor for this measure is dependent on the location type. Values are provided for each building type in section 4.5.

Algorithm					
CALCULATION OF SAVINGS					
ELECTRIC ENERGY SAVING	s				
	ΔkWh	=((WattsBas	e-WattsEE)/1000) * I	SR * Hours * WHFe	
Where: WattsBase = Actual (if retrofit measure) or based on lumens of CFL bulb and program year installed:					
Minimum Lumens	Maximum Lur	nens	Incandescent Equivalent Pre-EISA 2007 (WattsBase)	Incandescent Equivalent Post-EISA 2007 (WattsBase)	Effective date from which Post – EISA 2007 assumption should be used

5280	6209	300	300	n/a
3000	5279	200	200	n/a
2601	2999	150	150	n/a
1490	2600	100	72	June 2012
1050	1489	75	53	June 2013
750	1049	60	43	June 2014
310	749	40	29	June 2014
250	309	25	25	n/a

WattsEE = Actual wattage of CFL purchased or installed

ISR = In Service Rate or the percentage of units rebated that get installed.

=100 $\%^{348}$ if application form completed with sign off that equipment is not placed into storage

If sign off form not completed assume the following 3 year ISR assumptions:

Weigted Average 1 st year In Service Rate (ISR)	2 nd year Installations	3 rd year Installations	Final Lifetime In Service Rate
69.5% ³⁴⁹	15.4%	13.1%	98.0% ³⁵⁰

Hours = Average hours of use per year are provided in Reference Table in Section 4.5, Screw based bulb annual operating hours, for each building type³⁵¹. If unknown use the Miscellaneous value.

WHFe

⁼ Waste heat factor for energy to account for cooling energy savings from efficient lighting are provided below for each building type in Reference Table

³⁴⁸Illinois evaluation of PY1 through PY3 has not found that fixtures or lamps placed into storage to be a significant enough issue to warrant including an "In-Service Rate" when commercial customers complete an application form.

³⁴⁹ 1st year in service rate is based upon review of PY1-3 evaluations from ComEd and Ameren (see 'IL RES Lighting ISR.xls' for more information. The average first year ISR for each utility was calculated weighted by the number of bulbs in the each year's survey. This was then weighted by annual sales to give a statewide assumption. Note these evaluations did not look at C&I specific installations but until a more appropriate C&I evaluation is performed, the Residential assumptions are applied.

³⁵⁰ The 98% Lifetime ISR assumption is based upon review of two evaluations:

^{&#}x27;Nexus Market Research, RLW Analytics and GDS Associates study; "New England Residential Lighting Markdown Impact Evaluation, January 20, 2009' and 'KEMA Inc, Feb 2010, Final Evaluation Report:, Upstream Lighting Program, Volume 1.' This implies that only 2% of bulbs purchased are never installed. The second and third year installations are based upon Ameren analysis of the Californian KEMA study showing that 54% of future installs occur in year 2 and 46% in year 3. The 2nd and 3rd year installations should be counted as part of those future program year savings.

³⁵¹Based on ComEd analysis taking DEER 2008 values and averaging with PY1 and PY2 evaluation results.

in Section 4.5. If unknown, use the Miscellaneous value.

DEFERRED INSTALLS

As presented above, if a sign off form is not completed the characterization assumes that a percentage of bulbs purchased are not installed until Year 2 and Year 3 (see ISR assumption above). The Illinois Technical Advisory Committee has determined the following methodology for calculating the savings of these future installs.

Year 1 (Purchase Year) installs:	Characterized using assumptions provided above or evaluated assumptions if available.
Year 2 and 3 installs:	Characterized using delta watts assumption and hours of use from the Install Year i.e. the actual deemed (or evaluated if available) assumptions active in Year 2 and 3 should be applied.
	The NTG factor for the Purchase Year should be applied.

For example, for a 14W CFL (60W standard incandescent and 43W EISA qualified incandescent/halogen) purchased in 2013 and using miscellaneous hours assumption.

 $\Delta kWH_{1st year installs} = ((60 - 14) / 1000) * 0.695 * 3198 * 1.06$

= 108.4 kWh

 $\Delta kWH_{2nd \ vear \ installs} = ((43 - 14) / 1000) * 0.154 * 3198 * 1.06$

= 15.1 kWh

Note: Here we assume no change in hours assumption. NTG value from Purchase year applied.

 $\Delta kWH_{3rd vear installs} = ((43 - 14) / 1000) * 0.131 * 3198 * 1.06$

= 12.9 kWh

Mid Life Baseline Adjustment

During the lifetime of a CFL, a baseline incandescent bulb would need to be replaced multiple times. Since the baseline bulb changes over time (except for 2600+ lumen bulbs) the annual savings claim must be reduced within the life of the measure to account for this baseline shift in cost-effectiveness analysis.

For example, for 60W equivalent bulbs installed in 2012, the full savings (as calculated above in the Algorithm) should be claimed for the first two years, but a reduced annual savings claimed for the remainder of the measure life. If the delta watts assumption is already based on the post EISA value, no mid-life adjustment is necessary. For deferred installs (described above) the delta watts and appropriate mid life adjustment (if any) should be applied.

The appropriate adjustment factors are provided below.

Lumen Range	Pre EISA	Post EISA	CFL	Delta	Delta	Mid Life	Adjustment
	WattsBase	WattsBase	Equivalent	Watts	Watts After	Adjustmen	made from

				Before I	EISA EISA	t	date
1490-2600	100	72	25	75	47	63%	N/A (2012 is already post EISA)
1050-1489	75	53	20	55	33	60%	June, 2013
750-1049	60	43	14	46	29	63%	June, 2014
310-749	40	29	11	29	18	62%	June, 2014

For example, a 14W standard CFL purchased and *installed* in an office during the June 2013 – May 2014 program year (i.e. for this example we are ignoring the ISR):

First Year savings:

 $\Delta kWH_{1st vear} = ((60 - 14) / 1000) * 3088 * 1.06$

= 150.6 kWh

This value should be claimed in June 2013 – May 2014. However after June 2014 baseline bulb replacements would shift to the EISA compliant 43W bulb and so for the purposed of cost-effectiveness screening, savings for that same bulb purchased and installed in 2013 will claim the following in that second year and for all subsequent years through the measure life:

Annual savings for same installed bulbs in second and subsequent years:

 $\Delta kWH_{remaining years} = ((43 - 14) / 1000) * 3 * 1.06$

= 94.9 kWh

Another way to calculate this is to use the mid life adjustment factors provided above;

= 150.6 * 0.63

= 94.9 kWh

Note these adjustments should be applied to kW and fuel impacts.

Example showing both deferred bulb installs (if completed form not provided) and mid life adjustment.
A 14W standard CFL is <i>purchased</i> during the June 2013 – May 2014 program year:
First year savings:
$\Delta kWH_{1st year installs} = ((60 - 14) / 1000) * 0.695 * 3088 * 1.06$
= 104.6 kWh
Second year savings:
$\Delta kWH_{1st year installs} = 104.6 * 0.63$
= 65.9 kWh
Plus second year installs:
$\Delta kWH_{2nd year installs} = ((43 - 14) / 1000) * 0.154 * 3088 * 1.06$
= 14.6 kWh
ΔkWH_{Total} = 65.9 + 14.6 = 80.5 kWh
Third year savings:
$\Delta kWH_{1st year installs} = 65.9 kWh$
$\Delta kWH_{2nd year installs} = 14.6 kWh$
ΔkWH _{3rd year installs} = ((43 - 14) / 1000) * 0.131 * 3088 * 1.06
= 12.4 kWh
ΔkWH_{Total} = 65.9 + 14.6 + 12.4 = 92.9 kWh
Note the measure life for each year's install would begin on the year the lamp is installed (noting the backstop provision of 2020).

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 ΔkW = ((WattsBase-WattsEE)/1000) * ISR * WHFd * CF

Where:

WHFd	= Waste heat factor for demand to account for cooling savings from efficient lighting in cooled buildings is provided in the Reference Table in Section 4.5. If unknown, use the Miscellaneous value
CF	= Summer Peak Coincidence Factor for measure is provided in the Reference

Table in Section 6.5. If unknown, use the Miscellaneous value..

Other factors as defined above

For example, a 14W standard CFLis installed in an office in 2013 and sign off form provided: $\Delta kW = ((60 - 14)/1000)*1.0*1.3*0.66$ = 0.039kW

NATURAL GAS ENERGY SAVINGS

Heating Penalty if fossil fuel heated building (or if heating fuel is unknown):

 Δ Therms³⁵² = (((WattsBase-WattsEE)/1000) * ISR * Hours *- IFTherms

Where:

IFTherms = Lighting-HVAC Interation Factor for gas heating impacts; this factor represents the increased gas space heating requirements due to the reduction of waste heat rejected by the efficent lighting. Values are provided in the Reference Table in Section 4.5. If unknown, use the Miscellaneous value.

Other factors as defined above

For example, a 14W st	andard CFL is installed in an office in 2013 and sign off form provided:
ΔTherms	= (((60 - 14)/1000)* 1.0*3088*-0.016
	= - 2.3 Therms

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

For those bulbs not impacted by EISA (25W incandescent equivalents), a simple O&M impact should be calculated based on baseline replacement cost of \$0.50 and a lifetime of 0.31 years³⁵³.

In order to account for the shift in baseline due to the Energy Independence and Security Act of 2007, an equivalent annual levelized baseline replacement cost over the lifetime of the CFL is calculated (see C&I Standard CFL O&M calc.xls). The key assumptions used in this calculation are documented below³⁵⁴:

³⁵²Negative value because this is an increase in heating consumption due to the efficient lighting.

 $^{^{353}}$ Lamp life calculated by dividing 1000 hour rated life with miscellaneous hours of use (1000/3198 = 0.31).

³⁵⁴Calculation is based on average hours of use assumption.

	Standard Incandescent	EISA qualified Incandescent/Halogen
Replacement Cost	\$0.50	\$1.50
Component Rated	1000	1000^{355}
Life (hrs)		

The Net Present Value of the baseline replacement costs for each CFL lumen range and installation year (2012 -2017) are presented below³⁵⁶:

	NPV of baseline replacement costs			
	June 2012 - May June 2013 - May			
Lumen Range	2013	2014	June 2014 - May 2017	
1490-2600	\$12.86	\$12.86	\$12.86	
1050-1489	\$9.36	\$12.86	\$12.86	
750-1049	\$5.10	\$9.36	\$12.86	
310-749	\$5.10	\$9.36	\$12.86	

The annual levelized baseline replacement costs using the statewide real discount rate of 5.23% are presented below:

	Levelized annual replacement cost savings			
	June 2012 - May June 2013 - May			
CFL wattage	2013	2014	June 2014 - May 2017	
1490-2600	\$6.38	\$6.38	\$6.38	
1050-1489	\$4.64	\$6.38	\$6.38	
750-1049	\$2.53	\$4.64	\$6.38	
310-749	\$2.53	\$4.64	\$6.38	

MEASURE CODE: CI-LTG-CCFL-V02-130601

³⁵⁵The manufacturers of the new minimally compliant EISA Halogens are using regular incandescent lamps with halogen fill gas rather than halogen infrared to meet the standard and so the component rated life is equal to the standard incandescent. ³⁵⁶Calculation is based on average hours of use assumption, see 'C&I Standard CFL O&M calc.xls' for more details.

4.5.2 Fluorescent Delamping

DESCRIPTION

This measure addresses the permanent removal of existing 8', 4', 3' and 2' fluorescent lamps. Unused lamps, lamp holders, and ballasts must be permanently removed from the fixture. This measure is applicable when retrofitting from T12 lamps to T8 lamps or simply removing lamps from a T8 fixture. Removing lamps from a T12 fixture that is not being retrofitted with T8 lamps are not eligible for this incentive.

Customers are responsible for determining whether or not to use reflectors in combination with lamp removal in order to maintain adequate lighting levels. Lighting levels are expected to meet the Illuminating Engineering Society of North America (IESNA) recommended light levels. Unused lamps, lamp holders, and ballasts must be permanently removed from the fixture and disposed of in accordance with local regulations. A pre-approval application is required for lamp removal projects.

This measure was developed to be applicable to the following program types: RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

Savings are defined on a per removed lamp basis. The retrofit wattage (efficient conditioned) is therefore assumed to be zero. The savings numbers provided below are for the straight lamp removal measures, as well as the lamp removal and install reflector measures. The lamp installed/retrofit is captured in another measure.

DEFINITION OF BASELINE EQUIPMENT

The baseline condition is either a T12 or a T8 lamp with default wattages provided below. Note, if the program does not allow for the lamp type to be known, then a T12:T8 weighting of 80%:20% can be applied³⁵⁷.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The measure life is assumed to be 11 years per DEER 2005.

DEEMED MEASURE COST

The incremental capital cost is provided in the table below:

Measure Category	Value	Source
8-Foot Lamp Removal	\$16.00	ComEd/KEMA regression ³⁵⁸
4-Foot Lamp Removal	\$12.00	ICF Portfolio Plan
8-Foot Lamp Removal with reflector	\$30.00	KEMA Assumption
4-Foot Lamp Removal with reflector	\$25.00	KEMA Assumption
2-Foot or 3-Foot Removal	\$12.35	KEMA Assumption
2-Foot or 3-Foot Removal with reflector	\$25.70	KEMA Assumption

³⁵⁷ Based on ComEd's estimate of lamp type saturation.

³⁵⁸ Based on the assessment of active projects in the 2008-09 ComEd Smart Ideas Program. See files "Itg costs 12-10-10.xl." and "Lighting Unit Costs 102605.doc"

DEEMED O&M COST ADJUSTMENTS

n/a

LOADSHAPE

Loadshape C06 - Commercial Indoor Lighting Loadshape C07 - Grocery/Conv. Store Indoor Lighting Loadshape C08 - Hospital Indoor Lighting Loadshape C09 - Office Indoor Lighting Loadshape C10 - Restaurant Indoor Lighting Loadshape C11 - Retail Indoor Lighting Loadshape C12 - Warehouse Indoor Lighting Loadshape C13 - K-12 School Indoor Lighting Loadshape C13 - K-12 School Indoor Lighting Loadshape C14 - Indust. 1-shift (8/5) (e.g., comp. air, lights) Loadshape C15 - Indust. 2-shift (16/5) (e.g., comp. air, lights) Loadshape C16 - Indust. 3-shift (24/5) (e.g., comp. air, lights) Loadshape C17 - Indust. 4-shift (24/7) (e.g., comp. air, lights) Loadshape C18 - Industrial Indoor Lighting Loadshape C19 - Industrial Outdoor Lighting Loadshape C20 - Commercial Outdoor Lighting

COINCIDENCE FACTOR

The summer peak coincidence factor for this measure is dependent on the location type. Values are provided for each building type in the reference section below.

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

ΔkWh =((WattsBase-WattsEE)/1000) * ISR * Hours * WHFe

Where:

WattsBase	= Assume wattage reduction of lamp removed
Vullibuse	resume wattage reduction of lamp removed

	Wattage remov		Weighted average
	Т8	T12	80% T12, 20% T8
8-ft T8	38.6	60.3	56.0
4-ft T8	19.4	33.7	30.8
3-ft T8	14.6	40.0	34.9
2-ft T8	9.8	28.0	24.4

WattsEE	= 0
ISR	= In S

ISR	= In Service Rate or the percentage of units rebated that get installed.
	=100% if application form completed with sign off that equipment permanently removed and disposed of.
Hours	 Average hours of use per year are provided in Reference Table in Section 4.5. If unknown use the Miscellaneous value.
WHFe	= Waste heat factor for energy to account for cooling energy savings from efficient lighting are provided below for each building type in Reference Table

in Section 4.5. If unknown, use the Miscellaneous value.

³⁵⁹ Default wattage reducetion is based on averaging the savings from moving from a 2 to 1, 3 to 2 and 4 to 3 lamp fixture, as provided in the Standard Performance Contract Procedures Manual: Appendix B: Table of Standard Fixture Wattages (<u>http://www.sce.com/NR/rdonlyres/7A3455F0-A337-439B-9607-10A016D32D4B/0/spc B Std Fixture Watts.pdf</u>). An adjustment is made to the T8 delamped fixture to account

for the significant increase in ballast factor. See 'Delamping calculation.xls' for details.

For example, delamping a 4 ft T8 fixture in an office building: ΔkWh =((19.4 - 0)/1000) * 1.0 * 4439 * 1.25 = 107.6 kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

ΔkW= ((WattsBase-WattsEE)/1000) * ISR * WHFd * CF

Where:

- WHFd = Waste heat factor for demand to account for cooling savings from efficient lighting in cooled buildings is provided in the Reference Table in Section 4.5. If unknown, use the Miscellaneous value..
- CF = Summer Peak Coincidence Factor for measure is provided in the Reference Table in Section 4.5. If unknown, use the Miscellaneous value..

Other factors as defined above

For example, delamping a 4 ft T8 fixture in an office building:

 $\Delta kWh = ((19.4 - 0)/1000) * 1.0 * 1.3 * 0.66$

= 0.017 kW

NATURAL GAS ENERGY SAVINGS

Heating Penalty if fossil fuel heated building (or if heating fuel is unknown):

 Δ Therms³⁶⁰ = (((WattsBase-WattsEE)/1000) * ISR * Hours *- IFTherms

Where:

IFTherms = Lighting-HVAC Interation Factor for gas heating impacts; this factor represents the increased gas space heating requirements due to the reduction of waste heat rejected by the efficent lighting. Values are provided in the Reference Table in Section 4.5. If unknown, use the Miscellaneous value.

Other factors as defined above

³⁶⁰Negative value because this is an increase in heating consumption due to the efficient lighting.

For example, delamping a 4 ft T8 fixture in an office building:

∆Therms

=((19.4 - 0)/1000) * 1.0 * 4439 * -0.016

=-1.4 therms

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-LTG-DLMP-V01-130601

4.5.3 High Performance and Reduced Wattage T8 Fixtures and Lamps

DESCRIPTION

This measure applies to "High Performance T8" (HPT8) lamp/ballast systems that have higher lumens per watt than standard T8 systems. This measure applies to the installation of new equipment with efficiencies that exceed that of the equipment that would have been installed following standard market practices and is applicable to time of sale as well as retrofit measures. Retrofit measures may include new fixtures or relamp/reballast measures. In addition, options have been provided to allow for the "Reduced Wattage T8 lamps" or RWT8 lamps that result in re-lamping opportunities that produce equal or greater light levels than standard T8 lamps while using fewer watts.

This measure was developed to be applicable to the following program types: TOS, RF.

If applied to other program types, the measure savings should be verified.

The measure applies to all commercial HPT8 installations excluding new construction and major renovation or change of use measures (see lighting power density measure). Lookup tables have been provided to account for the different types of installations. Whenever possible, actual costs and hours of use should be utilized for savings calculations. Default new and baseline assumptions have been provided in the reference tables. Default component costs and lifetimes have been provided for Operating and Maintenance Calculations. Please see the Definition Table to determine applicability for each program. HPT8 configurations not included in the TRM may be included in custom program design using the provided algorithms as long as energy savings is achieved. The following table defines the applicability for different programs

Time of Sale (TOS)	Retrofit (RF)
This measure relates to the installation of new	This measure relates to the replacement of existing
equipment with efficiency that exceeds that of	equipment with new equipment with efficiency that
equipment that would have been installed following	exceeds that of the existing equipment. In general, the
standard market practices. In general, the measure	retrofit will include qualifying high efficiency low ballast
will include qualifying high efficiency low ballast	factor ballasts paired with high efficiency long life lamps
factor ballasts paired with high efficiency long life	as detailed in the attached tables. Custom lighting
lamps as detailed in the attached tables. High-bay	designs can use qualifying low, normal or high ballast
applications use this system paired with qualifying	factor ballasts and qualifying lamps in lumen equivalent
high ballast factor ballasts and high performance 32	applications where total system wattage is reduced when
w lamps. Custom lighting designs can use	calculated using the Calculation of Savings Algorithms.
qualifying low, normal or high ballast factor	
ballasts and qualifying lamps in lumen equivalent	High efficiency troffers (new/or retrofit) utilizing HPT8
applications where total system wattage is reduced	technology can provide even greater savings. When used
when calculated using the Calculation of Savings	in a high-bay application, high-performance T8 fixtures
Algorithms.	can provide equal light to HID high-bay fixtures, while
	using fewer watts; these systems typically utilize high
	ballast factor ballasts, but qualifying low and normal
	ballast factor ballasts may be used when appropriate light
	levels are provided and overall wattage is reduced.

DEFINITION OF EFFICIENT EQUIPMENT

The definition of efficient equipment varies based on the program and is defined below:

Time of Sale (TOS)	Retrofit (RF)
In order for this characterization to apply, new lamps and ballasts must be listed on the CEE website on	In order for this characterization to apply, new lamps and ballasts must be listed on the CEE website on the
the qualifying High Performance T8 lamps and	qualifying High Performance T8 lamps and ballasts list
ballasts list (http://www.cee1.org/com/com-lt/com- lt-main.php3)	(http://www.cee1.org/com/com-lt/com-lt-main.php3).
it man.php5)	High efficiency troffers (new or retrofit kits) combined
High efficiency troffers combined with high	with high efficiency lamps and ballasts allow for fewer
efficiency lamps and ballasts allow for fewer lamps	lamps to be used to provide a given lumen output.
to be used to provide a given lumen output. High	High efficiency troffers must have a fixture efficiency
efficiency troffers must have a fixture efficiency of	of 80% or greater to qualify. Default values are given
80% or greater to qualify. Default values are given for a 2 lamp HPT8 fixture replacing a 3 lamp	for a 2 lamp HPT8 fixture replacing a 3 lamp standard efficiency T8 fixture, but other configurations may
standard efficiency T8 fixture, but other	qualify and the Calculation of savings algorithm used
configurations may qualify and the Calculation of	to account for base watts being replaced with EE watts.
savings algorithm used to account for base watts	
being replaced with EE watts.	High bay fixtures will have fixture efficiencies of 85% or greater.
High bay fixtures must have fixture efficiencies of	
85% or greater.	RWT8: in order for this characterization to apply, new
	4' and U-tube lamps must be listed on the CEE website
RWT8 lamps: In order for this characterization to apply, new 4' and U-tube lamps must be listed on the	on the qualifying Reduced Wattage High Performance T8 lamps list. (http://www.cee1.org/com/com-lt/com-
CEE website on the qualifying Reduced Wattage	It-main.php3). 2', 3' and 8' lamps must meet the
High Performance T8 lamps list.	wattage requirements specified in the RWT8 new and
(http://www.cee1.org/com/com-lt/com-lt-	baseline assumptions table.
main.php3). 2', 3' and 8' lamps must meet the	
wattage requirements specified in the RWT8 new	
and baseline assumptions table. This measure	
assumes a lamp only purchase.	

DEFINITION OF BASELINE EQUIPMENT

The definition of baseline equipment varies based on the program and is defined below:

Time of Sale (TOS)	Retrofit (RF)
The baseline is standard efficiency T8 systems that would have been installed. The baseline for high-	The baseline is the existing system.
bay fixtures is pulse start metal halide fixtures, the	Due to new federal standards for linear fluorescent
baseline for a 2 lamp high efficiency troffer is a 3 lamp standard efficency troffer.	lamps, manufacturers of T12 lamps will not be permitted to manufacture most varieties of T12 lamps for sale in the United States after July 2012. All remaining stock and previously manufactured product may be sold after the July 2012 effective date. If a customer relamps an existing T12 fixture the day the standard takes effect, an assumption can be made that they would likely need to upgrade to, at a minimum, 800-series T8s in less than 5 years' time.

Illinois Statewide Technical Reference Manual - 4.5.3 High Performance and Reduced Wattage T8 Fixtures and Lamps

to be available to purchase, although they will be expensive. Therefore the more likely scenario would be a gradual shift to T8s over the 4 year timeframe. In other words, we can expect that for each year between 2012 and 2016, ~20% of the existing T12 lighting will change over to T8 lamps that comply with the federal standard. To simplify this assumption, we recommend assuming that standard T8s become the baseline for all T12 linear fluorescent retrofit January 1, 2016. There will be a baseline shift applied to all measures installed before 2016. See table C-1.		be a gradual shift to T8s over the 4 year timeframe. In other words, we can expect that for each year between 2012 and 2016, ~20% of the existing T12 lighting will change over to T8 lamps that comply with the federal standard. To simplify this assumption, we recommend assuming that standard T8s become the baseline for all T12 linear fluorescent retrofit January 1, 2016. There will be a baseline shift applied to all
--	--	---

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The deemed lifetime of efficient equipment varies based on the program and is defined below:

Time of Sale (TOS)	Retrofit (RF)
Fixture lifetime is 15 years ³⁶¹ .	Fixture lifetime is 15 years.
Fixture retrofits which utilize RWT8 lamps have a lifetime equivalent to the life of the lamp, capped at 15 years. There is no guarantee that a reduced wattage lamp will be installed at time of burnout, but if one is, savings will be captured in the RWT8 measure below.	As per explanation above, for existing T12 fixtures, a mid life baseline shift should be applied in Jan 2016 as described in table C-1.
RWT8 lifetime is the life of the product, at the reported operating hours (lamp life in hours divided by operating hours per year – see reference table "RWT8 Component Costs and Lifetime"), capped at 15 years. ³⁶²	

DEEMED MEASURE COST AND O&M COST ADJUSTMENTS

The deemed lifetime of efficient equipment varies based on the program and is defined below:

 $^{^{361}}$ 15 years from GDS Measure Life Report, June 2007 362 ibid

Illinois Statewide Technical Reference Manual - 4.5.3 High Performance and Reduced Wattage T8 Fixtures and Lamps

Time of Sale (TOS)	Retrofit (RF)
Refer to reference tables A-1: Time of Sale New and	Refer to reference tables A-2: Retrofit New and
Baseline Assumptions and B-1 Time of Sale T8	Baseline Assumptions and B-2 Retrofit HPT8
Component Costs and Lifetime.	Component Costs and Lifetime.
For RTW8 refer to reference table A-3: RWT8 New	For RTW8 refer to reference table A-3: RWT8 New
and Baseline Assumptions and B-3 RWT8 T8	and Baseline Assumptions and B-3 RWT8 T8
Component Costs and Lifetime.	Component Costs and Lifetime.
	For T12 Baseline Adjustment Factors, refer to Table C-
	1.

LOADSHAPE

- Loadshape C06 Commercial Indoor Lighting
- Loadshape C07 Grocery/Conv. Store Indoor Lighting
- Loadshape CO8 Hospital Indoor Lighting
- Loadshape C09 Office Indoor Lighting
- Loadshape C10 Restaurant Indoor Lighting
- Loadshape C11 Retail Indoor Lighting
- Loadshape C12 Warehouse Indoor Lighting
- Loadshape C13 K-12 School Indoor Lighting
- Loadshape C14 Indust. 1-shift (8/5) (e.g., comp. air, lights)
- Loadshape C15 Indust. 2-shift (16/5) (e.g., comp. air, lights)
- Loadshape C16 Indust. 3-shift (24/5) (e.g., comp. air, lights)
- Loadshape C17 Indust. 4-shift (24/7) (e.g., comp. air, lights)
- Loadshape C18 Industrial Indoor Lighting
- Loadshape C19 Industrial Outdoor Lighting
- Loadshape C20 Commercial Outdoor Lighting

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = (Watts_{base}-Watts_{EE})/1000) * Hours *WHF_e*ISR$

SUMMER COINCIDENT DEMAND SAVINGS

 $\Delta kW = (Watts_{base}-Watts_{EE})/1000) * WHF_d*CF*ISR$

Where:

 $Watts_{base}$ = Input wattage of the existing system which depends on the baseline fixture configuration (number and type of lamp) and number of fixtures. Value can be selected from the appropriate reference table as shown below, of a custom value can be entered if the

Program	Reference Table
Time of Sale	A-1: HPT8 New and Baseline
	Assumptions
Retrofit	A-2: HPT8 New and Baseline
	Assumptions
Reduced Wattage T8, time of	A-3: RWT8 New and Baseline
sale or retrofit	Assumptions

configurations in the tables is not representative of the exisitng system.

 $Watts_{EE}$ = New Input wattage of EE fixture which depends on new fixture configuration (number of lamps) and ballast factor and number of fixtures. Value can be selected from the appropriate reference table as shown below, of a custom value can be entered if the configurations in the tables is not representative of the exisiting system.

Program	Reference Table
Time of Sale	A-1: HPT8 New and Baseline
	Assumptions
Retrofit	A-2: HPT8 New and Baseline
	Assumptions
Reduced Wattage T8, time of	A-3: RWT8 New and Baseline
sale or retrofit	Assumptions

Hours = Average hours of use per year as provided by the customer or selected from the Reference Table in Section 4.5, Fixture annual operating hours. If hours or building type are unknown, use the Miscellaneous value.

 WHF_e = Waste heat factor for energy to account for cooling energy savings from efficient lighting is selected from the Reference Table in Section 4.5 for each building type. If building is uncooled, the value is 1.0.

 WHF_d = Waste Heat Factor for Demand to account for cooling savings from efficient lighting in cooled buildings is selected from the Reference Table in Section 4.5 for each building type. If the building is not cooled WHFd is 1.

ISR = In Service Rate or the percentage of units rebated that get installed.

=100 $\%^{363}$ if application form completed with sign off that equipment is not placed into storage

If sign off form not completed assume the following 3 year ISR assumptions:

Weigted Average 1 st	2 nd year	3 rd year	Final Lifetime In
year In Service Rate (ISR)	Installations	Installations	Service Rate

³⁶³Illinois evaluation of PY1 through PY3 has not found that fixtures or lamps placed into storage to be a significant enough issue to warrant including an "In-Service Rate" when commercial customers complete an application form.

69.5%³⁶⁴ 15.4% 13.1% 98.0%³⁶⁵

CF= Summer Peak Coincidence Factor for measure is selected from the Reference Table in Section 4.5 for each building type. If the building type is unknown, use the Miscellaneous value of 0.66.

NATURAL GAS ENERGY SAVINGS

ΔTherms³⁶⁶ = (((WattsBase-WattsEE)/1000) * ISR * Hours *- IFTherms

Where:

IFTherms = Lighting-HVAC Integration Factor for gas heating impacts; this factor represents the increased gas space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Please select from the Reference Table in Section 4.5 for each building type.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

See Reference tables for Operating and Maintenance Values

Program	Reference Table
Time of Sale	B-1: HPT8 Component Costs and
	Lifetime
Retrofit	B-2: HPT8 Component Costs and
	Lifetime
Reduced Wattage T8, time of	B-3: HPT8 Component Costs and
sale or retrofit	Lifetime

³⁶⁴ 1st year in service rate is based upon review of PY1-3 evaluations from ComEd and Ameren (see 'IL RES Lighting ISR.xls' for more information. The average first year ISR for each utility was calculated weighted by the number of bulbs in the each year's survey. This was then weighted by annual sales to give a statewide assumption. Note these evaluations did not look at C&I specific installations but until a more appropriate C&I evaluation is performed, the Residential assumptions are applied.

³⁶⁵ The 98% Lifetime ISR assumption is based upon review of two evaluations:

^{&#}x27;Nexus Market Research, RLW Analytics and GDS Associates study; "New England Residential Lighting Markdown Impact Evaluation, January 20, 2009' and 'KEMA Inc, Feb 2010, Final Evaluation Report:, Upstream Lighting Program, Volume 1.' This implies that only 2% of bulbs purchased are never installed. The second and third year installations are based upon Ameren analysis of the Californian KEMA study showing that 54% of future installs occur in year 2 and 46% in year 3. The 2nd and 3rd year installations should be counted as part of those future program year savings.

³⁶⁶Negative value because this is an increase in heating consumption due to the efficient lighting.

Illinois Statewide Technical Reference Manual - 4.5.3 High Performance and Reduced Wattage T8 Fixtures and Lamps

REFERENCE TABLES

See following page

A-1: Time of Sale: HPT8 New and Baseline Assumptions³⁶⁷

EE Measure Description	Watts _{EE}	Baseline Description	Watts _{BASE}	Measure Cost	Watts _{save}
4-Lamp HPT8 w/ High-BF Ballast High-Bay	146	200 Watt Pulse Start Metal-Halide	232	\$75	86
6-Lamp HPT8 w/ High-BF Ballast High-Bay	221	320 Watt Pulse Start Metal-Halide	350	\$75	129
		Proportionally Adjusted according to 6-Lamp			
8-Lamp HPT8 w/ High-BF Ballast High-Bay	280	HPT8 Equivalent to 320 PSMH	455	\$75	175
1-Lamp HPT8-high performance 32 w lamp	25	1-Lamp Standard F32T8 w/ Elec. Ballast	32	\$15	7
1-Lamp HPT8-high performance 28 w lamp	22	1-Lamp Standard F32T8 w/ Elec. Ballast	32	\$15	10
1-Lamp HPT8-high performance 25 w lamp	19	1-Lamp Standard F32T8 w/ Elec. Ballast	32	\$15	13
2-Lamp HPT8 -high performance 32 w lamp	49	2-Lamp Standard F32T8 w/ Elec. Ballast	59	\$18	10
2-Lamp HPT8-high performance 28 w lamp	43	2-Lamp Standard F32T8 w/ Elec. Ballast	59	\$18	16
2-Lamp HPT8-high performance 25 w lamp	35	2-Lamp Standard F32T8 w/ Elec. Ballast	59	\$18	24
3-Lamp HPT8-high performance 32 w lamp	72	3-Lamp Standard F32T8 w/ Elec. Ballast	88	\$20	16
3-Lamp HPT8-high performance 28 w lamp	65	3-Lamp Standard F32T8 w/ Elec. Ballast	88	\$20	23
3-Lamp HPT8-high performance 25 w lamp	58	3-Lamp Standard F32T8 w/ Elec. Ballast	88	\$20	30
4-Lamp HPT8 -high performance 32 w lamp	94	4-Lamp Standard F32T8 w/ Elec. Ballast	114	\$23	20
4-Lamp HPT8-high performance 28 w lamp	86	4-Lamp Standard F32T8 w/ Elec. Ballast	114	\$23	28
4-Lamp HPT8-high performance 25 w lamp	77	4-Lamp Standard F32T8 w/ Elec. Ballast	114	\$23	37
2-lamp High-Performance HPT8 Troffer	49	3-Lamp F32T8 w/ Elec. Ballast	88	\$100	39

Table developed using a constant ballast factor of .77. Input wattages are an average of manufacturer inputs that account for ballast efficacy

³⁶⁷ Adapted from Efficiency Vermont Technical Reference User Manual (TRM) Measure Savings Algorithms and Cost Assumptions, October 26, 2011.

EE Measure Description	Watts	Baseline Description	Watts	Incremental cost	Watts
4-Lamp HPT8 w/ High-BF Ballast High-					
Bay	146	200 Watt Pulse Start Metal-Halide	232	\$200	86
4-Lamp HPT8 w/ High-BF Ballast High- Bay	146	250 Watt Metal Halide	295	\$200	149
6-Lamp HPT8 w/High-BF Ballast High- Bay	206	320 Watt Pulse Start Metal-Halide	350	\$225	144
6-Lamp HPT8 w/ High-BF Ballast High- Bay	206	400 Watt Metal Halide	455	\$225	249
8-Lamp HPT8 w/ High-BF Ballast High- Bay	280	Proportionally Adjusted according to 6- Lamp HPT8 Equivalent to 320 PSMH	476	\$250	196
- 8-Lamp HPT8 w/ High-BF Ballast High- Bay	280	Proportionally Adjusted according to 6- Lamp HPT8 Equivalent to 400 W Metal halide	618	\$250	338
1-Lamp Relamp/Reballast T12 to HPT8	25	1-Lamp F34T12 w/ EEMag Ballast	40	\$50	15
2-Lamp Relamp/Reballast T12 to HPT8	49	2-Lamp F34T12 w/ EEMag Ballast	68	\$55	19
3-Lamp Relamp/Reballast T12 to HPT8	72	3-Lamp F34T12 w/ EEMag Ballast	110	\$60	38
4-Lamp Relamp/Reballast T12 to HPT8	94	4-Lamp F34T12 w/ EEMag Ballast	139	\$65	45
1-Lamp Relamp/Reballast T12 to HPT8	25	1-Lamp F40T12 w/ EEMag Ballast	48	\$50	23
2-Lamp Relamp/Rebailast T12 to HPT8	49	2-Lamp F40T12 w/ EEMag Ballast	82	\$55	33
3-Lamp Relamp/Reballast T12 to HPT8	72	3-Lamp F40T12 w/ EEMag Ballast	122	\$60	50
4-Lamp Relamp/Reballast T12 to HPT8	94	4-Lamp F40T12 w/ EEMag Ballast	164	\$65	70
1-Lamp Relamp/Reballast T12 to HPT8	25	1-Lamp F40T12 w/ Mag Ballast	57	\$50	32
2-Lamp Relamp/Reballast T12 to HPT8	49	2-Lamp F40T12 w/ Mag Ballast	94	\$55	45
3-Lamp Relamp/Reballast T12 to HPT8	72	3-Lamp F40T12 w/ Mag Ballast	147	\$60	75
4-Lamp Relamp/Reballast T12 to HPT8	94	4-Lamp F40T12 w/ Mag Ballast	182	\$65	88
1-Lamp Relamp/Reballast T8 to HPT8	25	1-Lamp F32T8 w/ Elec. Ballast	32	\$50	7
2-Lamp Relamp/Reballast T8 to HPT8	49	2-Lamp F32T8 w/ Elec. Ballast	59	\$55	10
3-Lamp Relamp/Rebailast T8 to HPT8	72	3-Lamp F32T8 w/ Elec. Ballast	88	\$60	16
4-Lamp Relamp/Rebailast T8 to HPT8	94	4-Lamp F32T8 w/ Elec. Ballast	114	\$65	20
2-lamp High-Performance HPT8 Troffer or high efficiency retrofit troffer	49	3-Lamp F32T8 w/Elec. Ballast	88	\$100	39

A-2: Retrofit HPT8 New and Baseline Assumptions³⁶⁸ (Note see definiton for validity after 2016)

³⁶⁸Ibid.

A– 3: RWT8 New and Baseline Assumptions

		System			System	Measure	
EE Measure Description	EE Cost	WattsEE	Baseline Description	Base Cost	Watts Base	Cost	WattsSAVE
RWT8 - F28T8 Lamp	\$4.50	25	F32T8 Standard Lamp	\$2.50	28	\$2.00	4
RWT8 - F28T8 Extra Life Lamp	\$4.50	25	F32T8 Standard Lamp	\$2.50	28	\$2.00	4
RWT8 - F32/25W T8 Lamp	\$4.50	22	F32T8 Standard Lamp	\$2.50	28	\$2.00	6
RWT8 - F32/25W T8 Lamp Extra Life	\$4.50	22	F32T8 Standard Lamp	\$2.50	28	\$2.00	6
RWT8 - F17T8 Lamp - 2 Foot	\$4.80	14	F17T8 Standard Lamp - 2 foot	\$2.80	16	\$2.00	2
RWT8 - F25T8 Lamp - 3 Foot	\$5.10	20	F25T8 Standard Lamp - 3 foot	\$3.10	23	\$2.00	3
RWT8 - F30T8 Lamp - 6" Utube	\$11.31	26	F32T8 Standard Utube Lamp	\$9.31	28	\$2.00	2
RWT8 - F29T8 Lamp - Utube	\$11.31	26	F32T8 Standard Utube Lamp	\$9.31	28	\$2.00	3
RWT8 - F96T8 Lamp - 8 Foot	\$9.00	57	F96T8 Standard Lamp - 8 foot	\$7.00	62	\$2.00	5

Notes: Wattage assumptions for Reduced-Wattage T8 based on Existing 0.88 Normal Ballast Factor.

B-1: Time of Sale T8 Component Costs and Lifetime³⁶⁹

	EE Lamp	EE Lamp Life	EE Lamp Rep. Labor Cost per	EE Ballast	EE Ballast Life	EE Ballast Rep. Labor		Base Lamp	Base Lamp Life	Base Lamp Rep. Labor	Base Ballast	Base Ballast Life	Base Ballast Rep. Labor
EE Measure Description	Cost	(hrs)	lamp	Cost	(hrs)	Cost	Baseline Description	Cost	(hrs)	Cost	Cost	(hrs)	Cost
4-Lamp HPT8 w/ High-BF Ballast High-Bay	\$5.00	24000	\$6.67	\$32.50	70000	\$15.00	200 Watt Pulse Start Metal-Halide	\$21.00	10000	\$6.67	\$88	40000	\$22.50
6-Lamp HPT8 w/ High-BF Ballast High-Bay	\$5.00	24000	\$6.67	\$32.50	70000	\$15.00	320 Watt Pulse Start Metal-Halide	\$21.00	20000	\$6.67	\$109	40000	\$22.50
8-Lamp HPT8 w/ High-BF Ballast High-Bay	\$5.00	24000	\$6.67	\$32.50	70000	\$15.00	Lamp HPT8 Equivalent to 320 PSMH	\$21.00	20000	\$6.67	\$109	40000	\$22.50
1-Lamp HPT8 - all qualifying lamps	\$5.00	24000	\$2.67	\$32.50	70000	\$15.00	1-Lamp Standard F32T8 w/ Elec. Ballast	\$2.50	20000	\$2.67	\$15	70000	\$15.00
2-Lamp HPT8 - all qualifying lamps	\$5.00	24000	\$2.67	\$32.50	70000	\$15.00	2-Lamp Standard F32T8 w/ Elec. Ballast	\$2.50	20000	\$2.67	\$15	70000	\$15.00
3-Lamp HPT8 - all qualifying lamps	\$5.00	24000	\$2.67	\$32.50	70000	\$15.00	3-Lamp Standard F32T8 w/ Elec. Ballast	\$2.50	20000	\$2.67	\$15	70000	\$15.00
4-Lamp HPT8 - all qualifying lamps	\$5.00	24000	\$2.67	\$32.50	70000	\$15.00	4-Lamp Standard F32T8 w/ Elec. Ballast	\$2.50	20000	\$2.67	\$15	70000	\$15.00
2-lamp High-Performance HPT8 Troffer	\$5.00	24000	\$2.67	\$32.50	70000	\$15.00	3-Lamp F32T8 w/ Elec. Ballast	\$2.50	20000	\$2.67	\$15	70000	\$15.00

³⁶⁹ Adapted from Efficiency Vermont Technical Reference User Manual (TRM) Measure Savings Algorithms and Cost Assumptions, October 26, 2011.

B-2: T8 Retrofit Component Costs and Lifetime³⁷⁰

			EE										
			Lamp										
			Rep.			EE				Base			Base
		EE	Labor		EE	Ballast			Base	Lamp		Base	Balla
	EE	Lamp	Cost	EE	Ballast	Rep.		Base	Lamp	Rep.	Base	Ballast	Rep
	Lamp	Life	рег	Ballast	Life	Labor		Lamp	Life	Labor	Ballast	Life	Labo
EE Measure Description	Cost	(hrs)	lamp	Cost	(hrs)		Baseline Description	Cost	(hrs)	Cost	Cost	(hrs)	Cos
4-Lamp HPT8 w/High-BF Ballast High-Bay	\$5.00	24000	\$6.67	\$32.50	70000	\$15.00	200 Watt Pulse Start Metal-Halide	\$29.00	12000	\$6.67	\$88	40000	\$22.5
							250 Watt Metal Halide	\$21.00	10000	\$6.67	\$92	40000	\$22.5
6-Lamp HPT8 w/ High-BF Ballast High-Bay	\$5.00	24000	\$6.67	\$32.50	70000	\$15.00	320 Watt Pulse Start Metal-Halide	\$72.00	20000	\$6.67	\$109	40000	\$22.5
							400 Watt Metal Halide	\$17.00	20000	\$6.67	\$114	40000	\$22.5
8-Lamp HPT8 w/ High-BF Ballast High-Bay	\$5.00	24000	\$6.67	\$32.50	70000	\$15.00	Proportionally Adjusted according to 6- Lamp HPT8 Equivalent to 320 PSMH	\$72.00	20000	\$6.67	\$109	40000	\$22.5
							Proportionally Adjusted according to 6- Lamp HPT8 Equivalent to 400 Watt Metal Halide	\$17.00	20000	\$6.67	\$114	40000	\$22.5
1-Lamp Relamp/Reballast T12 to HPT8 (all lamp/ballst combinations)	\$5.00	24000	\$2.67	\$32.50	70000	\$15.00	1-Lamp T12 all lamp/ballast combinations	\$2.70	20000	\$2.67	\$20	40000	\$15.0
2-Lamp Relamp/Reballast T12 to HPT8 (all lamp/ballast combinations)	\$5.00	24000	\$2.67	\$32.50	70000	\$15.00	2-Lamp T12 all lamp/ballast combinations	\$2.70	20000	\$2.67	\$20	40000	\$15.0
3-Lamp Relamp/Reballast T12 to HPT8 (all lamp/ballast combinations)	\$5.00	24000	\$2.67	\$32.50	70000	\$15.00	3-Lamp T12 all lamp/ballast combinations	\$2.70	20000	\$2.67	\$20	40000	\$15.0
4-Lamp Relamp/Reballast T12 to HPT8 (all lamp/ballast combinations)	\$5.00	24000	\$2.67	\$32.50	70000	\$15.00	3-Lamp T12 all lamp/ballast combinations	\$2.70	20000	\$2.67	\$20	40000	\$15.0
	#7.0C	24000	40.07	400.50	70000	A45.00		#0.70	20000	#2.07	*20	70000	 + 4 5 - 5
1-Lamp Relamp/Rebailast T8 to HPT8	\$5.00	24000	\$2.67	\$32.50			1-Lamp F32T8 w/ Elec. Ballast	\$2.70	20000	\$2.67	\$20	70000	<u>\$15.0</u>
2-Lamp Relamp/Rebailast T8 to HPT8	\$5.00	24000	\$2.67	\$32.50			2-Lamp F32T8 w/ Elec. Ballast	\$2.70	20000	\$2.67	\$20	70000	\$15.0
3-Lamp Relamp/Rebailast T8 to HPT8	\$5.00	24000	\$2.67	\$32.50			3-Lamp F32T8 w/ Elec. Ballast	\$2.70	20000	\$2.67	\$20	70000	\$15.0
4-Lamp Relamp/Reballast T8 to HPT8	\$5.00	24000	\$2.67	\$32.50	70000	\$15.00	4-Lamp F32T8 w/Elec. Ballast	\$2.70	20000	\$2.67	\$20	70000	\$15.0
2-lamp High-Performance HPT8 Troffer or high efficiency retrofit reflective troffer	\$5.00	24000	\$2.67	\$32.50	70000	\$15.00	3-Lamp F32T8 w/ Elec. Ballast	\$2.50	20000	\$2.67	\$15	70000	\$15.0

B-3: Reduced Wattage T8 Component Costs and Lifetime³⁷¹

³⁷⁰ Efficiency Vermont Technical Reference User Manual (TRM) Measure Savings Algorithms and Cost Assumptions, October 26, 2011 EPE Program Downloads. Web accessed <u>http://www.epelectricefficiency.com/downloads.asp?section=ci</u> download Copy of LSF_2012_v4.04_250rows.xls. Kuiken et al, Focus on Energy Evaluation. Business Programs: Deemed Savings Manual v1.0, Kema, march 22, 2010 available at <u>http://www.focusonenergy.com/files/Document_Management_System/Evaluation/bpdeemedsavingsmanuav10_evaluationreport.pdf</u>

		EE			Base	
	EE	Lamp		Base	Lamp	Base Lamp
	Lamp	Life		Lamp	Life	Rep. Labor
EE Measure Description	Cost	(hrs)	Baseline Description	Cost	(hrs)	Cost
RWT8 - F28T8 Lamp	\$4.50	30000	F32T8 Standard Lamp	\$2.50	15000	\$2.67
RWT8 - F28T8 Extra Life Lamp	\$4.50	36000	F32T8 Standard Lamp	\$2.50	15000	\$2.67
RWT8 - F32/25W T8 Lamp	\$4.50	30000	F32T8 Standard Lamp	\$2.50	15000	\$2.67
RWT8 - F32/25W T8 Lamp Extra Life	\$4.50	36000	F32T8 Standard Lamp	\$2.50	15000	\$2.67
RWT8 - F17T8 Lamp - 2 Foot	\$4.80	18000	F17T8 Standard Lamp - 2 foot	\$2.80	15000	\$2.67
RWT8 - F25T8 Lamp - 3 Foot	\$5.10	18000	F25T8 Standard Lamp - 3 foot	\$3.10	15000	\$2.67
RWT8 - F30T8 Lamp - 6" Utube	\$11.31	24000	F32T8 Standard Utube Lamp	\$9.31	15000	\$2.67
RWT8 - F29T8 Lamp - Utube	\$11.31	24000	F32T8 Standard Utube Lamp	\$9.31	15000	\$2.67
RWT8 - F96T8 Lamp - 8 Foot	\$9.00	24000	F96T8 Standard Lamp - 8 foot	\$7.00	15000	\$2.67

³⁷¹ Efficiency Vermont Technical Reference User Manual (TRM) Measure Savings Algorithms and Cost Assumptions, January 2012.

C-1: T12 Baseline Adjustment:

For measures installed in 2012 through 2015, the full savings (as calculated above in the Algorithm section) will be claimed through 2015. A savings adjustment will be applied to the annual savings for the remainder of the measure life. The adjustment to be applied for each measure is listed in the reference table below.

Savings Adjustment Factors

EE Measure Description	T12 EEmag ballast		Savings Adjustment T12 mag ballast and 40 w lamps to HPT8
1-Lamp Relamp/Reballast T12 to HPT8	47%	30%	20%
2-Lamp Relamp/Reballast T12 to HPT8	53%	30%	22%
3-Lamp Relamp/Reballast T12 to HPT8	42%	38%	21%
4-Lamp Relamp/Reballast T12 to HPT8	44%	29%	23%

Measures installed in 2012 will claim full savings for four years, 2013 for three years, 2014 two years and 2015 one year. Savings adjustment factors will be applied to the full savings for savings starting in 2016 and for the remainder of the measure life. The savings adjustment is equal to the ratio between wattage reduction from T12 EE ballast with 40 w lamp baseline from the table 'T8 New and Baseline Assumptions'.³⁷²

Example: 2 lamp T8 to 2 lamp HPT8 retrofit saves 10 watts, while the T12 EE with 40 w lamp to HPT8 saves 33 watts. Thus the ratio of wattage reduced is 30%. Thus the ratio of wattage reduced is 30%.

MEASURE CODE: CI-LTG-T8FX-V01-120601

³⁷² Adapted from EVT Technical Resource Manual, 2012-75, page 85.

4.5.4 LED Bulbs and Fixtures

DESCRIPTION

This characterization provides savings assumptions for a variety of LED lamps including Omnidirectional (e.g. A-Type lamps), Decorative (e.g. Globes and Torpedoes) and Directional (PAR Lamps, Reflectors, MR16), and fixtures including refrigerated case, recessed and outdoor/garage fixtures.

This measure was developed to be applicable to the following program types: TOS, NC, RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, new lamps must be Energy Star labeled. Lamps and fixtures should be found in the reference tables below. Fixtures must be Energy Star labeled or on the Design Lights Consortium qualifying fixture list.

DEFINITION OF BASELINE EQUIPMENT

Refer to the baseline tables. In 2012, Federal legislation stemming from the Energy Independence and Security Act of 2007 (EIAS) will require all general-purpose light bulbs between 40 watts and 100 watts to have ~30% increased efficiency, essentially phasing out standard incandescent technology. In 2012, the 100 w lamp standards apply; in 2013 the 75 w lamp standards will apply, followed by restrictions on the 60 w and 40 w lamps in 2014. To account for this legislation, a midlife adjustment is calculated for Standard Omnidirectional screw based bulbs whose baseline assumes incandescent lamps.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

Lifetime is the life of the product, at the reported operating hours (lamp life in hours divided by operating hours per year – see reference table "LED component Costs and Lifetime." The analysis period is the same as the lifetime, capped at 15 years. (15 years from GDS Measure Life Report, June 2007).

DEEMED MEASURE COST

Wherever possible, actual incremental costs should be used. Refer to reference table "LED component Cost & Lifetime" for defaults.

DEEMED O&M COST ADJUSTMENTS

Refer to reference table "LED component Cost & Lifetime."

LOADSHAPE

- Loadshape C06 Commercial Indoor Lighting
- Loadshape C07 Grocery/Conv. Store Indoor Lighting
- Loadshape C08 Hospital Indoor Lighting
- Loadshape C09 Office Indoor Lighting
- Loadshape C10 Restaurant Indoor Lighting
- Loadshape C11 Retail Indoor Lighting

- Loadshape C12 Warehouse Indoor Lighting Loadshape C13 - K-12 School Indoor Lighting
- Loadshape C13 K-12 School motor Lighting
- Loadshape C14 Indust. 1-shift (8/5) (e.g., comp. air, lights)
- Loadshape C15 Indust. 2-shift (16/5) (e.g., comp. air, lights)
- Loadshape C16 Indust. 3-shift (24/5) (e.g., comp. air, lights) Loadshape C17 - Indust. 4-shift (24/7) (e.g., comp. air, lights)
- Loadshape C18 Industrial Indoor Lighting
- Loadshape C19 Industrial Outdoor Lighting
- Loadshape C20 Commercial Outdoor Lighting

COINCIDENCE FACTOR

The summer peak coincidence factor for this measure is dependent on the location type. Values are provided for each building type in the reference section below.

	Algorithm
CALCULATION OF SAVINGS	
ELECTRIC ENERGY SAVINGS	
ΔkWh	= ((Watts _{base} -Watts _{EE})/1000) * Hours *WHF _e *ISR
Where:	
Watts _{base}	= Input wattage of the existing system. Reference the "LED New and Baseline Assumptions" table for default values.
Watts _{EE}	= New Input wattage of EE fixture. See the "LED New and Baseline Assumptions" table.
	For ENERGY STAR rated lamps the following lumen equivalence tables should be used:
	Omnidirectional Lamps - ENERGY STAR Minimum Luminous Efficacy = 50Lm/W for <10W lamps and 55Lm/W for >=10W lamps.

Nominal wattage of lamp to be replaced (Watts _{base})	Minimum initial light output of LED lamp (lumens)	Post EISA 2012-2014 Incandescent wattage	Post EISA 2020 requirement (45Lm/W)	LED Wattage (Watts _{EE})	Delta Watts (pre EISA)	Delta Watts (post EISA 2012- 2014)	Effective date for post EISA 2012-2014 assumption	Delta Watts (post EISA 2020)
25	200	25	25	4.0	21.0	21.0	Exempt	21.0
35	325	29	7.2	6.5	28.5	22.5	June 2014	0.7
40	450	29	10	9.0	31.0	20.0	June 2014	1.0
60	800	43	17.8	14.5	45.5	28.5	June 2014	3.3
75	1,100	53	24.4	20.0	55.0	33.0	June 2013	4.4
100	1,600	72	35.6	29.1	70.9	42.9	June 2012	6.5
125	2,000	72	44.4	36.4	88.6	35.6	June 2012	8.0
150	2,600	150	150	47.3	102.7	102.7	Exempt	102.7

Decorative Lamps - ENERGY STAR Minimum Luminous Efficacy = 40Lm/W for all lamps

Nominal wattage of lamp to be replaced (Watts _{base})	Minimum initial light output of LED lamp (lumens)	LED Wattage (Watts _{EE})	Delta Watts
10	70	1.75	8.25
15	90	2.25	12.75
25	150	3.75	21.25
40	300	7.5	32.5
60	500	12.5	47.5

Directional lamps are exempt from EISA regulations.

Directional Lamps - ENERGY STAR Minimum Luminous Efficacy = 40Lm/W for lamp diameter <= 20/8 inch (PAR 20 and smaller) and 45 Lm/W for lamp diameter > 20/8 inch (greater than PAR20).

Nominal wattage of lamp to be replaced (Wattsbase)	Minimum initial light output of LED lamp (lumens)	LED Wattage (WattsEE)	Delta Watts
25	250	6.25	18.75
35	350	8.75	26.25
40	400	10.0	30.0
60	600	15.0	45.0
75	750	18.75	56.25
100	1000	25.0	75.0
125	1250	31.25	93.75
150	1500	37.5	112.5
Directional lamp	s are exempt fr	om EISA regu	lations.

Directional lamps are exempt from EISA regulations.

Hours

= Average hours of use per year are provided in the Reference Table in Section

	4.5, Screw based bulb annual operating hours, for each building type. If unknown, use the Miscellaneous value.
WHFe	 Waste heat factor for energy to account for cooling energy savings from efficient lighting are provided below for each building type in the Referecne Table in Section 4.5. If unknown, use the Miscellaneous value.
ISR	 In service Rate -the percentage of units rebated that actually get installed. Use 100% unless an evaluation shows a lesser value.

Mid Life Baseline Adjustment

During the lifetime of a standard Omnidirectional LED, the baseline incandescent bulb would need to be replaced multiple times. Since the baseline bulb changes over time (except for 2600+ lumen bulbs) the annual savings claim must be reduced within the life of the measure to account for this baseline shift.

For example, for 60W equivalent bulbs installed in 2012, the full savings (as calculated above in the Algorithm) should be claimed for the first two years, but a reduced annual savings (calculated energy savings above multipled by the adjustment factor in the table below) claimed for the remainder of the measure life.

Omnidirectional Lamps

Nominal wattage of lamp to be replaced (Watts _{base})	Minimum initial light output of LED lamp (lumens)	Delta Watts (pre EISA)	Delta Watts (post EISA 2012- 2014)	Mid Life adjustment 1 from first year savings	Adjustment made from date	Delta Watts (post EISA 2020)	Mid Life adjustment 2 (made from June 2020) from first year savings
25	200	21.0	21.0	Exempt	Exempt	21.0	Exempt
35	325	28.5	22.5	78.9%	June 2014	0.7	2.5%
40	450	31.0	20.0	64.5%	June 2014	1.0	3.2%
60	800	45.5	27.6	60.7%	June 2014	3.3	7.3%
75	1,100	55.0	33.0	60.0%	June 2013	4.4	8.0%
100	1,600	70.9	42.9	60.5%	June 2012	6.5	9.2%
125	2,000	88.6	35.6	40.2%	June 2012	8.0	9.0%
150	2,600	102.7	102.7	Exempt	Exempt	102.7	Exempt

For example, a 9W LED lamp, 450 lumens, is installed in an office in 2012:

ΔkWH = ((40-29/1000)*1.0*3088*1.25

= 42.5 kWh

This value should be claimed for two years, i.e. June 2012 - May 2014, but from June 2014 on savings for that same bulb should be reduced to (42.5 * 0.645 =) 27.4 kWh for the remainder of the measure life. Note these adjustments should be applied to kW and fuel impacts.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta kW = (Watts_{base}-Watts_{EE})/1000) * ISR * WHF_d * CF$$

Where:

For example, provided:

WHFd	= Waste Heat Factor for Demand to account for cooling savings from efficient lighting in cooled buildings is provided in Referecne Table in Section 4.5. If unknown, use the Miscellaneous value.
CF	= Summer Peak Coincidence Factor for measure is provided in the Referecne Table in Section 4.5. If unknown, use the Miscellaneous value.
. For example, a	9W LED lamp, 450 lumens, is installed in an office in 2012and sign off form

 $\Delta kW = ((40-29/1000)* 1.0*1.3*0.66)$

= - 0.52 kW

NATURAL GAS ENERGY SAVINGS

Heating Penalty if fossil fuel heated building (or if heating fuel is unknown):

Δtherms = (((WattsBase-WattsEE)/1000) * ISR * Hours *- IFTherms

Where:

IFTherms = Lighting-HVAC Integration Factor for gas heating impacts; this factor represents the increased gas space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Values are provided in the Reference Table in Section 4.5. If unknown, use the Miscellaneous value.

For example, For example, a 9W LED lamp, 450 lumens, is installed in an office in 2012 and sign off form provided:

 Δ Therms = ((40-29/1000)*1.0*3088* -0.016

= - 0.54 Therms

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

For all measures except Standard Omnidirectional lamps (which have an EISA baseline shift) the individual

component lifetimes and costs are provided in the reference table section below³⁷³.

³⁷³ See "LED reference tables.xls" for breakdown of component cost assumptions.

Omnidirectional Lamps:

In order to account for the shift in baseline due to the Energy Independence and Security Act of 2007, an equivalent annual levelized baseline replacement cost over the lifetime of the LED bulb (assumed to be 25,000/4576 = 6.46 years) is calculated (see "C&I OmniDirectional LED O&M Calc.xls"). The key assumptions used in this calculation are documented below:

	Standard	Efficient	CFL
	Incandescent	Incandescent	
Replacement Cost	\$0.50	\$1.50	\$2.50
Component Rated Life (hrs)	1000	1000374	10,000

The Net Present Value of the baseline replacement costs for each lumen range and installation year (2012 -2016) are presented below:

	NPV of baseline repl	acement costs	
Lumen Range	June 2012 - May 2013	June 2013 - May 2014	June 2014 - May 2015
1490-2600	\$32.23	\$32.23	\$26.78
1050-1489	\$28.66	\$32.23	\$26.78
750-1049	\$24.31	\$28.66	\$26.78
310-749	\$24.31	\$28.66	\$26.78

The annual levelized baseline replacement costs using the statewide real discount rate of 5.23% are presented below:

	Levelized ann savings	ual replaceme	ent cost
CFL wattage	June 2012 - May 2013	June 2013 - May 2014	June 2014 - May 2015
1490-2600	\$6.94	\$6.94	\$5.76
1050-1489	\$6.17	\$6.94	\$5.76
750-1049	\$5.23	\$6.17	\$5.76
310-749	\$5.23	\$6.17	\$5.76

Note incandescent bulbs in lumen range <310 and >2600 are exempt from EISA. For these bulbs there is no baseline shift and so the assumption is a baseline replacement cost of \$0.50 every 0.2 year (1000 hr rated life/4576 run hours).

³⁷⁴The manufacturers of the new minimally compliant EISA Halogens are using regular incandescent lamps with halogen fill gas rather than halogen infrared to meet the standard and so the component rated life is equal to the standard incandescent.

LED New and Baseline Assumptions³⁷⁵

LED Measure Description	WattsEE	Baseline Description	WattsBASE	Basis for Watt Assumptions	LED Lamp Cost	Baseline Cost (EISA 2012- 2014, EISA 2020)	Incremental Cost (EISA 2012- 2014, EISA 2020)	LED Minimum Lamp Life (hrs)
LED Screw and Pin-based Bulbs, Omnidirectional, < 10W					\$30.00	\$0.50 (\$1.50, \$2.50)	\$29.5 (\$28.50, \$27.50)	25,000
LED Screw and Pin-based Bulbs, Omnidirectional, >= 10W	See tables	shove			\$40.00	\$0.50 (\$1.50, \$2.50)	\$29.5 (\$28.50, \$27.50)	25,000
LED Screw and Pin-based Bulbs, Decorative	See tables				\$30.00	\$1.00	\$29.00	25,000
LED Screw-based Bulbs, Directional, < 15W					\$45.00	\$5.00	\$40.00	35,000
LED Screw-based Bulbs, Directional, >= 15W					\$55.00	\$5.00	\$50.00	35,000
LED Recessed, Surface, Pendant Downlights	17.6	Baseline LED Recessed, Surface, Pendant Downlights	54.3	2008-2010 EVT Historical Data of 947 Measures	50,000		\$50.00	
LED Track Lighting	12.2	Baseline LED Track Lighting	60.4	2008-2010 EVT Historical Data of 242 Measures	50,000		\$100.00	
LED Wall-Wash Fixtures	8.3	Baseline LED Wall-Wash Fixtures	17.7	2008-2010 EVT Historical Data of 220 Measures	50,000		\$80.00	
LED Portable Desk/Task Light Fixtures	7.1	Baseline LED Portable Desk/Task Light Fixtures	36.2	2008-2010 EVT Historical Data of 21 Measures	50,000		\$50.00	
LED Undercabinet Shelf- Mounted Task Light Fixtures (per	7.1	Baseline LED Undercabinet Shelf-Mounted Task Light	36.2	2008-2010 EVT Historical Data of 21	50,000		\$25.00	

³⁷⁵ Data is based on Efficiency Vermont derived cost and actual installed wattage information.

foot)		Fixtures		Measures			
LED Refrigerated Case Light, Horizontal or Vertical (per foot of light bar)	7.6	Baseline LED Refrigerated Case Light, Horizontal or Vertical (per foot of light bar)	15.2	PG&E Refrigerated Case Study ³⁷⁶ normalized to per foot of light bar.	50,000	\$50.00	
LED Freezer Case Light, Horizontal or Vertical (per foot)	7.7	Baseline LED Freezer Case Light, Horizontal or Vertical (per foot)	18.7	PG&E Refrigerated Case Study normalized to per foot.	50,000	\$50.00	
LED Display Case Light Fixture (per foot)	7.1	Baseline LED Display Case Light Fixture	36.2	Modeled after LED Undercabinet Shelf- Mounted Task Light Fixtures (per foot)	35,000	\$25.00	
LED 2x2 Recessed Light Fixture	44.9	T8 U-Tube 2L-FB32 w/ Elec - 2'	61.0	Based on average watts of DLC qualified products as of 11/21/11	35,000	\$75.00	
LED 2x4 Recessed Light Fixture	53.6	T8 3L-F32 w/ Elec - 4'	88.0	Based on average watts of DLC qualified products as of 11/21/11	35,000	\$125.00	
LED 1x4 Recessed Light Fixture	32.2	T8 2L-F32 w/ Elec - 4'	59.0	Based on average watts of DLC qualified products as of 11/21/11	35,000	\$100.00	
LED High- and Low-Bay Fixtures	160.2	MH 250 W CWA Pulse Start	295.0	Based on average watts of DLC qualified products as of 11/21/11	35,000	\$200.00	
LED Outdoor Pole/Arm Mounted Parking/Roadway, < 30W	18.6	Baseline LED Outdoor Pole/Arm Mounted Parking/Roadway, < 30W	124.3	2008-2010 EVT Historical Data of 2,813 Measures	50,000	\$125.00	
LED Outdoor Pole/Arm Mounted Parking/Roadway, 30W - 75W	52.5	Baseline LED Outdoor Pole/Arm Mounted Parking/Roadway, 30W - 75W	182.9	2008-2010 EVT Historical Data of 1,081 Measures	50,000	\$250.00	

³⁷⁶ LED Refrigeration Case Ltg Workpaper 053007 rev1, May 30, 2007

LED Outdoor Pole/Arm Mounted Parking/Roadway, >= 75W	116.8	Baseline LED Outdoor Pole/Arm Mounted Parking/Roadway, >= 75W	361.4	2008-2010 EVT Historical Data of 806 Measures	50,000	\$375.00
LED Outdoor Pole/Arm Mounted Decorative Parking/Roadway, < 30W	18.6	Baseline LED Outdoor Pole/Arm Mounted Decorative Parking/Roadway, < 30W	124.3	2008-2010 EVT Historical Data of 2,813 Measures	50,000	\$125.00
LED Outdoor Pole/Arm Mounted Decorative Parking/Roadway, 30W - 75W	52.5	Baseline LED Outdoor Pole/Arm Mounted Decorative Parking/Roadway, 30W - 75W	182.9	2008-2010 EVT Historical Data of 1,081 Measures	50,000	\$250.00
LED Outdoor Pole/Arm Mounted Decorative Parking/Roadway, >= 75W	116.8	Baseline LED Outdoor Pole/Arm Mounted Decorative Parking/Roadway, >= 75W	361.4	2008-2010 EVT Historical Data of 806 Measures	50,000	\$375.00
LED Parking Garage/Canopy, < 30W	18.6	Baseline LED Parking Garage/Canopy, < 30W	124.3	2008-2010 EVT Historical Data of 2,813 Measures	50,000	\$125.00
LED Parking Garage/Canopy, 30W - 75W	52.5	Baseline LED Parking Garage/Canopy, 30W - 75W	182.9	2008-2010 EVT Historical Data of 1,081 Measures	50,000	\$250.00
LED Parking Garage/Canopy, >= 75W	116.8	Baseline LED Parking Garage/Canopy, >= 75W	361.4	2008-2010 EVT Historical Data of 806 Measures	50,000	\$375.00
LED Wall-Mounted Area Lights, < 30W	18.6	Baseline LED Wall-Mounted Area Lights, < 30W	124.3	2008-2010 EVT Historical Data of 2,813 Measures	50,000	\$125.00
LED Wall-Mounted Area Lights, 30W - 75W	52.5	Baseline LED Wall-Mounted Area Lights, 30W - 75W	182.9	2008-2010 EVT Historical Data of 1,081 Measures	50,000	\$250.00
LED Wall-Mounted Area Lights, >= 75W	116.8	Baseline LED Wall-Mounted Area Lights, >= 75W	361.4	2008-2010 EVT Historical Data of 806 Measures	50,000	\$375.00
LED Bollard, < 30W	13.9	Baseline LED Bollard, < 30W	54.3	2008-2010 EVT Historical Data of 33 Measures	50,000	\$150.00
LED Bollard, >= 30W	41.0	Baseline LED Bollard, >= 30W	78.0	2008-2010 EVT Historical Data of 15	50,000	\$250.00

				Measures			
LED Flood Light, < 15W	8.7	Baseline LED Flood Light, < 15W	51.7	Consistent with LED Screw-base Directional	50,000	\$35.00	
LED Flood Light, >= 15W	16.2	Baseline LED Flood Light, >= 15W	64.4	Consistent with LED Screw-base Directional	50,000	\$45.00	

LED Component Costs & Lifetime³⁷⁷

LED Component Costs and I	Lifetimes											
LED Measure Description	LED Minimum Lamp Life (hrs)	LED Lamp Cost Total	LED Driver Life (hrs)	LED Driver Cost Total	Baseline Technology (1)	Lamp (1) Life (hrs)	Lamp (1) Total Cost	Ballast (1) Life (hrs)	Ballast (1) Total Cost	Baseline Technology (2)	Lamp (2) Life (hrs)	Lamp (2) Total Cost
LED Screw and Pin-based Bulbs, Decorative	25,000	N/A	N/A	N/A	53W EISA Halogen	2,000	\$4.67	N/A	N/A	N/A	N/A	N/A
LED Screw-based Bulbs, Directional, < 15W	35,000	N/A	N/A	N/A	15% CFL 18W Pin Base	10,000	\$11.62	40,000	\$36.00	85% Halogen PAR20	2,500	\$12.67
LED Screw-based Bulbs, Directional, >= 15W	35,000	N/A	N/A	N/A	15% CFL 26W Pin Base	10,000	\$12.62	40,000	\$36.00	85% Halogen PAR30/38	2,500	\$12.67
LED Recessed, Surface, Pendant Downlights	50,000	\$47.50	70,000	\$47.50	40% CFL 26W Pin Base	10,000	\$12.62	40,000	\$36.00	60% Halogen PAR30/38	2,500	\$12.67
LED Track Lighting	50,000	\$47.50	70,000	\$47.50	10% CMH PAR38	12,000	\$62.92	40,000	\$110.00	90% Halogen PAR38	2,500	\$12.67
LED Wall-Wash Fixtures	50,000	\$47.50	70,000	\$47.50	40% CFL 42W Pin Base	10,000	\$15.72	40,000	\$67.50	60% Halogen PAR38	2,500	\$12.67
LED Portable Desk/Task Light Fixtures	50,000	\$47.50	70,000	\$47.50	50% 13W CFL Pin Base	10,000	\$5.52	40,000	\$25.00	50% 50W Halogen	2,500	\$12.67

³⁷⁷ Note some measures have blended baselines. All values are provided to enable calculation of appropriate O&M impacts. Total costs include lamp, labor and disposal cost assumptions where applicable, see "LED reference tables.xls" for more information.

1		1	1	1	1	1	Т	1	1		1	
LED Undercabinet Shelf- Mounted Task Light	50,000	\$47.50	70,000	\$47.50	50% 2' T5 Linear	7,500	\$9.92	40,000	\$45.00	50% 50W Halogen	2,500	\$12.67
Fixtures (per foot)					2					The open		
LED Refrigerated Case Light, Horizontal or	50,000	\$9.50	70,000	\$9.50	5' T8	15,000	\$2.77	40,000	\$9.50	N/A	N/A	N/A
Vertical (per foot)				-								
LED Freezer Case Light, Horizontal or Vertical (per foot)	50,000	\$8.75	70,000	\$7.92	6' T12HO	12,000	\$11.03	40,000	\$59.58	N/A	N/A	N/A
LED Display Case Light Fixture (per foot)	35,000	\$47.50	70,000	\$28.75	50% 2' T5 Linear	7,500	\$9.92	40,000	\$45.00	50% 50W Halogen	2,500	\$12.67
LED 2x2 Recessed Light Fixture	35,000	\$47.50	70,000	\$47.50	T8 U-Tube 2L- FB32 w/ Elec - 2'	15,000	\$24.95	40,000	\$52.00	N/A	N/A	N/A
LED 2x4 Recessed Light Fixture	35,000	\$72.50	70,000	\$47.50	T8 3L-F32 w/ Elec - 4'	15,000	\$17.00	40,000	\$35.00	N/A	N/A	N/A
LED 1x4 Recessed Light Fixture	35,000	\$47.50	70,000	\$47.50	T8 2L-F32 w/ Elec - 4'	15,000	\$11.33	40,000	\$35.00	N/A	N/A	N/A
LED High- and Low-Bay Fixtures	35,000	\$112.50	70,000	\$62.50	250W MH	10,000	\$41.25	40,000	\$130.25	N/A	N/A	N/A
LED Outdoor Pole/Arm Mounted Parking/Roadway, < 30W	50,000	\$62.50	70,000	\$62.50	100W MH	10,000	\$54.25	40,000	\$166.70	N/A	N/A	N/A
LED Outdoor Pole/Arm Mounted Parking/Roadway, 30W - 75W	50,000	\$87.50	70,000	\$62.50	175W MH	10,000	\$48.25	40,000	\$110.00	N/A	N/A	N/A
LED Outdoor Pole/Arm Mounted Parking/Roadway, >= 75W	50,000	\$112.50	70,000	\$62.50	250W MH	10,000	\$41.25	40,000	\$130.25	N/A	N/A	N/A
LED Outdoor Pole/Arm Mounted Decorative Parking/Roadway, < 30W	50,000	\$62.50	70,000	\$62.50	100W MH	10,000	\$54.25	40,000	\$166.70	N/A	N/A	N/A
LED Outdoor Pole/Arm Mounted Decorative Parking/Roadway, 30W - 75W	50,000	\$87.50	70,000	\$62.50	175W MH	10,000	\$48.25	40,000	\$110.00	N/A	N/A	N/A

LED Outdoor Pole/Arm Mounted Decorative Parking/Roadway, >= 75W	50,000	\$112.50	70,000	\$62.50	250W MH	10,000	\$41.25	40,000	\$130.25	N/A	N/A	N/A
LED Parking Garage/Canopy, < 30W	50,000	\$47.50	70,000	\$47.50	100W MH	10,000	\$36.92	40,000	\$151.70	N/A	N/A	N/A
LED Parking Garage/Canopy, 30W - 75W	50,000	\$72.50	70,000	\$47.50	175W MH	10,000	\$30.92	40,000	\$95.00	N/A	N/A	N/A
LED Parking Garage/Canopy, >= 75W	50,000	\$97.50	70,000	\$47.50	250W MH	10,000	\$23.92	40,000	\$115.25	N/A	N/A	N/A
LED Wall-Mounted Area Lights, < 30W	50,000	\$47.50	70,000	\$47.50	100W MH	10,000	\$36.92	40,000	\$151.70	N/A	N/A	N/A
LED Wall-Mounted Area Lights, 30W - 75W	50,000	\$72.50	70,000	\$47.50	175W MH	10,000	\$30.92	40,000	\$95.00	N/A	N/A	N/A
LED Wall-Mounted Area Lights, >= 75W	50,000	\$97.50	70,000	\$47.50	250W MH	10,000	\$23.92	40,000	\$115.25	N/A	N/A	N/A
LED Bollard, < 30W	50,000	\$47.50	70,000	\$47.50	50W MH	10,000	\$36.92	40,000	\$135.50	N/A	N/A	N/A
LED Bollard, >= 30W	50,000	\$72.50	70,000	\$47.50	70W MH	10,000	\$36.92	40,000	\$142.50	N/A	N/A	N/A
LED Flood Light, < 15W	50,000	\$47.50	70,000	\$47.50	25% 50W MH	10,000	\$36.92	40,000	\$135.50	75% Halogen PAR20	2,500	\$12.67
LED Flood Light, >= 15W	50,000	\$47.50	70,000	\$47.50	50% 50W MH	10,000	\$36.92	40,000	\$135.50	50% Halogen PAR30/38	2,500	\$12.67

MEASURE CODE: CI-LTG-LEDB-V01-120601

4.5.5 Commercial LED Exit Signs

DESCRIPTION

This measure characterizes the savings associated with installing a Light Emitting Diode (LED) exit sign in place of a fluorescent or incandescent exit sign in a Commercial building. Light Emitting Diode exit signs have a string of very small, typically red or green, glowing LEDs arranged in a circle or oval. The LEDs may also be arranged in a line on the side, top or bottom of the exit sign. LED exit signs provide the best balance of safety, low maintenance, and very low energy usage compared to other exit sign technologies.

This measure was developed to be applicable to the following program types: RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient equipment is assumed to be an exit sign illuminated by LEDs.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is assumed to be a fluorescent or incandescent model.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The measure life is assumed to be 16 years³⁷⁸.

DEEMED MEASURE COST

The incremental cost for this measure is assumed to be $$30^{379}$.

DEEMED O&M COST ADJUSTMENTS

The annual O&M Cost Adjustment savings is calculated using component costs and lifetimes presented below.

LOADSHAPE

Loadshape C53 - Flat

COINCIDENCE FACTOR

The summer peak coincidence factor for this measure is assumed to be 100%³⁸⁰.

³⁷⁸ 2008 Database for Energy-Efficiency Resources (DEER), Version 2008.2.05, "Effective/Remaining Useful Life Values", California Public Utilities Commission, December 16, 2008.

³⁷⁹ NYSERDA Deemed Savings Database, Labor cost assumes 25 minutes @ \$18/hr.

³⁸⁰ Assuming continuous operation of an LED exit sign, the Summer Peak Coincidence Factor is assumed to equal 1.0.

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

```
\Delta kWh = ((WattsBase - WattsEE) / 1000) * HOURS * WHF_e
```

Where:

WattsBase = Actual wattage if known, if unknown assume the following:

Baseline Type	WattsBase
Incandescent	35W ³⁸¹
Fluorescent	11W ³⁸²
Unknown (e.g. time of sale)	23W ³⁸³

WattsEE	= Actual wattage if known, if unknown assume 2W ³⁸⁴
HOURS	= Annual operating hours
	= 8766
WHF _e	= Waste heat factor for energy to account for cooling energy savings from efficient lighting are provided for each building type in the Referecne Table in Section 4.5. If unknown, use the Miscellaneous value.

For example, replacing incandescent fixture in an office

ΔkWH = (35 – 2)/1000 * 8766 * 1.25

= 362 kWh

For example, replacing fluorescent fixture in a hospital

 $\Delta kWH = (11 - 2)/1000 * 8766 * 1.35$

= 106.5 kWh

³⁸¹ Based on review of available product.

 ³⁸² Efficiency Vermont Technical Reference User Manual (TRM) Measure Savings Algorithms and Cost Assumptions, February, 19, 2010
 ³⁸³ ComEd has been using a weighted baseline of 70 percent incandescent and 30 percent compact

³⁸³ ComEd has been using a weighted baseline of 70 percent incandescent and 30 percent compact fluorescent, reflecting program experience and a limited sample of evaluation verification findings that we consider to be reasonable (Navigant, through comment period February 2013) ³⁸⁴ Efficiency Vermont Technical Reference User Manual (TRM) Measure Savings Algorithms and Cost Assumptions,

³⁸⁴ Efficiency Vermont Technical Reference User Manual (TRM) Measure Savings Algorithms and Cost Assumptions, February, 19, 2010

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = ((WattsBase - WattsEE) / 1000) * WHF_d * CF$

Where:

WHF _d	= Waste heat factor for demand to account for cooling savings from efficient
	lighting in cooled buildings is provided in the Reference Table in Section 4.5. If
	unknown, use the Miscellaneous value

CF = Summer Peak Coincidence Factor for measure

= 1.0

For example, replacing incandescent fixture in an office

```
ΔkW = (35 – 2)/1000 * 1.3 * 1.0
```

```
= 0.043 kW
```

For example, replacing fluorescent fixture in a hospital

$$\Delta kW = (11 - 2)/1000 * 1.69 * 1.0$$

= 0.015 kW

NATURAL GAS SAVINGS

Heating Penalty if natural gas heated building (or if heating fuel is unknown):

∆therms = (((WattsBase-WattsEE)/1000) * Hours *- IFTherms

Where:

IFTherms = Lighting-HVAC Integration Factor for gas heating impacts; this factor represents the increased gas space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Values are provided in the Reference Table in Section 4.5. If unknown, use the Miscellaneous value.

For example, replacing incandescent fixture in an office Δ Therms= (35 - 2)/1000 * 8760 * -0.016= -4.63 ThermsFor example, replacing fluorescent fixture in a hospital Δ Therms= (11 - 2)/1000 * 8760 * -0.011= 0.87 Therms

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

The annual O&M Cost Adjustment savings should be calculated using the following component costs and lifetimes.

	Baseline Measures			
Component	Cost	Life (yrs)		
Lamp	\$7.00 ³⁸⁵	1.37 years ³⁸⁶		

MEASURE CODE: CI-LTG-LEDE-V01-130601

³⁸⁵ Consistent with assumption for a Standard CFL bulb with an estimated labor cost of \$4.50 (assuming \$18/hour and a task time of 15 minutes).

³⁸⁶ Assumes a lamp life of 12,000 hours and 8766 run hours 12000/8766 = 1.37 years.

4.5.6 LED Traffic and Pedestrian Signals

DESCRIPTION

Traffic and pedestrian signals are retrofitted to be illuminated with light emitting diodes (LED) instead of incandescent lamps. Incentive applies for the replacement or retrofit of existing incandescent traffic signals with new LED traffic and pedestrian signal lamps. Each lamp can have no more than a maximum LED module wattage of 25. Incentives are not available for spare lights. Lights must be hardwired and single lamp replacements are not eligible, with the exception of pedestrian hand signals. Eligible lamps must meet the Energy Star Traffic Signal Specification and the Institute for Transportation Engineers specification for traffic signals.

This measure was developed to be applicable to the following program types: RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

Refer to the Table titled 'Traffic Signals Technology Equivalencies' for efficient technology wattage and savings assumptions.

DEFINITION OF BASELINE EQUIPMENT

Refer to the Table titled 'Traffic Signals Technology Equivalencies' for baseline efficiencies and savings assumptions.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The assumed lifetime of an LED traffic signal is 100,000 hours (manufacturer's estimate), capped at 10 years.³⁸⁷ The life in years is calculated by dividing 100,000 hrs by the annual operating hours for the particular signal type.

DEEMED MEASURE COST

The actual measure installation cost should be used (including material and labor).

DEEMED O&M COST ADJUSTMENTS³⁸⁸

Because LEDs last much longer than incandescent bulbs, LEDs offer operation and maintenance (O&M) savings over the life of the lamps for avoided replacement lamps and the labor to install them. The following assumptions are used to calculate the O&M savings:

Incandescent bulb cost: \$3 per bulb

Labor cost to replace incandescent lamp: \$60 per signal

Life of incandescent bulb: 8000 hours

388 Efficiency Vermont Technical Reference User Manual (TRM) Measure Savings Algorithms and Cost Assumptions, February, 19, 2010

³⁸⁷ ACEEE, (1998) A Market Transformation Opportunity Assessment for LED Traffic Signals, http://www.cee1.org/gov/led/led-ace3/ace3led.pdf 388 Efficiency Vermont Technical Reference User Manual (TRM) Measure Savings Algorithms and Cost

LOADSHAPE

- Loadshape C24 Traffic Signal Red Balls, always changing or flashing Loadshape C25 - Traffic Signal - Red Balls, changing day, off night Loadshape C26 - Traffic Signal - Green Balls, always changing Loadshape C27 - Traffic Signal - Green Balls, changing day, off night Loadshape C28 - Traffic Signal - Red Arrows Loadshape C29 - Traffic Signal - Green Arrows Loadshape C30 - Traffic Signal - Flashing Yellows Loadshape C31 - Traffic Signal - "Hand" Don't Walk Signal Loadshape C32 - Traffic Signal - "Man" Walk Signal
- Loadshape C33 Traffic Signal Bi-Modal Walk/Don't Walk

COINCIDENCE FACTOR 389

The summer peak coincidence factor (CF) for this measure is dependent on lamp type as below:

Lamp Type	CF
Red Round, always changing or	0.55
flashing	
Red Arrows	0.90
Green Arrows	0.10
Yellow Arrows	0.03
Green Round, always changing or	0.43
flashing	
Flashing Yellow	0.50
Yellow Round, always changing	0.02
"Hand" Don't Walk Signal	0.75
"Man" Walk Signal	0.21

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = (W_{base} - W_{eff}) \times HOURS / 1000$

Where:

Wbase =The connected load of the baseline equipment

= see Table 'Traffic Signals Technology Equivalencies'

Weff =The connected load of the baseline equipment

³⁸⁹ Ibid

1000	= conversion factor (W/kW)
	= see Table 'Traffic Signals Technology Equivalencies'
EFLH	= annual operating hours of the lamp
	= see Table 'Traffic Signals Technology Equivalencies'

EXAMPLE

For example, an 8 inch red, round signal:

$$\Delta kWh = ((69 - 7) \times 4818) / 1000$$

= 299 kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = (Wbase-Weff) \times CF / 1000$

Where:

Wbase	=The connected load of the baseline equipment				
	= see Table 'Traffic Signals Technology Equivalencies'				
Weff	=The connected load of the efficient equipment				
	= see Table 'Traffic Signals Technology Equivalencies'				
CF	= Summer Peak Coincidence Factor for measure				

EXAMPLE

For example, an 8 inch red, round signal:

 $\Delta kW = ((69 - 7) \times 0.55) / 1000$

= 0.0341 kW

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

REFERENCE TABLES

Traffic Signals Technology Equivalencies³⁹⁰

Traffic Fixture	Fixture Size	Efficient	Baseline		Efficient Fixture	Baseline Fixture	Energy Savings
Туре	and Color	Lamps	Lamps	HOURS	Wattage	Wattage	(in kWh)
Round							
Signals	8" Red	LED	Incandescent	4818	7	69	299
Round							
Signals	12" Red	LED	Incandescent	4818	6	150	694
Flashing Signal ³⁹¹	8" Red	LED	Incandescent	4380	7	69	272
Flashing Signal	12" Red	LED	Incandescent	4380	6	150	631
Flashing Signal	8" Yellow	LED	Incandescent	4380	10	69	258
Flashing Signal	12" Yellow	LED	Incandescent	4380	13	150	600
Round							
Signals	8" Yellow	LED	Incandescent	175	10	69	10
Round Signals	12" Yellow	LED	Incandescent	175	13	150	24
Round Signals	8" Green	LED	Incandescent	3767	9	69	266
Round Signals	12" Green	LED	Incandescent	3767	12	150	520
Turn Arrows	8" Yellow	LED	Incandescent	701	7	116	76
Turn Arrows	12" Yellow	LED	Incandescent	701	9	116	75
Turn Arrows	8" Green	LED	Incandescent	701	7	116	76
Turn Arrows	12" Green	LED	Incandescent	701	7	116	76
Pedestrian Sign	12" Hand/Man	LED	Incandescent	8760	8	116	946

Reference specifications for above traffic signal wattages are from the following manufacturers:

- 1. 8" Incandescent traffic signal bulb: General Electric Traffic Signal Model 17325-69A21/TS
- 2. 12" Incandescent traffic signal bulb: General Electric Signal Model 35327-150PAR46/TS
- Incandescent Arrows & Hand/Man Pedestrian Signs: General Electric Traffic Signal Model 19010-116A21/TS
- 4. 8" and 12" LED traffic signals: Leotek Models TSL-ES08 and TSL-ES12
- 5. 8" LED Yellow Arrow: General Electric Model DR4-YTA2-01A
- 6. 8" LED Green Arrow: General Electric Model DR4-GCA2-01A

³⁹⁰ Technical Reference Manual for Pennsylvania Act 129 Energy Efficiency and Conservation Program and Act 213 Alternative Energy Portfolio Standards. Pennsylvania Public Utility Commission. May 2009

³⁹¹ Technical Reference Manual for Ohio, August 6, 2010

- 7. 12" LED Yellow Arrow: Dialight Model 431-3334-001X
- 8. 12: LED Green Arrow: Dialight Model 432-2324-001X
- 9. LED Hand/Man Pedestrian Sign: Dialight 430-6450-001X

MEASURE CODE: CI-LTG-LEDT-V01-120601

4.5.7 Lighting Power Density

DESCRIPTION

This measure relates to installation of efficient lighting systems in new construction or substantial renovation of commercial buildings excluding low rise (three stories or less) residential buildings. Substantial renovation is when two or more building systems are renovated, such as shell and heating, heating and lighting, etc. State Energy Code specifies a lighting power density level by building type for both the interior and the exterior. Either the Building Area Method as defined in IECC 2009 or the Space-by-Space Method defined in ASHAE 90.1 2007 can be used for calculating the Interior Lighting Power Density³⁹². The measure consists of a design that is more efficient (has a lower lighting power density in watts/square foot) than code requires. The IECC 2009, which is adopted in Illinois, applies to both new construction and renovation.

This measure was developed to be applicable to the following program types: NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the lighting system must be more efficient than the baseline Energy Code lighting power density in watts/square foot for either the interior space or exterior space.

DEFINITION OF BASELINE EQUIPMENT

The baseline is assumed to be a lighting power density that meets IECC 2009, the State of Illinois Energy Code by building type or ASHRAE 90.1 2007 Space – by- Space requirements.

DEEMED CALCULATION FOR THIS MEASURE

Annual kWh Savings = ΔkWh = (WSFbase-WSFeffic)/1000* SF* Hours * WHF_e

Summer Coincident Peak kW Savings = ΔkW = (WSFbase-WSFeffic)/1000* SF* CF * WHF_d

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 15 years³⁹³

DEEMED MEASURE COST

The actual incremental cost over a baseline system will be collected from the customer if possible or developed on a fixture by fixture basis.

DEEMED O&M COST ADJUSTMENTS

N/A

³⁹² Refer to the referenced code documents for specifics on calculating lighting power density using either the whole building method (IECC) or the Space by Space method (ASHRAE 90.1).

³⁹³ Measure Life Report, Residential and Commercial/Industrial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

LOADSHAPE

Loadshape C06 - Commercial Indoor Lighting
Loadshape C07 - Grocery/Conv. Store Indoor Lighting
Loadshape C08 - Hospital Indoor Lighting
Loadshape C09 - Office Indoor Lighting
Loadshape C10 - Restaurant Indoor Lighting
Loadshape C11 - Retail Indoor Lighting
Loadshape C12 - Warehouse Indoor Lighting
Loadshape C13 - K-12 School Indoor Lighting
Loadshape C14 - Indust. 1-shift (8/5) (e.g., comp. air, lights)
Loadshape C15 - Indust. 2-shift (16/5) (e.g., comp. air, lights)
Loadshape C16 - Indust. 3-shift (24/5) (e.g., comp. air, lights)
Loadshape C17 - Indust. 4-shift (24/7) (e.g., comp. air, lights)
Loadshape C18 - Industrial Indoor Lighting
Loadshape C19 - Industrial Outdoor Lighting
Loadshape C20 - Commercial Outdoor Lighting

COINCIDENCE FACTOR

The summer peak coincidence factor for this measure is dependent on the building type.

Algorithm

CALCULATION OF SAVINGS

ENERGY SAVINGS

 $\Delta kWh = (WSF_{base} - WSF_{effic})/1000^* SF^* Hours * WHF_e$

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = (WSF_{base}-WSF_{effic})/1000*SF*CF*WHF_{d}$

Where:

 WSF_{base} = Baseline lighting watts per square foot or linear foot as determined by building or space type. Whole building analysis values are presented in the Reference Tables below.³⁹⁴

 WSF_{effic} = The actual installed lighting watts per square foot or linear foot.

SF = Provided by customer based on square footage of the building area applicable to the lighting design for new building.

Hours = Annual site-specific hours of operation of the lighting equipment collected from the customer.

³⁹⁴IECC 2009 - Reference Code documentation for additional information.

If not available, use building area type as provided in the Reference Table in Section 4.5, Fixture annual operating hours.

 WHF_e = Waste Heat Factor for Energy to account for cooling savings from efficient lighting is as provided in the Reference Table in Section 4.5 by building type. If building is not cooled WHF_e is 1.

 WHF_d = Waste Heat Factor for Demand to account for cooling savings from efficient lighting in cooled buildings is as provided in the Reference Table in Section 4.5 by building type. If building is not cooled WHFd is 1.

CF = Summer Peak Coincidence Factor for measure is as provided in the Reference Table in Section 4.5 by building type. If the building type is unknown, use the Miscellaneous value of 0.66.

NATURAL GAS ENERGY SAVINGS

```
\Deltatherms = \DeltaKWH* - IFTherms
```

Where:

IFTherms = Lighting-HVAC Integration Factor for gas heating impacts; this factor represents the increased gas space heating requirements due to the reduction of waste heat rejected by the efficient lighting. This value is provided in the Reference Table in Section 4.5 by building type.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

REFERENCE TABLES

Lighting Power Density Values from IECC 2009 for Interior Commercial New Construction and Substantial Renovation

Building Area Type ³⁹⁵	Lighting Power Density (w/ft ²)
Automotive Facility	0.9
Convention Center	1.2
Court House	1.2
Dining: Bar Lounge/Leisure	1.3
Dining: Cafeteria/Fast Food	1.4
Dining: Family	1.6
Dormitory	1.0

³⁹⁵ IECC 2009 in cases where both a general building area type and a more specific building area type are listed, the more specific building area type shall apply.

Building Area Type ³⁹⁵	Lighting Power Density (w/ft ²)
Exercise Center	1.0
Gymnasium	1.1
Healthcare – clinic	1.0
Hospital	1.2
Hotel	1.0
Library	1.3
Manufacturing Facility	1.3
Motel	1.0
Motion Picture Theater	1.2
Multifamily	0.7
Museum	1.1
Office	1.0
Parking Garage	0.3
Penitentiary	1.0
Performing Arts Theater	1.6
Police/Fire Station	1.0
Post Office	1.1
Religious Building	1.3
Retail ³⁹⁶	1.5
School/University	1.2
Sports Arena	1.1
Town Hall	1.1
Transportation	1.0
Warehouse	0.8
Workshop	1.4

REFERENCE TABLES

The exterior lighting design will be based on the building location and the applicable "Lighting Zone" as defined in IECC 2009 Table 505.6.2(1) which follows.

³⁹⁶ Where lighting equipment is specified to be installed to highlight specific merchandise in addition to lighting equipment specified for general lighting and is switched or dimmed on circuits different from the circuits for general lighting, the small of the actual wattage of the lighting equipment installed specifically for merchandise, or additional lighting power as determined below shall be added to the interior lighting power determined in accordance with this line item.

LIGHTING ZONE DESCRIPTION		
1	Developed areas of national parks, state parks, forest land, and rural areas	
2	Areas predominantly consisting of residential zoning, neighborhood business districts, light industrial with limited nighttime use and residential mixed use areas	
3	All other areas	
4	High-activity commercial districts in major metropolitan areas as designated by the local land use planning authority	

TABLE 505.6.2(1) EXTERIOR LIGHTING ZONES

The lighting power density savings will be based on reductions below the allowable design levels as specified in IECC 2009 Table 505.6.2(2) which follows.

		Zone 1	Zone 2	Zone 3	Zone 4
Base Site Allowance (Base allowance may be used in tradable or nontradable surfaces.)		500 W	600 W	750 W	1300 W
			Uncovered Parking Areas		
	Packing areas and drives	0.04 W/ft ²	0.06 W/ft ²	0.10 W/ft ²	0.13 W/ft ²
	Building Grounds				
	Walkways less than 10 feet wide	0.7 W/linear foot	0.7 W/linear foot	0.8 W/linear foot	1.0 W/linear foot
	Walkways 10 feet wide or greater, plaza areas special feature areas	0.14 W/ħ²	0.14 W/n²	0.16 W/ħ²	0.2 W/ft ²
	Stairways	0.75 W/ft ²	1.0 W/ft ²	1.0 W/ft ²	1.0 W/ft ²
Tendoble Custome	Pedestrian tunnels	0.15 W/tt ²	0.15 W/ft ²	0.2 W/ft ²	0.3 W/ft ²
Tradable Surfaces (Lighting power		B	uilding Entrances and Exi	ts	
densities for uncovered parking areas, building grounds, building	Main entries	20 W/linear foot of door width	20 W/linear foot of door width	30 W/Itnear foot of door width	30 W/linear foot of door width
entrances and exits, canoples and overhangs and outdoor sales areas	Other doors	20 W/linear foot of door width	20 W/linear foot of door width	20 W/linear foot of door width	20 W/linear foot of door width
may be traded.)	Entry canopies	0.25 W/ft ²	0.25 W/ft ²	0.4 W/ft ²	0.4 W/ft ²
	Sales Canopies				
	Free-standing and attached	0.6 W/ft ²	0.6 W/ft ²	0.8 W/ft ²	1.0 W/ft ²
	Outdoor Sales				
	Open areas (including vehicle sales lots)	0.25 W/ft²	0.25 W/ft ²	0.5 W/n²	0.7 W/ft²
	Street frontage for vehicle sales lots in addition to "open area" allowance	No allowance	10 W/linear foot	10 W/linear foot	30 W/linear foot
Nontradable Surfaces (Lighting power density calculations for the following applications can be used only for the specific application and cannot be traded between surfaces or with other exterior lighting. The following allowances are in addition to any allowance otherwise permitted in the "Tradable Surfaces" section of this table.)	Building facades	No allowance	0.1 W/ft ² for each illuminated wall or surface or 2.5 W/linear foot for each illuminated wall or surface length	0.15 W/ft ³ for each illuminated wall or surface or 3.75 W/finear foot for each illuminated wall or surface length	0.2 W/N ² for each illuminated wall or surface or 5.0 W/linear foot for each illuminated wall or surface length
	Automated teller machines and night depositories	270 W per location plus 90 W per additional ATM per location	270 W per location plus 90 W per additional ATM per location	270 W per location plus 90 W per additional ATM per location	270 W per location plus 90 W per additional ATM per location
	Entrances and gatehouse inspection stations at guarded facilities	0.75 W/ft² of covered and uncovered area	0.75 W/ft ² of covered and uncovered area	0.75 W/ftl ² of covered and uncovered area	0.75 W/ft ² of covered and uncovered area
	Loading areas for law enforcement, fire, ambulance and other emergency service vehicles	0.5 W/R ² of covered and uncovered area	0.5 W/ft ² of covered and uncovered area	0.5 W/ft ² of covered and uncovered area	0.5 W/ft ² of covered and uncovered area
and hereby	Drive-up windows/doors	400 W per drive-through	400 W per drive-through	400 W per drive-through	400 W per drive-through
	Parking near 24-hour retail entrances	800 W per main entry	800 W per main entry	800 W per main entry	800 W per main entry

MEASURE CODE: CI-LTG-LPDE-V01-120601

4.5.8 Miscellaneous Commercial/Industrial Lighting

DESCRIPTION

This measure is designed to calculate savings from energy efficient lighting upgrades that are not captured in other measures within the TRM. If a lighting project fits the measure description in sections 4.5.1-4.5.4, then those criteria, definitions, and calculations should be used.

Unlike other lighting measures this one applies only to RF applications (because there is no defined baseline for TOS or NC applications).

DEFINITION OF EFFICIENT EQUIPMENT

A lighting fixture that replaces an existing fixture to provide the same or greater lumen output at a lower kW consumption.

DEFINITION OF BASELINE EQUIPMENT

The definition of baseline equipment is the existing lighting fixture.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The deemed lifetime of the efficient equipment fixture, regardless of program type is 15 years³⁹⁷.

DEEMED MEASURE COST

The actual cost of the efficient light fixture should be used.

DEEMED O&M COST ADJUSTMENTS

If there are differences between the maintenance of the efficient and baseline lighting system then they should be evaluated on a project-by-project basis.

LOADSHAPE

- Loadshape C06 Commercial Indoor Lighting
- Loadshape C07 Grocery/Conv. Store Indoor Lighting
- Loadshape C08 Hospital Indoor Lighting
- Loadshape C09 Office Indoor Lighting
- Loadshape C10 Restaurant Indoor Lighting
- Loadshape C11 Retail Indoor Lighting
- Loadshape C12 Warehouse Indoor Lighting
- Loadshape C13 K-12 School Indoor Lighting
- Loadshape C14 Indust. 1-shift (8/5) (e.g., comp. air, lights)
- Loadshape C15 Indust. 2-shift (16/5) (e.g., comp. air, lights)
- Loadshape C16 Indust. 3-shift (24/5) (e.g., comp. air, lights)

$^{\rm 397}$ 15 years from GDS Measure Life Report, June 2007

Loadshape C17 - Indust. 4-shift (24/7) (e.g., comp. air, lights) Loadshape C18 - Industrial Indoor Lighting Loadshape C19 - Industrial Outdoor Lighting Loadshape C20 - Commercial Outdoor Lighting

COINCIDENCE FACTOR

The summer peak coincidence factor for this measure is dependent on the location type. Values are provided for each building type in section 4.5.

Algorithm					
CALCULATION OF SAV	CALCULATION OF SAVINGS				
ELECTRIC ENERGY SA	VINGS				
	∆kWh = ((Watts	S _{base} -Watts _{EE})/1000) * Hours * WHF _e * ISR			
Where	:				
	Watts _{base}	= Input wattage of the existing system which depends on the baseline fixture configuration (number and type of lamp) and ballast factor (if applicable) and number of fixtures.			
		=Actual			
	Watts _{EE}	= New Input wattage of EE fixture which depends on new fixture configuration (number of lamps) and ballast factor (if applicable) (if applicable) and number of fixtures.			
		= Actual			
	Hours	= Average hours of use per year as provided by the customer or selected from the Reference Table in Section 4.5, Fixture annual operating hours, by building type. If hours or building type are unknown, use the Miscellaneous value.			
	WHF _e	= Waste heat factor for energy to account for cooling energy savings from efficient lighting is selected from the Reference Table in Section 4.5 for each building type. If building is un-cooled, the value is 1.0.			
	ISR	= In Service Rate or the percentage of units rebated that get installed.			
		=100 $\%^{398}$ if application form completed with sign off that equipment is not placed into storage			

³⁹⁸Illinois evaluation of PY1 through PY3 has not found that fixtures or lamps placed into storage to be a significant enough issue to warrant including an "In-Service Rate" when commercial customers complete an application form.

If sign off form not completed assume the following 3 year ISR assumptions:

Weigted Average 1 st year In Service Rate (ISR)	2 nd year Installations	3 rd year Installations	Final Lifetime In Service Rate
69.5% ³⁹⁹	15.4%	13.1%	98.0% ⁴⁰⁰

DEFERRED INSTALLS

As presented above, if a sign off form is not completed the characterization assumes that a percentage of bulbs purchased are not installed until Year 2 and Year 3 (see ISR assumption above). The Illinois Technical Advisory Committee has determined the following methodology for calculating the savings of these future installs.

Year 1 (Purchase Year) installs:	Characterized using assumptions provided above or evaluated assumptions if available.
Year 2 and 3 installs:	Characterized using delta watts assumption and hours of use from the Install Year i.e. the actual deemed (or evaluated if available) assumptions active in Year 2 and 3 should be applied.
	The NTG factor for the Purchase Year should be applied.

SUMMER COINCIDENT DEMAND SAVINGS

 $\Delta kW = ((Watts_{base}-Watts_{EE})/1000) * WHF_d * CF * ISR$

Where:

WHFd	= Waste Heat Factor for Demand to account for cooling savings from efficient lighting in cooled buildings is selected from the Reference Table in Section 4.5 for each building type. If the building is not cooled WHFd is 1.
CF	= Summer Peak Coincidence Factor for measure is selected from the Reference able in Section 4.5 for each building type. If the building type is unknown, use

³⁹⁹ 1st year in service rate is based upon review of PY1-3 evaluations from ComEd and Ameren (see 'IL RES Lighting ISR.xls' for more information. The average first year ISR for each utility was calculated weighted by the number of bulbs in the each year's survey. This was then weighted by annual sales to give a statewide assumption. Note these evaluations did not look at C&I specific installations but until a more appropriate C&I evaluation is performed, the Residential assumptions are applied.

⁴⁰⁰ The 98% Lifetime ISR assumption is based upon review of two evaluations:

^{&#}x27;Nexus Market Research, RLW Analytics and GDS Associates study; "New England Residential Lighting Markdown Impact Evaluation, January 20, 2009' and 'KEMA Inc, Feb 2010, Final Evaluation Report:, Upstream Lighting Program, Volume 1.' This implies that only 2% of bulbs purchased are never installed. The second and third year installations are based upon Ameren analysis of the Californian KEMA study showing that 54% of future installs occur in year 2 and 46% in year 3. The 2nd and 3rd year installations should be counted as part of those future program year savings.

the Miscellaneous value of 0.66.

Other factors as defined above

NATURAL GAS ENERGY SAVINGS

 Δ Therms⁴⁰¹ = (((WattsBase-WattsEE)/1000) * ISR * Hours * - IFTherms

Where:

IFTherms = Lighting-HVAC Integration Factor for gas heating impacts; this factor represents the increased gas space heating requirements due to the reduction of waste heat rejected by the efficient lighting. This value is selected from the Reference Table in Section 6.5 for each building type.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

If there are differences between the maintenance of the efficient and baseline lighting system then they should be evaluated on a project-by-project basis.

MEASURE CODE: CI-LTG-MSCI-V01-130601

⁴⁰¹Negative value because this is an increase in heating consumption due to the efficient lighting.

DESCRIPTION

This measure is designed to calculate savings from energy efficient lighting upgrades that are not captured in other measures within the TRM. If a lighting project fits the measure description in sections 4.5.1-4.5.4, then those criteria, definitions, and calculations should be used.

Unlike other lighting measures this one applies only to RF applications (because there is no defined baseline for TOS or NC applications).

DEFINITION OF EFFICIENT EQUIPMENT

A lighting fixture that replaces an existing fixture to provide the same or greater lumen output at a lower kW consumption.

DEFINITION OF BASELINE EQUIPMENT

The definition of baseline equipment is the existing lighting fixture.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The deemed lifetime of the efficient equipment fixture, regardless of program type is 15 years.

DEEMED MEASURE COST

The actual cost of the efficient light fixture should be used.

DEEMED O&M COST ADJUSTMENTS

4.5.9 Multi-Level Lighting Switch

DESCRIPTION

This measure relates to the installation new multi-level lighting switches on an existing lighting system. This measure can only relate to the adding of a new control in an existing building, since multi-level switching is required in the Commercial new construction building energy code (IECC 2012).

This measure was developed to be applicable to the following program types: RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the efficient system is assumed to be a lighting system controlled by multi-level lighting controls.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is assumed to be an uncontrolled lighting system where all lights in a given area are on the same circuit or all circuits come on at the same time.

DESCRIPTION

This measure is designed to calculate savings from energy efficient lighting upgrades that are not captured in other measures within the TRM. If a lighting project fits the measure description in sections 4.5.1-4.5.4, then those criteria, definitions, and calculations should be used.

Unlike other lighting measures this one applies only to RF applications (because there is no defined baseline for TOS or NC applications).

DEFINITION OF EFFICIENT EQUIPMENT

A lighting fixture that replaces an existing fixture to provide the same or greater lumen output at a lower kW consumption.

DEFINITION OF BASELINE EQUIPMENT

The definition of baseline equipment is the existing lighting fixture.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The deemed lifetime of the efficient equipment fixture, regardless of program type is 15 years.

DEEMED MEASURE COST

The actual cost of the efficient light fixture should be used.

DEEMED O&M COST ADJUSTMENTS

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life for all lighting controls is assumed to be 8 years⁴⁰².

DEEMED MEASURE COST

When available, the actual cost of the measure shall be used. When not available, the incremental capital cost for this measure is assumed to be $$274^{403}$.

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape C06 - Commercial Indoor Lighting Loadshape C07 - Grocery/Conv. Store Indoor Lighting

⁴⁰² Consistent with Occupancy Sensor control measure.

⁴⁰³ Goldberg et al, State of Wisconsin Public Service Commission of Wisconsin, Focus on Energy Evaluation, Business Programs: Incremental Cost Study, KEMA, October 28, 2009.

DESCRIPTION

This measure is designed to calculate savings from energy efficient lighting upgrades that are not captured in other measures within the TRM. If a lighting project fits the measure description in sections 4.5.1-4.5.4, then those criteria, definitions, and calculations should be used.

Unlike other lighting measures this one applies only to RF applications (because there is no defined baseline for TOS or NC applications).

DEFINITION OF EFFICIENT EQUIPMENT

A lighting fixture that replaces an existing fixture to provide the same or greater lumen output at a lower kW consumption.

DEFINITION OF BASELINE EQUIPMENT

The definition of baseline equipment is the existing lighting fixture.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The deemed lifetime of the efficient equipment fixture, regardless of program type is 15 years.

DEEMED MEASURE COST

The actual cost of the efficient light fixture should be used.

DEEMED O&M COST ADJUSTMENTS

- Loadshape C08 Hospital Indoor Lighting
- Loadshape C09 Office Indoor Lighting
- Loadshape C10 Restaurant Indoor Lighting
- Loadshape C11 Retail Indoor Lighting
- Loadshape C12 Warehouse Indoor Lighting
- Loadshape C13 K-12 School Indoor Lighting
- Loadshape C14 Indust. 1-shift (8/5) (e.g., comp. air, lights)
- Loadshape C15 Indust. 2-shift (16/5) (e.g., comp. air, lights)
- Loadshape C16 Indust. 3-shift (24/5) (e.g., comp. air, lights)
- Loadshape C17 Indust. 4-shift (24/7) (e.g., comp. air, lights)
- Loadshape C18 Industrial Indoor Lighting
- Loadshape C19 Industrial Outdoor Lighting
- Loadshape C20 Commercial Outdoor Lighting

COINCIDENCE FACTOR

The summer peak coincidence factor for this measure is dependent on the location type. Values are provided for each building type in the reference section below.

DESCRIPTION

This measure is designed to calculate savings from energy efficient lighting upgrades that are not captured in other measures within the TRM. If a lighting project fits the measure description in sections 4.5.1-4.5.4, then those criteria, definitions, and calculations should be used.

Unlike other lighting measures this one applies only to RF applications (because there is no defined baseline for TOS or NC applications).

DEFINITION OF EFFICIENT EQUIPMENT

A lighting fixture that replaces an existing fixture to provide the same or greater lumen output at a lower kW consumption.

DEFINITION OF BASELINE EQUIPMENT

The definition of baseline equipment is the existing lighting fixture.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The deemed lifetime of the efficient equipment fixture, regardless of program type is 15 years.

DEEMED MEASURE COST

The actual cost of the efficient light fixture should be used.

DEEMED O&M COST ADJUSTMENTS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

```
\Delta kWh = KW_{Controlled} * Hours * ESF * WHF_{e}
```

Where:

KW _{Controlled}	= Total lighting load connected to the control in kilowatts.	
	= Actual	
Hours	= total operating hours of the controlled lighting circuit before the lighting controls are installed. This number should be collected from the customer. Average hours of use per year are provided in the Reference Table in Section 4.5, Fixture annual operating hours, for each building type if customer specific information is not collected. If unknown building type, use the Miscellaneous value.	
ESF	= Energy Savings factor (represents the percentage reduction to the KWcontrolled due to the use of multi-level switching).	

DESCRIPTION

This measure is designed to calculate savings from energy efficient lighting upgrades that are not captured in other measures within the TRM. If a lighting project fits the measure description in sections 4.5.1-4.5.4, then those criteria, definitions, and calculations should be used.

Unlike other lighting measures this one applies only to RF applications (because there is no defined baseline for TOS or NC applications).

DEFINITION OF EFFICIENT EQUIPMENT

A lighting fixture that replaces an existing fixture to provide the same or greater lumen output at a lower kW consumption.

DEFINITION OF BASELINE EQUIPMENT

The definition of baseline equipment is the existing lighting fixture.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The deemed lifetime of the efficient equipment fixture, regardless of program type is 15 years.

DEEMED MEASURE COST

The actual cost of the efficient light fixture should be used.

DEEMED O&M COST ADJUSTMENTS

Building Type	Energy Savings Factor (ESF)
Private Office	21.6%
Open Office	16.0%
Retail	14.8%
Classrooms	8.3%
Unknown, average	15%

= Dependent on building type 404 :

WHF_e = Waste heat factor for energy to account for cooling energy savings from efficient lighting is provided in the Reference Table in Section 4.5 for each building type. If building is un-cooled, the value is 1.0.

⁴⁰⁴ Based on results from "Lighting Controls Effectiveness Assessment: Final Report on Bi-Level Lighting Study" published by the California Public Utilities Commission (CPUC), prepared by ADM Associates. <u>http://lightingcontrolsassociation.org/bi-level-switching-study-demonstrates-energy-savings/</u>

DESCRIPTION

This measure is designed to calculate savings from energy efficient lighting upgrades that are not captured in other measures within the TRM. If a lighting project fits the measure description in sections 4.5.1-4.5.4, then those criteria, definitions, and calculations should be used.

Unlike other lighting measures this one applies only to RF applications (because there is no defined baseline for TOS or NC applications).

DEFINITION OF EFFICIENT EQUIPMENT

A lighting fixture that replaces an existing fixture to provide the same or greater lumen output at a lower kW consumption.

DEFINITION OF BASELINE EQUIPMENT

The definition of baseline equipment is the existing lighting fixture.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The deemed lifetime of the efficient equipment fixture, regardless of program type is 15 years.

DEEMED MEASURE COST

The actual cost of the efficient light fixture should be used.

DEEMED O&M COST ADJUSTMENTS

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = KW_{controlled} * ESF * WHF_d * CF$

Where:

- WHF_d = Waste Heat Factor for Demand to account for cooling savings from efficient lighting in cooled buildings is provided in the Reference Table in Section 4.5. If the building is uncooled WHFd is 1.
- CF = Summer Peak Coincidence Factor for measure is provided in the Reference Table in Section 4.5. If unknown, use the Miscellaneous value of 0.66⁴⁰⁵.

NATURAL GAS ENERGY SAVINGS

 Δ therms = Δ KWH* - IFTherms

⁴⁰⁵ By applying the ESF and the same coincidence factor for general lighting savings we are in essence assuming that the savings from multi-level switching are as likely during peak periods as any other time. In the absence of better information this seems like a reasonable assumption and if anything may be on the conservative side since you might expect the peak periods to be generally sunnier and therefore more likely to have lower light levels. It is also consistent with the control type reducing the wattage lighting load, the same as the general lighting measures.

DESCRIPTION

This measure is designed to calculate savings from energy efficient lighting upgrades that are not captured in other measures within the TRM. If a lighting project fits the measure description in sections 4.5.1-4.5.4, then those criteria, definitions, and calculations should be used.

Unlike other lighting measures this one applies only to RF applications (because there is no defined baseline for TOS or NC applications).

DEFINITION OF EFFICIENT EQUIPMENT

A lighting fixture that replaces an existing fixture to provide the same or greater lumen output at a lower kW consumption.

DEFINITION OF BASELINE EQUIPMENT

The definition of baseline equipment is the existing lighting fixture.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The deemed lifetime of the efficient equipment fixture, regardless of program type is 15 years.

DEEMED MEASURE COST

The actual cost of the efficient light fixture should be used.

DEEMED O&M COST ADJUSTMENTS

Where:

IFTherms = Lighting-HVAC Integration Factor for gas heating impacts; this factor represents the increased gas space heating requirements due to the reduction of waste heat rejected by the efficient lighting and provided in the Reference Table in Section 4.5 by building type.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-LTG-MLLC-V01-130601

4.5.10 Occupancy Sensor Lighting Controls

DESCRIPTION

This measure relates to the installation of new occupancy sensors on a new or existing lighting system. Lighting control types covered by this measure include wall, ceiling or fixture mounted occupancy sensors. Passive infrared, ultrasonic detectors and fixture-mounted sensors or sensors with a combination thereof are eligible. Lighting controls required by state energy codes are not eligible. This must be a new installation and may not replace an existing lighting occupancy sensor control.

This measure was developed to be applicable to the following program types: RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the existing system is assumed to be manually controlled or an uncontrolled lighting system which is being controlled by one of the lighting controls systems listed above. All sensors must be hard wired and control interior lighting.

DEFINITION OF BASELINE EQUIPMENT

The baseline is assumed to be a lighting system uncontrolled by occupancy.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life for all lighting controls is assumed to be 8 years⁴⁰⁶.

DEEMED MEASURE COST

When available, the actual cost of the measure shall be used. When not available, the following default values are provided:

Lighting control type	Cost
Full cost of wall mounted occupancy sensor	\$42 ⁴⁰⁷
Full cost mounted occupancy sensor	\$66 ⁴⁰⁸
Full cost of fixture-mounted occupancy sensor	\$125 ⁴⁰⁹

DEEMED O&M COST ADJUSTMENTS

N/A

⁴⁰⁶ DEER 2008

⁴⁰⁷ Goldberg et al, State of Wisconsin, Public Service Commission of Wisconsin, Focus on Energy Evaluation Business programs Incremental Cost Study, KEMA, October 28, 2009

⁴⁰⁸ Ibid

⁴⁰⁹ Efficiency Vermont TRM, October 26, 2011.

LOADSHAPE

Loadshape C06 - Commercial Indoor Lighting
Loadshape C07 - Grocery/Conv. Store Indoor Lighting
Loadshape C08 - Hospital Indoor Lighting
Loadshape C09 - Office Indoor Lighting
Loadshape C10 - Restaurant Indoor Lighting
Loadshape C11 - Retail Indoor Lighting
Loadshape C12 - Warehouse Indoor Lighting
Loadshape C13 - K-12 School Indoor Lighting
Loadshape C14 - Indust. 1-shift (8/5) (e.g., comp. air, lights)
Loadshape C15 - Indust. 2-shift (16/5) (e.g., comp. air, lights)
Loadshape C16 - Indust. 3-shift (24/5) (e.g., comp. air, lights)
Loadshape C17 - Indust. 4-shift (24/7) (e.g., comp. air, lights)
Loadshape C18 - Industrial Indoor Lighting
Loadshape C19 - Industrial Outdoor Lighting
Loadshape C20 - Commercial Outdoor Lighting

COINCIDENCE FACTOR

The summer peak coincidence factor for this measure is dependent on location.

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = KW_{Controlled} * Hours * ESF * WHF_{e}$

Summer Coincident Peak Demand Savings

 $\Delta kW = KW_{controlled} *WHF_{d}*(CFbaseline - CFos)$

Where:

Kw_{Controlled} = Total lighting load connected to the control in kilowatts. Savings is per control. The total connected load per control should be collected from the customer or the default values presented below used;

Lighting Control Type	Default kw controlled
Wall mounted occupancy sensor	0.350 410
Remote mounted occupancy sensor	0.587 411
Fixture mounted sensor	0.073 412

410 Goldberg et al, State of Wisconsin Public Service Commission of Wisconsin, Focus on Energy Evaluation, Business Programs, Incremental Cost Study, KEMA, October 28, 2009 **411** Ibid

412 Efficiency Vermont TRM 2/19/2010

Hours = total operating hours of the controlled lighting circuit before the lighting controls are installed. This number should be collected from the customer. Average hours of use per year are provided in the Reference Table in Section 4.5, Fixture annual operating hours, for each building type if customer specific information is not collected. If unknown building type, use the Miscellaneous value.

ESF = Energy Savings factor (represents the percentage reduction to the operating Hours from the non-controlled baseline lighting system).

Lighting Control Type	Energy Savings Factor ⁴¹³
Wall or Ceiling-Mounted Occupancy Sensors	41% or custom
Fixture Mounted Occupancy Sensors	30% or custom

 WHF_e = Waste heat factor for energy to account for cooling energy savings from efficient lighting is provided in the Reference Table in Section 4.5 for each building type. If building is un-cooled, the value is 1.0.

 WHF_d = Waste Heat Factor for Demand to account for cooling savings from efficient lighting in cooled buildings is provided in the Reference Table in Section 4.5. If the building is un-cooled WHFd is 1.

CFbaseline = Baseline Summer Peak Coincidence Factor for the lighting system without Occupancy Sensors installed selected from the Reference Table in Section 4.5 for each building type. If the building type is unknown, use the Miscellaneous value of 0.66

CFos = Retrofit Summer Peak Coincidence Factor the lighting system with Occupancy Sensors installed is 0.15 regardless of building type. 414

NATURAL GAS ENERGY SAVINGS

 Δ therms = Δ KWH* - IFTherms

Where:

IFTherms = Lighting-HVAC Integration Factor for gas heating impacts; this factor represents the increased gas space heating requirements due to the reduction of waste heat rejected by the efficient lighting and provided in the Reference Table in Section 4.5 by building type.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

⁴¹⁴ Coincidence Factor Study Residential and Commercial Industrial Lighting Measures, RLW Analytics, Spring 2007. Note, the connected load used in the calculation of the CF for occupancy sensor lights includes the average ESF.

⁴¹³ Kuiken, Tammy eta al, State of Wisconsin/Public Service Commission of Wisconsin, Focus on Energy Evaluation, Business Programs, Deemed Savings Manual V1.0, PA Consulting Group and KEMA, March 22, 2010 pp 4-192-194.

MEASURE CODE: CI-LTG-OSLC-V01-120601

4.5.11 Solar Light Tubes

DESCRIPTION

A tubular skylight which is 10" to 21" in diameter with a prismatic or translucent lens is installed on the roof of a commercial facility. The lens reflects light captured from the roof opening through a highly specular reflective tube down to the mounted fixture height. When in use, a light tube fixture resembles a metal halide fixture. Uses include grocery, school, retail and other single story commercial buildings.

In order that the savings characterized below apply, the electric illumination in the space must be automatically controlled to turn off or down when the tube is providing enough light.

This measure was developed to be applicable to the following program types: TOS, NC, RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient equipment is assumed to be a tubular skylight that concentrates and directs light from the roof to an area inside the facility.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment for this measure is a fixture with comparable luminosity. The specifications for the baseline lamp depend on the size of the Light Tube being installed.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The estimated useful life for a light tube commercial skylight is 10 years⁴¹⁵.

DEEMED MEASURE COST

If available, the actual incremental cost should be used. For analysis purposes, assume an incremental cost for a light tube commercial skylight is \$500².

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape C14 - Indust. 1-shift (8/5) (e.g., comp. air, lights)⁴¹⁶

COINCIDENCE FACTOR

The summer peak coincidence factor for this measure is dependent on location.

⁴¹⁵ Equal to the manufacturers standard warranty

⁴¹⁶ The savings from solar light tubes are only realized during the sunlight hours. It is therefore appropriate to apply the single shift (8/5) loadshape to this measure.

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = kW_f * HOURS * WHFe$

Where:

417

kW_f = Connected load of the fixture the solar tube replaces

Size of Tube	Average Lumen output for Chicago Illinois (minimum) ⁴¹⁷	Equivalent fixture	kW
21"	9,775 (4,179)	50% 3 x 2 32W lamp CFL (207W, 9915 lumens)	0.161
		50% 4 lamp F32 w/Elec 4' T8 (114W, 8895 lumens)	
14"	4,392 (1,887)	50% 2 42W lamp CFL (94W, 4406 lumens)	0.077
		50% 2 lamp F32 w/Elec 4' T8 (59W, 4448 lumens)	
10"	2,157 (911)	50% 1 42W lamp CFL (46W, 2203 lumens)	0.039
		50% 1 lamp F32 w/Elec 4' T8 (32W, 2224 lumens)	
		AVERAGE	0.092

= 2400 418

= Waste heat factor for energy to account for cooling energy savings from WHF_e efficient lighting is selected from the Reference Table in Section 4.5 for each building type. If building is un-cooled, the value is 1.0.

(2005).

SUMMER COINCIDENT PEAK DEMAND SAVINGS $\Delta kW = \Delta kW * WHFd *CF$ Where: WHFd = Waste Heat Factor for Demand to account for cooling savings from efficient lighting in cooled buildings is selected from the Reference Table in Section 4.5 for each building type. If the building is not cooled WHFd is 1. CF = Summer Peak Coincidence Factor for measure is selected from the Reference Solatube Test Report http://www.mainegreenbuilding.com/files/file/solatube/stb_lumens_datasheet.pdf ⁴¹⁸ Ibid. The lumen values presented in the kW table represent the average of the lightest 2400 hours.

Table in Section 4.5 for each building type. If the building type is unknown, use the Miscellaneous value of 0.66.

NATURAL GAS SAVINGS

 Δ Therms⁴¹⁹ = Δ kW * HOURS *- IFTherms

Where:

IFTherms = Lighting-HVAC Integration Factor for gas heating impacts; this factor represents the increased gas space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Please select from the Reference Table in Section 4.5 for each building type.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-LTG-STUB-V01-130601

⁴¹⁹Negative value because this is an increase in heating consumption due to the efficient lighting.

4.5.12 T5 Fixtures and Lamps

DESCRIPTION

T5 Lamp/ballast systems have higher lumens per watt than a standard T8 or an existing T8 or T12 system. The smaller lamp diameter allows for better optical systems, and more precise control of lighting. These characteristics result in light fixtures that produce equal or greater light than standard T8 or T12 fixtures, while using fewer watts.

This measure applies to the installation of new equipment with efficiencies that exceed that of the equipment that would have been installed following standard market practices and is applicable to time of sale as well as retrofit measures.

This measure was developed to be applicable to the following program types: TOS, RF.

If applied to other program types, the measure savings should be verified.

The measure applies to all commercial T5 installations excluding new construction and substantial renovation or change of use measures (see lighting power density measure). Lookup tables have been provided to account for various installations. Actual existing equipment wattages should be compared to new fixture wattages whenever possible while maintaining lumen equivalent designs. Default new and baseline assumptions are provided if existing equipment cannot be determined. Actual costs and hours of use should be utilized when available. Default component costs and lifetimes have been provided for Operating and Maintenance Calculations. Please see the Definition Table to determine applicability for each program. Configurations not included in the TRM may be included in custom program design using the provided algorithms as long as energy savings is achieved. The following table defines the applicability for different programs:

DEFINITION OF EFFICIENT EQUIPMENT

The definition of efficient equipment varies based on the program and is defined below:

Time of Sale (TOS)	Retrofit (RF)
4' fixtures must use a T5 lamp and ballast	4' fixtures must use a T5 lamp and ballast
configuration. 1' and 3' lamps are not eligible. High	configuration. 1' and 3' lamps are not eligible. High
Performance Troffers must be 85% efficient or	Performance Troffers must be 85% efficient or
greater. T5 HO high bay fixtures must be 3, 4 or 6	greater. T5 HO high bay fixtures must be 3, 4 or 6
lamps and 90% efficient or better.	lamps and 90% efficient or better.

DEFINITION OF BASELINE EQUIPMENT

The definition of baseline equipment varies based on the program and is defined below:

Time of Sale (TOS)	Retrofit (RF)	
The baseline is T8 with equivalent lumen output. In high-bay applications, the baseline is pulse start metal halide systems.	The baseline is the existing system. For T12 systems,	
	baseline adjustment applied in 2016 for the remainder of the measure life.	
	Due to new federal standards for linear fluorescent lamps, manufacturers of T12 lamps will not be permitted to manufacture most varieties of T12 lamps for sale in the United States after July 2012. All remaining stock and previously manufactured product may be sold after the July 2012 effective date. If a customer relamps an existing T12 fixture the day the standard takes effect, an assumption can be made that they would likely need to upgrade to, at a minimum, 800-series T8s in less than 5 years' time. This assumes the T12s installed have a typical rated life of 20,000 hours and are operated for 4500 hours annually (average miscellaneous hours 4576/year). Certainly, it is not realistic that everyone would wait until the final moment to relamp with T12s. Also, the exempted T12 lamps greater than 87 CRI will continue to be available to purchase, although they will be expensive. Therefore the more likely scenario would be a gradual shift to T8s over the 4 year timeframe. In other words, we can expect that for each year between 2012 and 2016, ~20% of the existing T12 lighting will change over to T8 lamps that comply with the federal standard. To simplify this assumption, we recommend assuming that standard T8s become the baseline for all T12 linear fluorescent retrofit January 1, 2016. There will be a baseline shift applied to all measures installed before 2016 in 2016 in years remaining in the measure life See table C-1.	

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The deemed lifetime of the efficient equipment fixture, regardless of program type is Fixture lifetime is 15 years⁴²⁰.

DEEMED MEASURE COST AND O&M COST ADJUSTMENTS

The deemed lifetime of efficient equipment varies based on the program and is defined below:

Time of Sale (TOS)	Retrofit (RF)
Refer to reference tables A-1: Time of Sale New and	Refer to reference tables A-2: Retrofit New and
Baseline Assumptions and B-1: Time of Sale T5	Baseline Assumptions and B-2 Retrofit T5 Component
Component Costs and Lifetime.	Costs and Life.

LOADSHAPE

- Loadshape C06 Commercial Indoor Lighting
- Loadshape C07 Grocery/Conv. Store Indoor Lighting
- Loadshape C08 Hospital Indoor Lighting
- Loadshape C09 Office Indoor Lighting
- Loadshape C10 Restaurant Indoor Lighting
- Loadshape C11 Retail Indoor Lighting
- Loadshape C12 Warehouse Indoor Lighting
- Loadshape C13 K-12 School Indoor Lighting
- Loadshape C14 Indust. 1-shift (8/5) (e.g., comp. air, lights)
- Loadshape C15 Indust. 2-shift (16/5) (e.g., comp. air, lights)
- Loadshape C16 Indust. 3-shift (24/5) (e.g., comp. air, lights)
- Loadshape C17 Indust. 4-shift (24/7) (e.g., comp. air, lights)
- Loadshape C18 Industrial Indoor Lighting
- Loadshape C19 Industrial Outdoor Lighting
- Loadshape C20 Commercial Outdoor Lighting

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = ((Watts_{base}-Watts_{EE})/1000) * Hours *WHF_e*ISR$

 $^{^{\}rm 420}$ 15 years from GDS Measure Life Report, June 2007

SUMMER COINCIDENT DEMAND SAVINGS

$$\Delta kW = ((Watts_{base}-Watts_{EE})/1000) * WHF_d*CF*ISR$$

Where:

Program	Reference Table
Time of Sale	A-1: T5 New and Baseline
	Assumptions
Retrofit	A-2: T5 New and Baseline
	Assumptions

Watts_{base} = Input wattage of the existing system which depends on the baseline fixture configuration (number and type of lamp) and number of fixtures. Value can be selected from the appropriate reference table as shown below, of a custom value can be entered if the configurations in the tables is not representative of the existing system.

Watts_{EE} = New Input wattage of EE fixture which depends on new fixture configuration (number of lamps) and ballast factor and number of fixtures. Value can be selected from the appropriate reference table as shown below, of a custom value can be entered if the configurations in the tables is not representative of the existing system.

Program	Reference Table
Time of Sale	A-1: T5 New and Baseline
	Assumptions
Retrofit	A-2: T5 New and Baseline
	Assumptions

Hours = Average hours of use per year as provided by the customer or selected from the Reference Table in Section 4.5, Fixture annual operating hours, by building type. If hours or building type are unknown, use the Miscellaneous value.

 WHF_e = Waste heat factor for energy to account for cooling energy savings from efficient lighting is selected from the Reference Table in Section 4.5 for each building type. If building is un-cooled, the value is 1.0.

WHFd = Waste Heat Factor for Demand to account for cooling savings from efficient lighting in cooled buildings is selected from the Reference Table in Section 4.5 for each building type. If the building is not cooled WHFd is 1.

ISR = In Service Rate or the percentage of units rebated that get installed.

=100% $^{\rm 421}$ if application form completed with sign off that equipment is not placed into storage

⁴²¹Illinois evaluation of PY1 through PY3 has not found that fixtures or lamps placed into storage to be a significant enough issue to warrant including an "In-Service Rate" when commercial customers complete an application form.

Weigted Average 1 st year In Service Rate (ISR)	2 nd year Installations	3 rd year Installations	Final Lifetime In Service Rate
69.5% ⁴²²	15.4%	13.1%	98.0% ⁴²³

If sign off form not completed assume the following 3 year ISR assumptions:

CF = Summer Peak Coincidence Factor for measure is selected from the Reference Table in Section 4.5 for each building type. If the building type is unknown, use the Miscellaneous value of 0.66.

NATURAL GAS ENERGY SAVINGS

```
ΔTherms<sup>424</sup> = (((WattsBase-WattsEE)/1000) * ISR * Hours *- IFTherms
```

Where:

IFTherms = Lighting-HVAC Integration Factor for gas heating impacts; this factor represents the increased gas space heating requirements due to the reduction of waste heat rejected by the efficient lighting. This value is selected from the Reference Table in Section 4.5 for each building type.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

See Reference tables for Operating and Maintenance Values

Program	Reference Table
Time of Sale	B-1: T5 Component Costs and
	Lifetime
Retrofit	B-2: T5 Component Costs and
	Lifetime

⁴²² 1st year in service rate is based upon review of PY1-3 evaluations from ComEd and Ameren (see 'IL RES Lighting ISR.xls' for more information. The average first year ISR for each utility was calculated weighted by the number of bulbs in the each year's survey. This was then weighted by annual sales to give a statewide assumption. Note these evaluations did not look at C&I specific installations but until a more appropriate C&I evaluation is performed, the Residential assumptions are applied.

⁴²³ The 98% Lifetime ISR assumption is based upon review of two evaluations:

^{&#}x27;Nexus Market Research, RLW Analytics and GDS Associates study; "New England Residential Lighting Markdown Impact Evaluation, January 20, 2009' and 'KEMA Inc, Feb 2010, Final Evaluation Report:, Upstream Lighting Program, Volume 1.' This implies that only 2% of bulbs purchased are never installed. The second and third year installations are based upon Ameren analysis of the Californian KEMA study showing that 54% of future installs occur in year 2 and 46% in year 3. The 2nd and 3rd year installations should be counted as part of those future program year savings.

⁴²⁴Negative value because this is an increase in heating consumption due to the efficient lighting.

REFERENCE TABLES

See following page

A-1: Time of Sale: T5 New and Baseline Assumptions $^{\rm 425}$

EE Measure Description	EE Cost	Watts _{EE}	Baseline Description	Base Cost	Watts _{BASE}	Measure Cost	Watts _{SAVE}
2-Lamp T5 High-Bay	\$200.00	180	200 Watt Pulse Start Metal-Halide	\$100.00	232	\$100.00	52
3-Lamp T5 High-Bay	\$200.00	180	200 Watt Pulse Start Metal-Halide	\$100.00	232	\$100.00	52
4-Lamp T5 High-Bay	\$225.00	240	320 Watt Pulse Start Metal-Halide	\$125.00	350	\$100.00	110
6-Lamp T5 High-Bay	\$250.00	360	Proportionally Adjusted according to 6-Lamp HPT8 Equivalent to 320 PSMH	\$150.00	476	\$100.00	116
1-Lamp T5 Troffer/Wrap	\$100.00	32	Proportionally adjusted according to 2-Lamp T5 Equivalent to 3-Lamp T8	\$60.00	44	\$40.00	12
2-Lamp T5 Troffer/Wrap	\$100.00	64	3-Lamp F32T8 Equivalent w/ Elec. Ballast	\$60.00	88	\$40.00	24
			Proportionally adjusted according to 2-Lamp T5				
1-Lamp T5 Industrial/Strip	\$70.00	32	Equivalent to 3-Lamp T8	\$40.00	44	\$30.00	12
2-Lamp T5 Industrial/Strip	\$70.00	64	3-Lamp F32T8 Equivalent w/ Elec. Ballast	\$40.00	88	\$30.00	24
3-Lamp T5 Industrial/Strip	\$70.00	96	Proportionally adjusted according to 2-Lamp T5 Equivalent to 3-Lamp T8	\$40.00	132	\$30.00	36
4-Lamp T5 Industrial/Strip	\$70.00	128	Proportionally adjusted according to 2-Lamp T5 Equivalent to 3-Lamp T8	\$40.00	178	\$30.00	50
1-Lamp T5 Indirect	\$175.00	32	Proportionally adjusted according to 2-Lamp T5 Equivalent to 3-Lamp T8	\$145.00	44	\$30.00	12
2-Lamp T5 Indirect	\$175.00	64	3-Lamp F32T8 Equivalent w/ Elec. Ballast	\$145.00	88	\$30.00	24

⁴²⁵ Adapted from Efficiency Vermont Technical Reference User Manual (TRM) Measure Savings Algorithms and Cost Assumptions, October 26, 2011.

A-2: Retrofit T5 New and Baseline Assumptions⁴²⁶

EE Measure Description	EE C	ost	Watts	Baseline Description	Watts
3-Lamp T5 High-Bay	\$	200	180	200 Watt Pulse Start Metal-Halide	232
4-Lamp T5 High-Bay	\$	225	240	250 Watt Metal-Halide	295
6-Lamp T5 High-Bay	\$	250	360	320 Watt Pulse Start Metal-Halide	350
				400 Watt Metal halide	455
1-Lamp T5 Troffer/Wrap	\$	100	32	400 Watt Pulse Start Metal-halide	476
2-Lamp T5 Troffer/Wrap	\$	100	64		
				1-Lamp F34T12 w/ EEMag Ballast	40
1-Lamp T5 Industrial/Strip	\$	70	32	2-Lamp F34T12 w/ EEMag Ballast	68
2-Lamp T5 Industrial/Strip	\$	70	64	3-Lamp F34T12 w/ EEMag Ballast	110
3-Lamp T5 Industrial/Strip	\$	70	96	4-Lamp F34T12 w/ EEMag Ballast	139
4-Lamp T5 Industrial/Strip	\$	70	128		
				1-Lamp F40T12 w/ EEMag Ballast	48
1-Lamp T5 Indirect	\$	175	32	2-Lamp F40T12 w/ EEMag Ballast	82
2-Lamp T5 Indirect	\$	175	64	3-Lamp F40T12 w/ EEMag Ballast	122
				4-Lamp F40T12 w/ EEMag Ballast	164
				1-Lamp F40T12 w/ Mag Ballast	57
				2-Lamp F40T12 w/ Mag Ballast	94
				3-Lamp F40T12 w/ Mag Ballast	147
				4-Lamp F40T12 w/ Mag Ballast	182
				1-Lamp F32 T8	32
				2-Lamp F32 T8	59
				3-Lamp F32 T18	88
				4-Lamp F32 T8	114

⁴²⁶Ibid.

B-1: Time of Sale T5 Component Costs and Lifetime⁴²⁷

EE Measure Description	EE Lamp Cost	EE Lamp Life (hrs)	EE Lamp Rep. Labor Cost per lamp	EE Ballast Cost	EE Ballast Life (hrs)	EE Ballast Rep. Labor Cost	Baseline Description	# Base Lamps	Base Lamp Cost	Base Lamp Life (hrs)	Base Lamp Rep. Labor Cost	# Base Ballasts	Base Ballast Cost	Base Ballast Life (hrs)	Base Ballast Rep. Labor Cost
3-Lamp T5 High-Bay	\$12.00	20000	\$6.67	\$52.00	70000	\$22.50	200 Watt Pulse Start Metal-Halide	1.00	\$21.00	10000	\$6.67	1.00	\$87.75	40000	\$22.50
4-Lamp T5 High-Bay	\$12.00	20000	\$6.67	\$52.00	70000	\$22.50	320 Watt Pulse Start Metal-Halide	1.00	\$21.00	20000	\$6.67	1.00	\$109.35	40000	\$22.50
6-Lamp T5 High-Bay	\$12.00	20000	\$6.67	\$52.00	70000	\$22.50	Adjusted according to 6-Lamp HPT8 Equivalent to 320	1.36	\$21.00	20000	\$6.67	1.50	\$109.35	40000	\$22.50
1-Lamp T5 Troffer/Wrap	\$12.00	20000	\$2.67	\$52.00	70000	\$15.00	Proportionally adjusted according to 2-Lamp T5 Equivalent to 3-Lamp T8	1.50	\$2.50	20000	\$2.67	0.50	\$15.00	70000	\$15.00
2-Lamp T5 Troffer/Wrap	\$12.00	20000	\$2.67	\$52.00	70000	\$15.00	3-Lamp F32T8 Equivalent w/ Elec. Ballast	3.00	\$2.50	20000	\$2.67	1.00	\$15.00	70000	\$15.00
1-Lamp T5 Industrial/Strip	\$12.00	20000	\$2.67	\$52.00	70000	\$15.00	Proportionally adjusted according to 2-Lamp T5 Equivalent to 3-Lamp T8	1.50	\$2.50	20000	\$2.67	0.50	\$15.00	70000	\$15.00
2-Lamp T5 Industrial/Strip	\$12.00	20000	\$2.67	\$52.00	70000	\$15.00	3-Lamp F32T8 Equivalent w/ Elec. Ballast Proportionally	3.00	\$2.50	20000	\$2.67	1.00	\$15.00	70000	\$15.00
3-Lamp T5 Industrial/Strip	\$12.00	20000	\$2.67	\$52.00	70000	\$15.00	adjusted according to 2-Lamp T5 Equivalent	4.50	\$2.50	20000	\$2.67	1.50	\$15.00	70000	\$15.00
4-Lamp T5 Industrial/Strip	\$12.00	20000	\$2.67	\$52.00	70000	\$15.00	Proportionally adjusted according to 2-Lamp T5 Equivalent to 3-Lamp T8	6.00	\$2.50	20000	\$2.67	2.00	\$15.00	70000	\$15.00
1-Lamp T5 Indirect	\$12.00	20000	\$2.67	\$52.00	70000	\$15.00	Proportionally adjusted according to 2-Lamp T5 Equivalent to 3-Lamp T8	1.50	\$2.50	20000	\$2.67	0.50	\$15.00	70000	\$15.00
2-Lamp T5 Indirect	\$12.00	20000	\$2.67	\$52.00	70000	\$15.00	3-Lamp F32T8 Equivalent w/ Elec. Ballast	3.00	\$2.50	20000	\$2.67	1.00	\$15.00	70000	\$15.00

⁴²⁷ Adapted from Efficiency Vermont Technical Reference User Manual (TRM) Measure Savings Algorithms and Cost Assumptions, October 26, 2011.

B-2: T5 Retrofit Component Costs and Lifetime⁴²⁸

EE Measure Description	EE Lamp Cost	EE Lamp Life (hrs)	EE Lamp Rep. Labor Cost per Iamp	EE Ballast Cost	EE Ballast Life (hrs)	EE Ballast Rep. Labor Cost	Baseline Description	#Base Lamps	Base Lamp Cost	Base Lamp Life (hrs)	Base Lamp Rep. Labor Cost	# Base Ballast s	Base Ballast Cost	Base Ballast Life (hrs)	Base Ballast Rep. Labor Cost
3-Lamp T5 High-Bay	\$12.00	20000	\$6.67	\$52.00	70000	\$22.50	200 Watt Pulse Start Metal-Halide	1.00	\$21.00	10000	\$6.67	1.00	\$ 8	40000	\$22.50
							250 Watt Metal Halide	1.00	\$21.00	10000	\$6.67	1.00	\$ 9;	40000	\$22.50
4-Lamp T5 High-Bay	\$12.00	20000	\$6.67	\$52.00	70000	\$22.50	320 Watt Pulse Start Metal-Halide	1.00	\$72.00	20000	\$6.67	1.00	\$ 10:	40000	\$22.50
							400 Watt Metal Halide	1.00	\$17.00	20000	\$6.67	1.00	\$ 11	40000	\$22.50
6-Lamp T5 High-Bay	\$12.00	20000	\$6.67	\$52.00	70000	\$22.50	Proportionally Adjusted according to 6- Lamp HPT8 Equivalent to 320 PSMH	1.36	\$72.00	20000	\$6.67	1.50	\$ 10:	40000	\$22.50
1-Lamp T5 Troffer/Wrap	\$12.00	20000	\$2.67	\$52.00	70000	\$15.00	Proportionally adjusted according to 2- Lamp T5 Equivalent to 3-Lamp T8	1.50	\$2.50	20000	\$2.67	0.50	\$ 1	5 70000	\$15.00
2-Lamp T5 Troffer/Wrap	\$12.00	20000	\$2.67	\$52.00	70000	\$15.00	3-Lamp F32T8 Equivalent w/ Elec. Ballast	3.00	\$2.50	20000	\$2.67	1.00	\$ 1	5 70000	\$15.00
1-Lamp T5 Industrial/Strip	\$12.00	20000	\$2.67	\$52.00	70000	\$15.00	Proportionally adjusted according to 2- Lamp T5 Equivalent to 3-Lamp T8	1.50	\$2.50	20000	\$2.67	0.50	\$ 1	5 70000	\$15.00
2-Lamp T5 Industrial/Strip	\$12.00	20000	\$2.67	\$52.00	70000	\$15.00	3-Lamp F32T8 Equivalent w/ Elec. Ballast	3.00	\$2.50	20000	\$2.67	1.00	\$ 1	5 70000	\$15.00
3-Lamp T5 Industrial/Strip	\$12.00	20000	\$2.67	\$52.00	70000	\$15.00	Proportionally adjusted according to 2- Lamp T5 Equivalent to 3-Lamp T8	4.50	\$2.50	20000	\$2.67	1.50	\$ 1	5 70000	\$15.00
4-Lamp T5 Industrial/Strip	\$12.00	20000	\$2.67	\$52.00	70000	\$15.00	Proportionally adjusted according to 2- Lamp T5 Equivalent to 3-Lamp T8	6.00	\$2.50	20000	\$2.67	2.00	\$ 1	5 70000	\$15.00
I-Lamp T5 Indirect	\$12.00	20000	\$2.67	\$52.00	70000	\$15.00	Proportionally adjusted according to 2- Lamp T5 Equivalent to 3-Lamp T8	1.50	\$2.50	20000	\$2.67	0.50	\$ 1	5 70000	\$15.00
2-Lamp T5 Indirect	\$12.00	20000	\$2.67	\$52.00	70000	\$15.00	3-Lamp F32T8 Equivalent w/ Elec. Ballast	3.00	\$2.50	20000	\$2.67	1.00	\$ 1	5 70000	\$15.00

 ⁴²⁸ Efficiency Vermont Technical Reference User Manual (TRM) Measure Savings Algorithms and Cost Assumptions, October 26, 2011
 EPE Program Downloads. Web accessed http://www.epelectricefficiency.com/downloads.asp?section=ci download Copy of LSF_2012_v4.04_250rows.xls.
 Kuiken et al, Focus on Energy Evaluation. Business Programs: Deemed Savings Manual v1.0, Kema, march 22, 2010 available at
 http://www.focusonenergy.com/files/Document_Management_System/Evaluation/bpdeemedsavingsmanuav10_evaluationreport.pdf

C-1: T12 Baseline Adjustment:

Savings Adjustment Factors

		Equivalent T12 watts			
		adjusted for lumen	Equivalent T12 watts adjusted	Equivalent T12 watts adjusted for	Prportionally Adjusted for
		equivalency-34 w and 40 w	for lumen equivalency-40 w	lumen equivalency-40 w with Mag	Lumens wattage for T8
ļ	watts	with EEMag ballast	with EEMag ballast	ballast	equivalent
-Lamp T5 Industrial/Strip	32	61	73	82	
-Lamp T5 Industrial/Strip	64	103	125	135	
-Lamp T5 Industrial/Strip	96	167	185	211	1
-Lamp T5 Industrial/Strip	128	211	249	226	1
		Savings Factor Adjustment	Savings Factor Adjustment to	Savings Factor Adjustment to the T8	
		to the T8 baseline	the T8 baseline	baseline	
-Lamp T5 Industrial/Strip		42%	29%	24%	
-Lamp T5 Industrial/Strip		61%	40%	34%	
-Lamp T5 Industrial/Strip		51%	40%	31%	
-Lamp T5 Industrial/Strip		60%	41%	51%	

Measures installed in 2012 will claim full savings for four years, 2013 for three years, 2014 two years and 2015 one year. Savings adjustment factors based on a T8 baseline will be applied to the full savings for savings starting in 2016 and for the remainder of the measure life. The adjustment to be applied for each measure is listed in the reference table above and is based on equivalent lumens.

MEASURE CODE: CI-LTG-T5FX-V01-120601

4.6 Refrigeration End Use

4.6.1 Automatic Door Closer for Walk-In Coolers and Freezers

DESCRIPTION

This measure is for installing an auto-closer to the main insulated opaque door(s) of a walk-in cooler or freezer. The auto-closer must firmly close the door when it is within 1 inch of full closure.

This measure was developed to be applicable to the following program types: RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

This measure consists of the installation of an automatic, hydraulic-type door closer on main walk-in cooler or freezer doors. These closers save energy by reducing the infiltration of warm outside air into the refrigeration itself.

DEFINITION OF BASELINE EQUIPMENT

In order for this characterization to apply, the baseline condition is assumed to be a walk in cooler or freezer without an automatic closure.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The deemed measure life is 8 years.⁴²⁹

DEEMED MEASURE COST

The deem measure cost is \$156.82 for a walk-in cooler or freezer. 430

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape C22 - Commercial Refrigeration

COINCIDENCE FACTOR

The measure has deemed kW savings therefore a coincidence factor does not apply

⁴²⁹ Source: DEER 2008 ⁴³⁰ Ibid.

Illinois Statewide Technical Reference Manual - 4.6.1 Automatic Door Closer for Walk-In Coolers and Freezers

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Savings calculations are based on values from through PG&E's Workpaper PGECOREF110.1 – Auto-Closers for Main Cooler or Freezer Doors. Savings are averaged across all California climate zones and vintages⁴³¹.

Annual Savings	kWh
Walk in Cooler	943 kWh
Walk in Freezer	2307 kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

Annual Savings	kW
Walk in Cooler	0.137 kW
Walk in Freezer	0.309 kW

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-RFG-ATDC-V01-120601

⁴³¹ Measure savings from ComEd TRM developed by KEMA. June 1, 2010

4.6.2 Beverage and Snack Machine Controls

DESCRIPTION

This measure relates to the installation of new controls on refrigerated beverage vending machines, nonrefrigerated snack vending machines, and glass front refrigerated coolers. Controls can significantly reduce the energy consumption of vending machine and refrigeration systems. Qualifying controls must power down these systems during periods of inactivity but, in the case of refrigerated machines, must always maintain a cool product that meets customer expectations. This measure relates to the installation of a new control on a new or existing unit. This measure should **not** be applied to ENERGY STAR qualified vending machines, as they already have built-in controls.

This measure was developed to be applicable to the following program types: RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the efficient equipment is assumed to be a standard efficiency refrigerated beverage vending machine, non-refrigerated snack vending machine, or glass front refrigerated cooler with a control system capable of powering down lighting and refrigeration systems during periods of inactivity.

DEFINITION OF BASELINE EQUIPMENT

In order for this characterization to apply, the baseline equipment is assumed to be a standard efficiency refrigerated beverage vending machine, non-refrigerated snack vending machine, or glass front refrigerated cooler without a control system capable of powering down lighting and refrigeration systems during periods of inactivity

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 5 years 432 .

DEEMED MEASURE COST

The actual measure installation cost should be used (including material and labor), but the following can be assumed for analysis purposes⁴³³:

Refrigerated Vending Machine and Glass Front Cooler: \$180.00

Non-Refrigerated Vending Machine: \$80.00

DEEMED O&M COST ADJUSTMENTS

N/A

⁴³² Measure Life Study, prepared for the Massachusetts Joint Utilities, Energy & Resource Solutions, November 2005.

⁴³³ ComEd workpapers, 8—15-11.pdf

LOADSHAPE

Loadshape C52 - Beverage and Snack Machine Controls

COINCIDENCE FACTOR

The summer peak coincidence factor for this measure is assumed to be 0^{434} .

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

ΔkWh = WATTSbase / 1000 * HOURS * ESF

Where:

WATTSbase = connected W of the controlled equipment; see table below for default values by connected equipment type:

Equipment Type	WATTSbase ⁴³⁵
Refrigerated Beverage Vending Machines	400
Non-Refrigerated Snack Vending Machines	85
Glass Front Refrigerated Coolers	460

1000 = conversion factor (W/kW)

HOURS = operating hours of the connected equipment; assumed that the equipment operates 24 hours per day, 365.25 days per year

= 8766

ESF = Energy Savings Factor; represents the percent reduction in annual kWh consumption of the equipment controlled; see table below for default values:

Equipment Type	Energy Savings Factor (ESF) ⁴³⁶
Refrigerated Beverage Vending Machines	46%
Non-Refrigerated Snack Vending Machines	46%
Glass Front Refrigerated Coolers	30%

⁴³⁶ Ibid.

 ⁴³⁴ Assumed that the peak period is coincident with periods of high traffic diminishing the demand reduction potential of occupancy based controls.
 ⁴³⁵ USA Technologies Energy Management Product Sheets, July 2006; cited September 2009. http://

 ⁴³⁵ USA Technologies Energy Management Product Sheets, July 2006; cited September 2009. http://www.usatech.com/energy_management/energy_productsheets.php
 ⁴³⁶

EXAMPLE

For example, adding controls to a refrigerated beverage vending machine:

ΔkWh = WATTSbase / 1000 * HOURS * ESF

=400/1000* 8766* .46 = 1.6 kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-RFG-BEVM-V01-120601

4.6.3 Door Heater Controls for Cooler or Freezer

DESCRIPTION

By installing a control device to turn off door heaters when there is little or no risk of condensation, one can realize significant energy savings. There are two commercially available control strategies that achieve "on-off" control of door heaters based on either (1) the relative humidity of the air in the store or (2) the "conductivity" of the door (which drops when condensation appears). In the first strategy, the system activates your door heaters when the relative humidity in your store rises above a specific setpoint, and turns them off when the relative humidity falls below that setpoint. In the second strategy, the sensor activates the door heaters when the door conductivity falls below a certain setpoint, and turns them off when the conductivity rises above that setpoint.

This measure was developed to be applicable to the following program types: RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the efficient equipment is assumed to be a door heater control on a commercial glass door cooler or refrigerator utilizing humidity or conductivity control.

DEFINITION OF BASELINE EQUIPMENT

In order for this characterization to apply, the baseline condition is assumed to be a commercial glass door cooler or refrigerator with a standard heated door with no controls installed.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years ⁴³⁷.

DEEMED MEASURE COST

The incremental capital cost for a humidity-based control is \$300 per circuit regardless of the number of doors controlled. The incremental cost for conductivity-based controls is \$200⁴³⁸.

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape C51 - Door Heater Control

⁴³⁷ 2008 Database for Energy-Efficiency Resources (DEER), Version 2008.2.05, "Effective/Remaining Useful Life Values", California Public Utilities Commission, December 16, 2008.

⁴³⁸ Efficiency Vermont Technical Reference User Manual (TRM) Measure Savings Algorithms and Cost Assumptions, February, 19, 2010

COINCIDENCE FACTOR 439

The summer peak coincidence factor for this measure is assumed to be $0\%^{440}$.

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWH = kWbase * NUMdoors * ESF * BF * 8760$

Where:

kWbase⁴⁴¹ = connected load kW for typical reach-in refrigerator or freezer door and frame with a heater.

= If actual kWbase is unknown, assume 0.195 kW for freezers and 0.092 kW for coolers.

NUMdoors = number of reach-in refrigerator or freezer doors controlled by sensor

= Actual installed

 ESF^{442} = Energy Savings Factor; represents the percentage of hours annually that the door heater is powered off due to the controls.

= assume 55% for humidity-based controls, 70% for conductivity-based controls

BF⁴⁴³ = Bonus Factor; represents the increased savings due to reduction in cooling load inside the cases, and the increase in cooling load in the building space to cool the additional heat generated by the door heaters.

⁴³⁹ Source partial list from DEER 2008

⁴⁴⁰ Based on the assumption that humidity levels will most likely be relatively high during the peak period, reducing the likelihood of demand savings from door heater controls.

⁴⁴¹ A review of TRM methodologies from Vermont, New York, Wisconsin, and Connecticut reveals several different sources for this factor. Connecticut requires site-specific information, whereas New York's characterization does not explicitly identify the kWbase. Connecticut and Vermont provide values that are very consistent, and the simple average of these two values has been used for the purposes of this characterization.

⁴⁴² A review of TRM methodologies from Vermont, New York, Wisconsin, and Connecticut reveals several different estimates of ESF. Vermont is the only TRM that provides savings estimates dependent on the control type. Additionally, these estimates are the most conservative of all TRMs reviewed. These values have been adopted for the purposes of this characterization.

 ⁴⁴³ Efficiency Vermont Technical Reference User Manual (TRM) Measure Savings Algorithms and Cost Assumptions,
 February, 19, 2010

Definition	Representative Evaporator Temperature Range, F ⁴⁴⁴	Typical Uses	BF
Low	-35 to 0	Freezers for times such as frozen pizza, ice cream, etc.	1.36
Medium	0 – 20	Coolers for items such as meat, milk, dairy, etc	1.22
High	20 – 45	Coolers for items such as floral, produce and meat preperation rooms	1.15

8760 = annual hours of operation

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

Deemed O&M Cost Adjustment Calculation

N/A

MEASURE CODE: CI-RFG-DHCT-V01-120601

⁴⁴⁴ Energy Efficiency Supermarket Refrigeration, Wisconsin Electric Power Company, July 23, 1993

4.6.4 Electronically Commutated Motors (ECM) for Walk-in and Reach-in Coolers / Freezers

DESCRIPTION

This measure is applicable to the replacement of an existing standard-efficiency shaded-pole evaporator fan motor in refrigerated display cases or fan coil in walk-ins.

This measure was developed to be applicable to the following program types: RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

This measure applies to the replacement of an existing standard-efficiency shaded-pole evaporator fan motor in refrigerated display cases or fan coil in walk-ins. The replacement unit must be an electronically commutated motor (ECM). This measure cannot be used in conjunction with the evaporator fan controller measure

DEFINITION OF BASELINE EQUIPMENT

In order for this characterization to apply, the baseline equipment is assumed to be a shaded pole motor

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 15 years⁴⁴⁵

DEEMED MEASURE COST

The measure cost is assumed to be \$50 for a walk in cooler and walk in freezer. 446

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape C22 - Commercial Refrigeration

COINCIDENCE FACTOR

The measure has deemed peak kW savings therefore a coincidence factor does not apply.

Algorithm

CALCULATION OF SAVINGS 447

Savings values are obtained from the SCE workpaper for efficient evaporator fan motors, which covers all 16 California climate zones. SCE savings values were determined using a set of assumed conditions for restaurants

⁴⁴⁵ DEER

⁴⁴⁶ Act on Energy Commercial Technical Reference Manual No. 2010-4

⁴⁴⁷ "Efficient Evaporator Fan Motors (Shaded Pole to ECM)," Workpaper WPSCNRRN0011. Southern California Edison Company. 2007.

Illinois Statewide Technical Reference Manual - 4.6.4 Electronically Commutated Motors (ECM) for Walk-in and Reach-in Coolers / Freezers

and grocery stores. We have used only PG&E climate zones in calculating our averages and have taken out the drier, warmer climates of southern California. SCE's savings approach calculates refrigeration demand, by taking into consideration temperature, compressor efficiency, and various loads involved for both walk-in and reach-in refrigerators. Details on cooling load calculations, including refrigeration conditions, can be found in the SCE workpaper. The baseline for this measure assumes that the refrigeration unit has a shaded-pole motor. The following tables are values calculated within the SCE workpaper.

	Restaurant			
SCE Workpaper Values	Cooler		Freezer	
Northern California Climate Zones	kWh Savings Per Motor	Peak kW Savings Per Motor	kWh Savings Per Motor	Peak kW Savings Per Motor
1	318	0.0286	507	0.03
2	253	0.033	263	0.037
3	364	0.0315	649	0.034
4	365	0.0313	652	0.034
5	350	0.0305	605	0.033
11	410	0.0351	780	0.04
12	399	0.034	748	0.039
13	407	0.0342	771	0.039
16	354	0.0315	620	0.034
Average	358	0.0322	622	0.036

Table 156 SCE Restaurant Savings Walk-In

Illinois Statewide Technical Reference Manual - 4.6.4 Electronically Commutated Motors (ECM) for Walk-in and Reach-in Coolers / Freezers

	Grocery				
SCE Workpaper Values	Cooler		Freezer	Freezer	
Northern California Climate Zones	kWh Savings Per Motor	Peak kW Savings Per Motor	kWh Savings Per Motor	Peak kW Savings Per Motor	
1	318	0.0284	438	0.03	
2	252	0.0534	263	0.064	
3	364	0.0486	552	0.056	
4	365	0.048	553	0.055	
5	349	0.0452	516	0.051	
11	410	0.0601	656	0.074	
12	398	0.0566	631	0.069	
13	406	0.0574	649	0.07	
16	354	0.0486	528	0.056	
Average	357	0.0496	532	0.058	

Table 157: SCE Grocery Savings Walk-In

Table 158: SCE Grocery Savings Reach-In

	Grocery			
SCE Workpaper Values	Cooler	Cooler		
Northern California Climate Zones	kWh Savings Per Motor	Peak kW Savings Per Motor	kWh Savings Per Motor	Peak kW Savings Per Motor
1	306	0.031	362	0.031
2	269	0.033	273	0.035
3	331	0.032	421	0.034
4	332	0.032	422	0.034
5	323	0.032	402	0.033
11	357	0.034	476	0.037
12	350	0.034	462	0.036
13	355	0.034	472	0.037
16	325	0.032	409	0.034
Average	328	0.033	411	0.035

Savings values in the following table are an average of walk-in cooler (80 percent) and freezer (20 percent) applications. The workpapers for the 2006-2008 program years include this distribution of coolers and freezers in their refrigeration measure savings analyses.

ELECTRIC ENERGY SAVINGS

The following table provides the kWh savings.

Building type	kWh Savings/ft
Restaurant	411
Grocery	392
Average	401

SUMMER COINCIDENT PEAK DEMAND SAVINGS

The following table provides the kW savings

Building Type	Peak kW Savings/motor
Restaurant	0.033
Grocery	0.051
Average	0.042

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-RFG-ECMF-V01-120601

4.6.5 ENERGY STAR Refrigerated Beverage Vending Machine

DESCRIPTION

ENERGY STAR qualified new and rebuilt vending machines incorporate more efficient compressors, fan motors, and lighting systems as well as low power mode option that allows the machine to be placed in low-energy lighting and/or low-energy refrigeration states during times of inactivity.

This measure was developed to be applicable to the following program types: TOS, NC . If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The refrigerated vending machine can be new or rebuilt but must meet the ENERGY STAR specifications which include low power mode.

DEFINITION OF BASELINE EQUIPMENT

The baseline vending machine is a standard unit

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The deemed lifetime of this measure is 14 years 448

DEEMED MEASURE COST

The incremental cost of this measure is \$500⁴⁴⁹

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape C22 - Commercial Refrigeration

COINCIDENCE FACTOR

It is assumed that controls are only effective during off-peak hours and so have no peak-kW savings.

Algorithm

CALCULATION OF SAVINGS

Beverage machine savings are taken from the ENERGY STAR savings calculator and summarized in the following table. ENERGY STAR provides savings numbers for machines with and without control software. The average savings are calculated here.

448 ENERGY STAR

449 ENERGY STAR

ELECTRIC ENERGY SAVINGS

ENERGY STAR Vending Machine Savings⁴⁵⁰

Vending Machine Capacity (cans)	kWh Savings Per Machine w/o software	kWh Savings Per Machine w/ software
<500	1,099	1,659
500	1,754	2,231
699	1,242	1,751
799	1,741	2,283
800+	713	1,288
Average	1,310	1,842

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-RFG-ESVE-V01-120601

http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&pgw_code=VMC

⁴⁵⁰ Savings from Vending Machine Calculator:

4.6.6 Evaporator Fan Control

DESCRIPTION

This measure is for the installation of controls in existing medium temperature walk-in coolers. The controller reduces airflow of the evaporator fans when there is no refrigerant flow.

This measure was developed to be applicable to the following program types: RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The measure must control a minimum of 1/20 HP where fans operate continuously at full speed. The measure also must reduce fan motor power by at least 75% during the off cycle. This measure is not applicable if any of the following conditions apply:

- The compressor runs all the time with high duty cycle
- The evaporator fan does not run at full speed all the time
- The evaporator fan motor runs on poly-phase power
- Evaporator does not use off-cycle or time-off defrost.

DEFINITION OF BASELINE EQUIPMENT

In order for this characterization to apply, the baseline measure is assumed to be a cooler with continuously running evaporator fan. An ECM can also be updated with controls.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 16 years⁴⁵¹

DEEMED MEASURE COST

The measure cost is assumed to be \$291⁴⁵²

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape C46 - Evaporator Fan Control

COINCIDENCE FACTOR

The measure has deemed kW savings therefore a coincidence factor does not apply.

⁴⁵¹ Source: DEER

⁴⁵² Source: DEER

Algorithm

CALCULATION OF SAVINGS

Savings for this measure were obtained from the DEER database and are summarized in the following table. The baseline is assumed to be evaporator fans that run continuously with either a permanent split capacitor or shaded-pole motors. In the energy-efficient case the fan is still assumed to operate even with the evaporator inactive⁴⁵³.

ELECTRIC ENERGY SAVINGS

DEER provides savings numbers for building vintages and grocery only. The numbers above are averages of these vintages. We are assuming that this measure will be applicable for all building types

The following table provides the kWh savings

Northern California	kWh Savings Per
Climate Zones	Motor
1	480
2	476
3	479
4	475
5	477
11	476
12	476
13	476
16	483
Average	478

SUMMER COINCIDENT PEAK DEMAND SAVINGS

The following table provides the kW savings

Northern California Climate Zones	Peak kW Savings Per Motor
1	0.057
2	0.064
3	0.062
4	0.061
5	0.056
11	0.058
12	0.065
13	0.061
16	0.061
Average	0.06

453 2005 Database for Energy Efficiency Resources (DEER) Update Study Final Report

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-RFG-EVPF-V01-120601

4.6.7 Strip Curtain for Walk-in Coolers and Freezers

DESCRIPTION

This commercial measure pertains to the installation of infiltration barriers (strip curtains) on walk-in coolers or freezers. Strip curtains impede heat transfer from adjacent warm and humid spaces into walk-ins when the main door is opened, thereby reducing the cooling load. As a result, compressor run time and energy consumption are reduced. The engineering assumption is that the walk-in door is open 72 minutes per day every day, and the strip curtain covers the entire door frame.

This measure was developed to be applicable to the following program types: RF.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient equipment is a polyethylene strip curtain added to a walk-in cooler or freezer

DEFINITION OF BASELINE EQUIPMENT

The baseline assumption is a walk-in cooler or freezer that previously had either no strip curtain installed or an old, ineffective strip curtain installed.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 6 years⁴⁵⁴.

DEEMED MEASURE COST

The incremental capital cost for this measure is \$286.16⁴⁵⁵

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape C22 - Commercial Refrigeration

COINCIDENCE FACTOR

The summer peak coincidence factor for this measure is 100%⁴⁵⁶.

⁴⁵⁴ M. Goldberg, J. Ryan Barry, B. Dunn, M. Ackley, J. Robinson, and D. Deangelo-Woolsey, KEMA. "Focus on Energy: Business Programs – Measure Life Study", August 2009.

⁴⁵⁵ Assume average walk in door size is 3.5 feet wide and 8 feet tall or 28 square feet. The reference for incremental cost is \$10.22 per square foot of door opening (includes material and labor). 2008 Database for Energy-Efficiency Resources (DEER), Version 2008.2.05, "Cost Values and Summary Documentation", California Public Utilities Commission, December 16, 2008, Therefore incremental cost per door is \$286.16

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS⁴⁵⁷

 $\Delta kWh = 2,974$ per freezer with curtains installed

= 422 per cooler with curtains installed

SUMMER COINCIDENT PEAK DEMAND SAVINGS

ΔkW	= ΔkWh / 8760 * CF
	= 0.35 for freezers

= 0.05 for coolers

Where:

	8766	= hours per year
--	------	------------------

CF = Summer Peak Coincidence Factor for the measure

= 1.0

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-RFG-CRTN-V02-130601

⁴⁵⁶ The summer coincident peak demand reduction is assumed as the total annual savings divided by the total number of hours per year, effectively assuming the average demand reduction is realized during the peak period. This is a reasonable assumption for refrigeration savings.

⁴⁵⁷ Values based on analysis prepared by ADM for FirstEnergy utilities in Pennsylvania, provided via personal communication with Diane Rapp of FirstEnergy on June 4, 2010. Based on a review of deemed savings assumptions and methodologies from Oregon and California, the values from Pennsylvania appear reasonable and are the most applicable.

4.7 Miscellaneous End Use

4.7.1 VSD Air Compressor

DESCRIPTION

This measure relates to the installation of an air compressor with a variable frequency drive, load/no load controls or variable displacement control. The baseline compressors defined choke off the inlet air to modulate the compressor output, which is not efficient. Efficient compressors use a variable speed drive on the motor to match output to the load. Savings are calculated using representative baseline and efficient demand numbers for compressor capacities according to the facility's load shape, and the number of hours the compressor runs at that capacity. Demand curves are as per DOE data for a Variable Speed compressor versus a Modulating compressor. This measure applies only to an individual compressor ≤ 40 hp

This measure was developed to be applicable to the following program types: TOS. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The high efficiency equipment is a compressor \leq 40 hp with variable speed control.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a modulating compressor with blow down ≤ 40 hp

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

10 years.

DEEMED MEASURE COST

IncrementalCost (\$) = (127 x hp_{compressor}) + 1446

Where:

127 and 1446^{458} = compressor motor nominal hp to incremental cost conversion factor and offset

hp_{compressor} = compressor motor nominal

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape C35 - Industrial Process

⁴⁵⁸ Conversion factor and offset based on a linear regression analysis of the relationship between air compressor motor nominal horsepower and incremental cost. Several Vermont vendors were surveyed to determine the cost of equipment. See "Compressed Air Analysis.xls" and "Compiled Data ReQuest Results.xls" for incremental cost details.

COINCIDENCE FACTOR

The coincidence factor equals 0.95

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = 0.9 \text{ x hp}_{compressor} \text{ x HOURS x (CF}_{b} - CF_{e})$

Where:

∆kWh	= gross customer annual kWh savings for the measure
hp _{compressor}	= compressor motor nominal hp
0.9459	= compressor motor nominal hp to full load kW conversion factor
HOURS	= compressor total hours of operation below depending on shift

Shift	Hours
Single shift	1976 hours
(8/5)	7 AM – 3 PM, weekdays, minus some holidays
	and scheduled down time
2-shift (16/5)	3952 hours
	7AM – 11 PM, weekdays, minus some holidays
	and scheduled down time
3-shift (24/5)	5928 hours
	24 hours per day, weekdays, minus some
	holidays and scheduled down time
4-shift (24/7)	8320 hours
	24 hours per day, 7 days a week minus some
	holidays and scheduled down time

 CF_{b} = baseline compressor factor⁴⁶⁰

=0.890

 CF_e = efficient compressor ⁴⁶¹

⁴⁶¹ Ibid.

 ⁴⁵⁹ Conversion factor based on a linear regression analysis of the relationship between air compressor motor nominal horsepower and full load kW from power measurements of 72 compressors at 50 facilities on Long Island.
 See "BHP Weighted Compressed Air Load Profiles v2.xls".
 ⁴⁶⁰ Compressor factors were developed using DOE part load data for different compressor control types as well as

⁴⁶⁰ Compressor factors were developed using DOE part load data for different compressor control types as well as load profiles from 50 facilities employing air compressors less than or equal to 40 hp. "See "BHP Weighted Compressed Air Load Profiles.xls" for source data and calculations (The "variable speed drive" compressor factor has been adjusted up from the 0.675 presented in the analysis to 0.705 to account for the additional power draw of the VSD).

=0.705

EXAMPLEFor example a VFD compressor with 10 HP operating in a 1 shift facility would save ΔkWh = 0.9 x 10 x 1976 x (0.890 - 0.705)

= 3290 kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh / HOURS * CF$

EXAMPLE

For example a VFD compressor with 10 HP operating in a 1 shift facility would save

ΔkW = 3290/1976*.95

= 1.58 kW

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: CI-MSC-VSDA-V01-120601

5 Residential Measures

5.1 Appliances End Use

5.1.1 ENERGY STAR Air Purifier/Cleaner

DESCRIPTION

An air purifier (cleaner) meeting the efficiency specifications of ENERGY STAR is purchased and installed in place of a model meeting the current federal standard.

This measure was developed to be applicable to the following program types: TOS, NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient equipment is defined as an air purifier meeting the efficiency specifications of ENERGY STAR as provided below.

- Must produce a minimum 50 Clean Air Delivery Rate (CADR) for Dust⁴⁶² to be considered under this specification.
- Minimum Performance Requirement: = 2.0 CADR/Watt (Dust)
- Standby Power Requirement: = 2.0 Watts Qualifying models that perform secondary consumer functions (e.g. clock, remote control) must meet the standby power requirement.
- UL Safety Requirement: Models that emit ozone as a byproduct of air cleaning must meet UL Standard 867 (ozone production must not exceed 50ppb)

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is assumed to be a conventional unit⁴⁶³.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The measure life is assumed to be 9 years⁴⁶⁴.

DEEMED MEASURE COST

The incremental cost for this measure is \$70.465

⁴⁶² Measured according to the latest ANSI/AHAM AC-1 (AC-1) Standard

⁴⁶³ As defined as the average of non-ENERGY STAR products found in EPA research, 2008, ENERGY STAR Qualified Room Air Cleaner Calculator,

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/CalculatorRoomAirCleaner.xls?8ed7-275b.

⁴⁶⁴ ENERGY STAR Qualified Room Air Cleaner Calculator,

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/CalculatorRoomAirCleaner.xls?8ed7-275b.

⁴⁶⁵ Ibid

DEEMED O&M COST ADJUSTMENTS

There are no operation and maintenance cost adjustments for this measure.⁴⁶⁶

LOADSHAPE

Loadshape C53 - Flat

COINCIDENCE FACTOR

The summer peak coincidence factor for this measure is assumed to be 100 % (the unit is assumed to be always on).

Algorithm			
CALCULATION OF SAVINGS			
ELECTRIC ENERGY SAVINGS			
ΔkWh	= kWh _{Base} - kWh _{ESTAR}		
Where:			
kWh _{BASE}	= Baseline kWh consumption per year ⁴⁶⁷		
	= see table below		
kWh _{ESTAR}	= ENERGY STAR kWh consumption per year ⁴⁶⁸		
	= see table below		
	Baseline Unit ENERGY STAR Unit		

Clean Air Delivery Rate	Baseline Unit Energy Consumption (kWh/year)	ENERGY STAR Unit Energy Consumption (kWh/year)	ΔkWH
CADR 51-100	596	329	268
CADR 101-150	1,072	548	525
CADR 151-200	1,480	767	714
CADR 201-250	1,887	986	902
CADR Over 250	1,641	1205	437

⁴⁶⁷ ENERGY STAR Qualified Room Air Cleaner Calculator,

⁴⁶⁶ Some types of room air cleaners require filter replacement or periodic cleaning, but this is likely to be true for both efficient and baseline units and so no difference in cost is assumed.

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/CalculatorRoomAirCleaner.xls?8ed7-275b 468 Ibid.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh/Hours *CF$

Where:

ΔkWh	= Gross customer annual kWh savings for the measure
Hours	= Average hours of use per year
	= 8766 hours ⁴⁶⁹
CF	= Summer Peak Coincidence Factor for measure
	= 1.0

Clean Air Delivery Rate	ΔkW
CADR 51-100	0.031
CADR 101-150	0.060
CADR 151-200	0.081
CADR 201-250	0.103
CADR Over 250	0.050

NATURAL GAS SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-APL-ESAP-V01-120601

⁴⁶⁹ Consistent with ENERGY STAR Qualified Room Air Cleaner Calculator.

5.1.2 ENERGY STAR and CEE Tier 2 and 3 Clothes Washers

DESCRIPTION

This measure relates to the installation of a clothes washer meeting the Energy Star, or CEE Tier 2 or Tier 3 minimum qualifications. Note if the DHW and dryer fuels of the installations are unknown (for example through a retail program) savings should be based on a weighted blend using RECS data (the resultant values (kWh, therms and gallons of water) are provided). The algorithms can also be used to calculate site specific savings where DHW and dryer fuels are known.

This measure was developed to be applicable to the following program types: TOS, NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

Clothes washer must meet the ENERGY STAR or CEE Tier 2 or 3 minimum qualifications, as required by the program.

DEFINITION OF BASELINE EQUIPMENT

The baseline condition is a clothes washer meeting the minimum federal baseline.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 14 years⁴⁷⁰.

DEEMED MEASURE COST

The incremental cost for an Energy Star unit is assumed to be \$210, for a CEE Tier 2 unit is \$360 and for a CEE Tier 3 unit it is \$458⁴⁷¹.

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape R01 - Residential Clothes Washer

COINCIDENCE FACTOR

The coincidence factor for this measure is $3.8\%^{472}$.

⁴⁷⁰ Based on DOE Life-Cycle Cost and Payback Period Excel-based analytical tool, available online at: <u>http://www1.eere.energy.gov/buildings/appliance_standards/residential/clothes_washers_support_stakeholder_negotiations.html</u>

⁴⁷¹ Cost estimates are based on Navigant analysis for the Department of Energy (see CW Analysis.xls). This analysis looked at incremental cost and shipment data from manufacturers and the Association of Home Appliance Manufacturers and attempts to find the costs associated only with the efficiency improvements.

⁴⁷² Calculated from Itron eShapes, 8760 hourly data by end use for Missouri, as provided by Ameren.

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

1. Calculate clothes washer savings based on Modified Energy Factor (MEF).

The Modified Energy Factor (MEF) includes unit operation, water heating and drying energy use: "*MEF is the quotient of the capacity of the clothes container, C, divided by the total clothes washer energy consumption per cycle, with such energy consumption expressed as the sum of the machine electrical energy consumption, M, the hot water energy consumption, E, and the energy required for removal of the remaining moisture in the wash load, D*"⁴⁷³.

The hot water and dryer savings calculated here assumes electric DHW and Dryer (this will be separated in Step 2).

MEFsavings⁴⁷⁴ = Capacity * (1/MEFbase - 1/MEFeff) * Ncycles

Where

Capacity	= Clothes Washer capacity (cubic feet)	
	= Actual. If capacity is unknown assume 3.5 cubic feet 475	
MEFbase	= Modified Energy Factor of baseline unit	
	$= 1.64^{476}$	
MEFeff	= Modified Energy Factor of efficient unit	
	= Actual. If unknown assume average values provided below.	
Ncycles	= Number of Cycles per year	
	= 295 ⁴⁷⁷	

MEFsavings is provided below based on deemed values⁴⁷⁸:

⁴⁷³ Definition provided on the Energy star website.

⁴⁷⁴ Tsavings represents total kWh only when water heating and drying are 100% electric.

⁴⁷⁵ Based on the average clothes washer volume of all post-1/1/2007 units from the California Energy

Commission (CEC) database of Clothes Washer products. If utilities have specific evaluation results providing a more appropriate assumption for homes in a particular market or geographical area then that should be used.

⁴⁷⁶ Average MEF of non-ENERGY STAR units from the California Energy Commission (CEC) database of Clothes Washer products.

⁴⁷⁷ Weighted average of 295 clothes washer cycles per year (based on 2009 Residential Energy Consumption Survey (RECS) national sample survey of housing appliances section, state of IL: http://www.eia.gov/consumption/residential/data/2009/

If utilities have specific evaluation results providing a more appropriate assumption for single-family or multifamily homes, in a particular market, or geographical area then that should be used.

Efficiency Level	MEF	MEFSavings (kWh)
Federal Standard	1.64	0.0
Energy Star	2.07	130
CEE Tier 2	2.28	177
CEE Tier 3	2.71	248

- 2. Break out savings calculated in Step 1 for electric DHW and electric dryer
- ΔkWh = [(Capacity * 1/MEFbase * Ncycles) * (%CWbase + (%DHWbase * %Electric_DHW) + (%Dryerbase * %Electric_Dryer)] - [(Capacity * 1/MEFeff * Ncycles) * (%CWeff + (%DHWeff * %Electric_DHW) + (%Dryereff * %Electric_Dryer)]

Where:

%CW	= Percentage of total energy consumption for Clothes Washer operation
	(different for baseline and efficient unit – see table below)

- %DHW = Percentage of total energy consumption used for water heating (different for baseline and efficient unit see table below)
- %Dryer = Percentage of total energy consumption for dryer operation (different for baseline and efficient unit see table below)

	Percentage of Total Energy Consumption ⁴⁷⁹		
	%CW	%DHW	%Dryer
Baseline	7%	33%	59%
Non-CEE Energy Star Units	6%	31%	62%
CEE 2	8%	24%	68%
CEE 3	10%	16%	74%

%Electric_DHW = Percentage of DHW savings assumed to be electric

DHW fuel	%Electric_DHW
Electric	100%
Natural Gas	0%
Unknown	16% ⁴⁸⁰

⁴⁷⁸ MEF values are the average of the **from the California Energy Commission (CEC) database of Clothes Washer products**. See "CW Analysis.xls" for the calculation.

⁴⁷⁹ The percentage of total energy consumption that is used for the machine, heating the hot water or by the dryer is different depending on the efficiency of the unit. Values are based on a sales weighted average of top loading and front loading units based on data from Life-Cycle Cost and Payback Period Excel-based analytical tool, available online at:

http://www1.eere.energy.gov/buildings/appliance_standards/residential/clothes_washers_support_stakeholder_ negotiations.html. See "CW Analysis.xls" for the calculation.

⁴⁸⁰ Default assumption for unknown fuel is based on EIA Residential Energy Consumption Survey (RECS) 2009 for Midwest Region, data for the state of IL. If utilities have specific evaluation results providing a more appropriate

Dryer fuel	%Electric_DHW
Electric	100%
Natural Gas	0%
Unknown	27% ⁴⁸¹

%Electric_Dryer = Percentage of dryer savings assumed to be electric

In summation, the complete algorithm is as follows:

ΔkWH = [(Capacity * 1/MEFbase * Ncycles) * (%CWbase + (%DHWbase * %Electric_DHW) + (%Dryerbase * %Electric_Dryer)] - [(Capacity * 1/MEFeff * Ncycles) * (%CWeff + (%DHWeff * %Electric_DHW) + (%Dryereff * %Electric_Dryer)]

Using the default assumptions provided above, the prescriptive savings for each configuration are presented below:

	ΔkWH			
	Electric DHW Electric Dryer	Gas DHW Electric Dryer	Electric DHW Gas Dryer	Gas DHW Gas Dryer
Non-CEE Energy Star Units	129.6	75.7	69.8	15.9
CEE 2	177.2	76.4	112.8	12.0
CEE 3	248.0	99.0	157.3	8.3

If the DHW and dryer fuel is unknown the prescriptive kWH savings based on defaults provided above should be:

	ΔkWH
Non-CEE Energy Star Units	40.69
CEE 2	45.52
CEE 3	56.63

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh/Hours * CF$

Where:

ΔkWh = Energy Savings as calculated above

Hours = Assumed Run hours of Clothes Washer

assumption for homes in a particular market or geographical area then that should be used

⁴⁸¹ Default assumption for unknown is based on percentage of homes with electric dryer from EIA Residential Energy Consumption Survey (RECS) 2009 for Midwest Region, data for the state of IL. If utilities have specific evaluation results providing a more appropriate assumption for homes in a particular market or geographical area then that should be used.

```
= 295 hours<sup>482</sup>
= Summer Peak Coincidence Factor for measure.
= 0.038<sup>483</sup>
```

Using the default assumptions provided above, the prescriptive savings for each configuration are presented below:

	ΔkW			
	Electric DHW Electric Dryer	Gas DHW Electric Dryer	Electric DHW Gas Dryer	Gas DHW Gas Dryer
Non-CEE Energy Star Units	0.017	0.010	0.009	0.002
CEE 2	0.023	0.010	0.015	0.002
CEE 3	0.032	0.013	0.020	0.001

If the DHW and dryer fuel is unknown the prescriptive kW savings should be:

	ΔkW
Non-CEE Energy Star Units	0.005
CEE 2	0.006
CEE 3	0.007

NATURAL GAS SAVINGS

CF

Break out savings calculated in Step 1 of electric energy savings (MEF savings) and extract Natural Gas DHW and Natural Gas dryer savings from total savings:

ΔTherm = [(Capacity * 1/MEFbase * Ncycles) * ((%DHWbase * %Natural Gas_DHW * R_eff) + (%Dryerbase * %Gas _Dryer)] - [(Capacity * 1/MEFeff * Ncycles) * ((%DHWeff * %Natural Gas_DHW * R_eff) + (%Dryereff * %Gas_Dryer)] * Therm_convert

Where:

Therm_convert = Convertion factor from kWh to Therm

= 0.03413

R_eff = Recovery efficiency factor

⁴⁸² Based on a weighted average of 295 clothes washer cycles per year assuming an average load runs for one hour (2009 Residential Energy Consumption Survey (RECS) national sample survey of housing appliances section: http://www.eia.gov/consumption/residential/data/2009/)

⁴⁸³ Calculated from Itron eShapes, 8760 hourly data by end use for Missouri, as provided by Ameren.

= 1.26⁴⁸⁴

%Natural Gas_DHW = Percentage of DHW savings assumed to be Natural Gas

DHW fuel	%Natural Gas_DHW
Electric	0%
Natural Gas	100%
Unknown	84% ⁴⁸⁵

%Gas_Dryer = Percentage of dryer savings assumed to be Natural Gas

Dryer fuel	%Gas_Dryer
Electric	100%
Natural Gas	0%
Unknown	44% ⁴⁸⁶

Other factors as defined above

Using the default assumptions provided above, the prescriptive savings for each configuration are presented below:

	ΔTherms			
	Electric DHW Electric Dryer	Gas DHW Electric Dryer	Electric DHW Gas Dryer	Gas DHW Gas Dryer
Non-CEE Energy Star Units	0.00	2.32	2.04	4.36
CEE 2	0.00	4.34	2.20	6.53
CEE 3	0.00	6.41	3.10	9.50

If the DHW and dryer fuel is unknown the prescriptive Therm savings should be:

	ΔTherms
Non-CEE Energy Star Units	2.84
CEE 2	4.61
CEE 3	6.74

⁴⁸⁶ Ibid.

 ⁴⁸⁴ To account for the different efficiency of electric and Natural Gas hot water heaters (gas water heater: recovery efficiencies ranging from 0.74 to 0.85 (0.78 used), and electric water heater with 0.98 recovery efficiency (<u>http://www.energystar.gov/ia/partners/bldrs lenders raters/downloads/Waste Water Heat Recovery Guidelin es.pdf</u>). Therefore a factor of 0.98/0.78 (1.26) is applied.
 ⁴⁸⁵ Default assumption for unknown fuel is based on percentage of homes with gas dryer from EIA Residential

⁴⁸⁵ Default assumption for unknown fuel is based on percentage of homes with gas dryer from EIA Residential Energy Consumption Survey (RECS) 2009 for Midwest Region, data for the state of IL. If utilities have specific evaluation results providing a more appropriate assumption for homes in a particular market or geographical area then that should be used

WATER IMPACT DESCRIPTIONS AND CALCULATION

 Δ Water (gallons) = (Capacity * (WFbase - WFeff)) * Ncycles

Where

WFbase	= Water Factor of baseline clothes washer
	= 7.59 ⁴⁸⁷
WFeff	= Water Factor of efficient clothes washer
	= Actual. If unknown assume average values provided below.

Using the default assumptions provided above, the prescriptive water savings for each efficiency level are presented below:

Efficiency Level	WF ⁴⁸⁸	ΔWater (gallons per year)
Federal Standard	7.59	0.0
Energy Star	4.75	2,934
CEE Tier 2	4.15	3,557
CEE Tier 3	3.46	4,264

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-APL-ESCL-V01-120601

⁴⁸⁷ Average MEF of non-ENERGY STAR units.

⁴⁸⁸ Water Factor is the number of gallons required for each cubic foot of laundry. WF values are the average of the CEC data set. See "CW Analysis.xls" for the calculation.

5.1.3 ENERGY STAR Dehumidifier

DESCRIPTION

A dehumidifier meeting the minimum qualifying efficiency standard established by the current ENERGY STAR (Version 2.1 or 3.0)⁴⁸⁹ is purchased and installed in a residential setting in place of a unit that meets the minimum federal standard efficiency.

This measure was developed to be applicable to the following program types: TOS, NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the new dehumidifier must meet the ENERGY STAR standards as defined below:

Until 9/30/2012:

Capacity (pints/day)	ENERGY STAR Criteria (L/kWh)
≤25	≥1.20
> 25 to ≤35	≥1.40
> 35 to ≤45	≥1.50
> 45 to ≤ 54	≥1.60
> 54 to ≤ 75	≥1.80
> 75 to ≤ 185	≥2.50

After 10/1/2012⁴⁹⁰:

Capacity (pints/day)	ENERGY STAR Criteria (L/kWh)
<75	≥1.85
75 to ≤185	≥2.80

Qualifying units shall be equipped with an adjustable humidistat control or shall require a remote humidistat control to operate.

DEFINITION OF BASELINE EQUIPMENT

The baseline for this measure is defined as a new dehumidifier that meets the Federal Standard efficiency standards. The Federal Standard for Dehumidifiers changed as of October 2012 as defined below:

Until 9/30/2012:

⁴⁸⁹ Energy Star Version 3.0 will become effective 10/1/12

⁴⁹⁰<u>http://www.energystar.gov/ia/partners/prod_development/revisions/downloads/dehumid/ES_Dehumidifiers_F</u> inal_V3.0_Eligibility_Criteria.pdf?d70c-99b0

Capacity (pints/day)	Federal Standard Criteria (L/kWh)
≤25	≥1.0
> 25 to ≤35	≥1.20
> 35 to ≤45	≥1.30
> 45 to ≤ 54	≥1.30
> 54 to ≤ 75	≥1.50
> 75 to ≤ 185	≥2.25

Post 10/1/2013

Capacity (pints/day)	Federal Standard Criteria (L/kWh) ⁴⁹¹
Up to 35	≥1.35
> 35 to ≤45	≥1.50
> 45 to ≤ 54	≥1.60
> 54 to ≤ 75	≥1.70
> 75 to ≤ 185	≥2.50

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The assumed lifetime of the measure is 12 years⁴⁹².

DEEMED MEASURE COST

The assumed incremental capital cost for this measure is \$40 for units purchased prior to 10/1/2012 and \$60 for units purchased after 10/1/2012⁴⁹³.

DEEMED O&M COST ADJUSTMENTS

N/A

https://www.federalregister.gov/articles/2010/12/02/2010-29756/energy-conservation-program-for-consumerproducts-test-procedures-for-residential-dishwashers#h-11 ⁴⁹² ENERGY STAR Dehumidifier Calculator

⁴⁹¹ The Federal Standard for Dehumidifiers changed as of October 2012;

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/CalculatorConsumerDehumidifier.xls

⁴⁹³ Based on extrapolating available data from the Department of Energy's Life Cycle Cost analysis spreadsheet and weighting based on volume of units available:

http://www1.eere.energy.gov/buildings/appliance_standards/residential/docs/lcc_dehumidifier.xls See 'DOE life cycle cost dehumidifier.xls' for calculation.

LOADSHAPE

Loadshape R12 - Residential - Dehumidifier

COINCIDENCE FACTOR

The coincidence factor is assumed to be 37% ⁴⁹⁴.

	Algorithm
CALCULATION OF SAVINGS	
ELECTRIC ENERGY SAVINGS	
ΔkWh	= (((Avg Capacity * 0.473) / 24) * Hours) * (1 / (L/kWh_Base) – 1 / (L/kWh_Eff))
Where:	
Avg Capacity	= Average capacity of the unit (pints/day)
0.473	= Constant to convert Pints to Liters
24	= Constant to convert Liters/day to Liters/hour
Hours	= Run hours per year
	= 1620 ⁴⁹⁵
L/kWh	= Liters of water per kWh consumed, as provided in tables above

Annual kWh results for each capacity class are presented below:

Until 9/30/2012 (V 2.1):

					Annual kWh	
Capacity			Federal Standard	ENERGY STAR	Savings	
(pints/day) Range		(≥ L/kWh)	(≥ L/kWh)			
≤25	20	1.0	1.2	643	536	107
> 25 to ≤35	30	1.2	1.4	804	689	115
> 35 to ≤45	40	1.3	1.5	990	858	132
> 45 to ≤ 54	50	1.3	1.6	1237	1005	232
> 54 to ≤ 75	65	1.5	1.8	1394	1161	232
> 75 to ≤ 185	130	2.25	2.5	1858	1673	186

⁴⁹⁴ Assume usage is evenly distributed day vs. night, weekend vs. weekday and is used between April through the end of September (4392 possible hours). 1620 operating hours from ENERGY STAR Dehumidifier Calculator. Coincidence peak during summer peak is therefore 1620/4392 = 36.9%

⁴⁹⁵ ENERGY STAR Dehumidifier Calculator

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/CalculatorConsumerDehumidifier.xls

Average	46	1.31	1.55	1129	953	176

After 10/1/2012 (V 3.0):

					Annual kWh	
Capacity	Capacity Used	Federal Standard Criteria	ENERGY STAR Criteria	Federal Standard	ENERGY STAR	Savings
(pints/day) Range		(≥ L/kWh)	(≥ L/kWh)			
≤25	20	1.35	1.85	477	348	129
> 25 to ≤35	30	1.35	1.85	715	522	193
> 35 to ≤45	40	1.5	1.85	858	695	162
> 45 to ≤ 54	50	1.6	1.85	1005	869	136
> 54 to ≤ 75	65	1.7	1.85	1230	1130	100
> 75 to ≤ 185	130	2.5	2.8	1673	1493	179
Average	46	1.51	1.85	983	800	183

Summer Coincident Peak Demand Savings

 $\Delta kW = \Delta kWh/Hours * CF$

Where:

Hours	= Annual operating hours
	= 1632 hours ⁴⁹⁶
CF	= Summer Peak Coincidence Factor for measure
	= 0.37 ⁴⁹⁷

Summer coincident peak demand results for each capacity class are presented below:

Until 9/30/2012 (V 2.1):

 ⁴⁹⁶ Based on 68 days of 24 hour operation; ENERGY STAR Dehumidifier Calculator
 <u>http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/appliance_calculator.xlsx?f3f7-6a8b&f3f7-6a8b</u>

⁴⁹⁷ Assume usage is evenly distributed day vs. night, weekend vs. weekday and is used between April through the end of September (4392 possible hours). 1620 operating hours from ENERGY STAR Dehumidifier Calculator. Coincidence peak during summer peak is therefore 1620/4392 = 36.9%

Capacity (pints/day) Range	Annual Summer peak kW Savings
≤25	0.024
> 25 to ≤35	0.026
> 35 to ≤45	0.030
> 45 to ≤ 54	0.053
> 54 to ≤ 75	0.053
> 75 to ≤ 185	0.042
Average	0.040

After 10/1/2012 (V 3.0):

Capacity (pints/day) Range	Annual Summer peak kW Savings
≤25	0.029
> 25 to ≤35	0.044
> 35 to ≤45	0.037
> 45 to ≤ 54	0.031
> 54 to ≤ 75	0.023
> 75 to ≤ 185	0.041
Average	0.042

NATURAL GAS SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-APL-ESDH-V02-130601

5.1.4 ENERGY STAR Dishwasher

DESCRIPTION

A dishwasher meeting the efficiency specifications of ENERGY STAR is installed in place of a model meeting the federal standard.

This measure was developed to be applicable to the following program types: TOS, NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient equipment is defined as a dishwasher meeting the efficiency specifications of ENERGY STAR (for standard and compact dishwashers). The Energy Star standard is presented in the table below:

Dishwasher Type	Maximum kWh/year	Maximum gallons/cycle
Standard	295	4.25
Compact	222	3.5

DEFINITION OF BASELINE EQUIPMENT

The Baseline reflects the minimum federal efficiency standards for dishwashers effective January 1, 2010, as presented in the table below.

Dishwasher Type	Maximum kWh/year	Maximum gallons/cycle
Standard	355	6.5
Compact	260	4.5

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The assumed lifetime of the measure is 13 years⁴⁹⁸.

DEEMED MEASURE COST

The incremental cost for this measure is \$50⁴⁹⁹.

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape R02 - Residential Dish Washer

⁴⁹⁸ Koomey, Jonathan et al. (Lawrence Berkeley National Lab), Projected Regional Impacts of Appliance Efficiency Standards for the U.S. Residential Sector, February 1998.

⁴⁹⁹ Estimate based on review of Energy Star stakeholder documents

COINCIDENCE FACTOR

The coincidence factor is assumed to be $2.6\%^{500}$.

Algorithm						
CALCULATION OF SAVI	NGS					
ELECTRIC ENERGY SAV	INGS					
	∆kWh ⁵⁰¹	= ((kWh _{Base} - kWh _{ESTAR}) * (%kWh	n_op + (%kWh_heat	:* %Electric_DHW)))		
Where:						
	kWh _{BASE}	= Baseline kWh consumption p	er year			
		= 355 kWh for standard				
		= 260 kWh for Compact				
	kWh _{ESTAR}	= ENERGY STAR kWh annual consumption				
		= 295 kWh for standard				
		= 222 kWh for compact				
	%kWh_op	= Percentage of dishwasher energy consumption used for unit operation				
		= 1 - 56% ⁵⁰²				
		= 44%				
	%kWh_heat	= Percentage of dishwasher energy consumption used for water heating				
		= 56% ⁵⁰³				
	%Electric_DHW	= Percentage of DHW savings assumed to be electric				
		DHW fuel	%Electric_DHW	1		
		Electric	100%			
		Natural Gas	0%			

⁵⁰⁰ Calculated from Itron eShapes, 8760 hourly data by end use for Missouri, as provided by Ameren.

Unknown

16%⁵⁰⁴

⁵⁰¹ The Federal Standard and ENERGY STAR annual consumption values include electric consumption for both the operation of the machine and for heating the water that is used by the machine. ⁵⁰² ENERGY STAR Dishwasher Calculator

⁽http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/CalculatorConsumerDishwasher.xls) 503 lbid.

⁵⁰⁴ Default assumption for unknown fuel is based on EIA Residential Energy Consumption Survey (RECS) 2009 for Midwest Region, data for the state of IL. If utilities have specific evaluation results providing a more appropriate

An Energy Star standard dishwasher installed in place of a baseline unit with unknown DHW fuel:

 $\Delta kWh = ((355 - 295) * (0.44 + (0.56*0.16)))$

= 31.8 kWh

An Energy Star compact dishwasher installed in place of a baseline unit with unknown DHW fuel:

$$\Delta kWh = ((260 - 222) * (0.44 + (0.56*0.16)))$$

= 20.1 kWh

An Energy Star standard dishwasher installed in place of a baseline unit with electric DHW:

An Energy Star compact dishwasher installed in place of a baseline unit with electric DHW:

 $\Delta kWh = ((260 - 222) * (0.44 + (0.56*1.0)))$

= 38.0 kWh

Summer Coincident Peak Demand Savings

 $\Delta kW = \Delta kWh/Hours * CF$

Where:

Hours	= Annual operating hours ⁵⁰⁵
	= 252 hours
CF	= Summer Peak Coincidence Factor
	= 2.6% ⁵⁰⁶

An Energy Star standard dishwasher installed in place of a baseline unit with unknown DHW fuel:

$$\Delta kWh = 31.8/252 * 0.026$$

= 0.003 kW

assumption for homes in a particular market or geographical area then that should be used.

⁵⁰⁵ Assuming one and a half hours per cycle and 168 cycles per year therefore 252 operating hours per year; 168 cycles per year is based on a weighted average of dishwasher usage in Illinois derived from the 2009 RECs data; http://205.254.135.7/consumption/residential/data/2009/

⁵⁰⁶ End use data from Ameren representing the average DW load during peak hours/peak load.

An Energy Star compact dishwasher installed in place of a baseline unit with unknown DHW fuel:

$$\Delta kWh = 20.1/252 * 0.026$$

= 0.002 kWh

An Energy Star standard dishwasher installed in place of a baseline unit with electric DHW:

$$\Delta kWh = 60.0/252 * 0.026$$

= 0.006 kWh

An Energy Star compact dishwasher installed in place of a baseline unit with electric DHW:

ΔkWh = 38.0/252 * 0.026 = 0.004 kWh

NATURAL GAS SAVINGS

Δ Therm = (kWh_{Base} - kWh_{ESTAR}) * %kWh_heat * %Natural Gas_DHW * R_eff * 0.03413

Where

%kWh_heat = % of dishwasher energy used for water heating

= 56%

%Natural Gas_DHW = Percentage of DHW savings assumed to be Natural Gas

DHW fuel	%Natural Gas_DHW		
Electric	0%		
Natural Gas	100%		
Unknown	84% ⁵⁰⁷		

R_eff = Recovery efficiency factor

= 1.26⁵⁰⁸

0.03413 = factor to convert from kWh to Therm

An Energy Star standard dishwasher installed in place of a baseline unit with unknown DHW fuel:

⁵⁰⁷ Default assumption for unknown fuel is based on EIA Residential Energy Consumption Survey (RECS) 2009 for Midwest Region, data for the state of IL. If utilities have specific evaluation results providing a more appropriate assumption for homes in a particular market or geographical area then that should be used.

⁵⁰⁸ To account for the different efficiency of electric and Natural Gas hot water heaters (gas water heater: recovery efficiencies ranging from 0.74 to 0.85 (0.78 used), and electric water heater with 0.98 recovery efficiency (<u>http://www.energystar.gov/ia/partners/bldrs lenders raters/downloads/Waste Water Heat Recovery Guidelin</u> es.pdf). Therefore a factor of 0.98/0.78 (1.26) is applied.

= 1.26 Therm

An Energy Star compact dishwasher installed in place of a baseline unit with unknown DHW fuel:

 Δ Therm = (260 - 222) * 0.56 * 0.84* 1.26 * 0.03413

= 0.77 Therm

An Energy Star standard dishwasher installed in place of a baseline unit with gas DHW:

Δ Therm = (355 - 295) * 0.56 * 1.0* 1.26 * 0.03413

= 1.44 Therm

An Energy Star compact dishwasher installed in place of a baseline unit with gas DHW:

```
\Delta Therm = (260 - 222) * 0.56 * 1.0 * 1.26 * 0.03413
```

= 0.92 Therm

WATER IMPACT DESCRIPTIONS AND CALCULATION

 Δ Water = Water_{Base} - Water_{EFF}

Where

Water _{Base}	= water consumption of conventional unit			
	= 1008 gallons ⁵⁰⁹ for standard unit			
	= 672 gallons ⁵¹⁰ for compact			
Water _{EFF}	= annual water consumption of efficient unit:			
	= 672 gallons ⁵¹¹ for standard unit			
	= 504 gallons ⁵¹² for compact			

⁵⁰⁹ Assuming 6 gallons/cycle based on ENERGY STAR Dishwasher Calculator

^{(&}lt;u>http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/CalculatorConsumerDishwasher.xls</u>) and 168 cycles per year based on a weighted average of dishwasher usage in Illinois derived from the 2009 RECs data; <u>http://205.254.135.7/consumption/residential/data/2009/</u>

⁵¹⁰ Assuming 4 gallons/cycle for baseline unit

⁵¹¹ Assuming 4gallons/cycle based on ENERGY STAR Dishwasher Calculator

^{(&}lt;u>http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/CalculatorConsumerDishwasher.xls</u>) and 168 cycles per year based on a weighted average of dishwasher usage in Illinois derived from the 2009 RECs data; <u>http://205.254.135.7/consumption/residential/data/2009/</u>

Δ Water (Standard)	= 1008 – 672
	= 336 gallons
Δ Water (Compact)	= 672 – 504
	= 168 gallons

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-APL-ESDI-V01-120601

⁵¹² Assuming 3 gallons/cycle for efficient unit

5.1.5 ENERGY STAR Freezer

DESCRIPTION

A freezer meeting the efficiency specifications of ENERGY STAR is installed in place of a model meeting the federal standard (NAECA). Energy usage specifications are defined in the table below (note, AV is the freezer Adjusted Volume and is calculated as 1.73*Total Volume):⁵¹³

Product Category	NAECA Maximum Energy Usage in kWh/year ⁵¹⁴	ENERGY STAR Maximum Energy Usage in kWh/year ⁵¹⁵	Volume (cubic feet)	
Upright Freezers with				
Manual Defrost	7.55*AV+258.3	6.795*AV+232.47	7.75 or greater	
Upright Freezers with				
Automatic Defrost	12.43*AV+326.1	11.187*AV+293.49	7.75 or greater	
Chest Freezers and all				
other Freezers except				
Compact Freezers	9.88*AV+143.7	8.892*AV+129.33	7.75 or greater	
Compact Upright				
Freezers with Manual			< 7.75 and 36 inches or	
Defrost	9.78*AV+250.8	7.824*AV+200.64	less in height	
Compact Upright				
Freezers with Automatic			< 7.75 and 36 inches or	
Defrost	11.40*AV+391	9.12*AV+312.8	less in height	
			<7.75 and 36 inches or	
Compact Chest Freezers	10.45*AV+152	8.36*AV+121.6	less in height	

This measure was developed to be applicable to the following program types: TOS, NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient equipment is defined as a freezer meeting the efficiency specifications of ENERGY STAR, as defined below and calculated above:

Equipment	Volume	Criteria	
Full Size Freezer	7.75 cubic feet or greater	At least 10% more energy efficient	
		than the minimum federal	
		government standard (NAECA).	
Compact Freezer	Less than 7.75 cubic feet and 36	At least 20% more energy efficient	
	inches or less in height	than the minimum federal	
		government standard (NAECA).	

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is assumed to be a model that meets the federal minimum standard for energy efficiency. The standard varies depending on the size and configuration of the freezer (chest freezer or upright freezer,

⁵¹³ <u>http://www.energystar.gov/ia/products/appliances/refrig/NAECA_calculation.xls?c827-f746</u>

⁵¹⁴ as of July 1, 2001 ⁵¹⁵ as of April 28, 2008

automatic or manual defrost) and is defined in the table above.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The measure life is assumed to be 11 years⁵¹⁶.

DEEMED MEASURE COST

The incremental cost for this measure is $$35^{517}$.

DEEMED O&M COST ADJUSTMENTS

There are no operation and maintenance cost adjustments for this measure.

LOADSHAPE

Loadshape R04 - Residential Freezer

COINCIDENCE FACTOR

The summer peak coincidence factor for this measure is assumed to be 95%⁵¹⁸.

Algorithm			
CALCULATION OF SAVINGS			
ELECTRIC ENERGY SAVINGS:			
$\Delta kWh = kWh_{Base} - kWh_{ESTAR}$			
Where:	Where:		
	kWh _{BASE}	= Baseline kWh consumption per year as calculated in algorithm provided in table above.	
	kWh _{ESTAR}	= ENERGY STAR kWh consumption per year as calculated in algorithm	

provided in table above.

⁵¹⁶ Energy Star Freezer Calculator;

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Consumer_Residential_Freezer_Sav_Calc .xls?570a-f000 ⁵¹⁷ Based on review of data from the Northeast Regional ENERGY STAR Consumer Products Initiative; "2009

⁵¹⁷ Based on review of data from the Northeast Regional ENERGY STAR Consumer Products Initiative; "2009 ENERGY STAR Appliances Practices Report", submitted by Lockheed Martin, December 2009.

⁵¹⁸ Based on eShapes Residential Freezer load data as provided by Ameren.

For example for a 7.75 cubic foot Upright Freezers with Manual Defrost:			
$\Delta kWh = (7.55^{*}(7.75^{*} 1.73) + 258.3) - (6.795^{*}(7.75^{*} 1.73) + 232.47)$			
	= 359.5 – 323.6		
= 35.9 kWh			

If volume is unknown, use the following default values:

Product Category	Volume Used ⁵¹⁹	kWh _{BASE}	kWh _{estar}	kWh Savings
Upright Freezers with Manual Defrost	27.9	469.1	422.2	46.9
Upright Freezers with Automatic Defrost	27.9	673.2	605.9	67.3
Chest Freezers and all other Freezers except Compact Freezers	27.9	419.6	377.6	42.0
Compact Upright Freezers with Manual Defrost	10.4	352.3	281.9	70.5
Compact Upright Freezers with Automatic Defrost	10.4	509.3	407.5	101.9
Compact Chest Freezers	10.4	260.5	208.4	52.1

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh / Hours * CF$

Where:

ΔkWh	= Gross customer annual kWh savings for the measure
Hours	= Full Load hours per year
	= 5890 ⁵²⁰
CF	= Summer Peak Coincident Factor
	$= 0.95^{521}$.

⁵¹⁹ Volume is based on ENERGY STAR Calculator assumption of 16.14 ft³ average volume, converted to Adjusted volume by multiplying by 1.73.

⁵²⁰ Calculated from eShapes Residential Freezer load data as provided by Ameren by dividing total annual load by the maximum kW in any one hour.

For example for a 7.75 cubic foot Upright Freezers with Manual Defrost:	
ΔkW	= 35.9/5890 * 0.95
	= 0.0058 kW

If volume is unknown, use the following default values:

Product Category	kW Savings
Upright Freezers with Manual Defrost	0.0076
Upright Freezers with Automatic Defrost	0.0109
Chest Freezers and all other Freezers except Compact Freezers	0.0068
Compact Upright Freezers with Manual Defrost	0.0114
Compact Upright Freezers with Automatic Defrost	0.0164
Compact Chest Freezers	0.0084

NATURAL GAS SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-APL-ESFR-V01-120601

⁵²¹ Based on eShapes Residential Freezer load data as provided by Ameren.

5.1.6 ENERGY STAR and CEE Tier 2 Refrigerator

DESCRIPTION

This measure relates to the purchase and installation of a new refrigerator meeting either ENERGY STAR or CEE TIER 2 specifications. Energy usage specifications are defined in the table below (note, Adjusted Volume is calculated as the fresh volume + (1.63 * Freezer Volume):⁵²²

Product Category	NAECA as of July 1, 2001 Maximum Energy Usage in kWh/year	Current ENERGY STAR level Maximum Energy Usage in kWh/year
1. Refrigerators and Refrigerator-freezers with manual defrost	8.82*AV+248.4	7.056*AV+198.72
2. Refrigerator-Freezerpartial automatic defrost	8.82*AV+248.4	7.056*AV+198.72
3. Refrigerator-Freezersautomatic defrost with top-mounted freezer without through-the-door ice service and all-refrigeratorsautomatic defrost	9.80*AV+276	7.84*AV+220.8
4. Refrigerator-Freezersautomatic defrost with side-mounted freezer without through-the-door ice service	4.91*AV+507.5	3.928*AV+406
5. Refrigerator-Freezersautomatic defrost with bottom- mounted freezer without through-the-door ice service	4.60*AV+459	3.68*AV+367.2
6. Refrigerator-Freezersautomatic defrost with top-mounted freezer with through-the-door ice service	10.20*AV+356	8.16*AV+284.8
7. Refrigerator-Freezersautomatic defrost with side-mounted freezer with through-the-door ice service	10.10*AV+406	8.08*AV+324.8

This measure was developed to be applicable to the following program types: TOS, NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient equipment is defined as a refrigerator meeting the efficiency specifications of ENERGY STAR or CEE Tier 2 (defined as requiring >= 20% or >= 25% less energy consumption than an equivalent unit meeting federal standard requirements respectively). The ENERGY STAR standard varies according to the size and configuration of the unit, as shown in table above.

DEFINITION OF BASELINE EQUIPMENT

The baseline condition is a new refrigerator meeting the minimum federal efficiency standard for refrigerator efficiency. The current federal minimum standard varies according to the size and configuration of the unit, as shown in table above. Note also that this federal standard will be increased for units manufactured after January 1, 2014.

⁵²² <u>http://www.energystar.gov/ia/products/appliances/refrig/NAECA_calculation.xls?c827-f746</u>

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The measure life is assumed to be 12 years.⁵²³

DEEMED MEASURE COST

The incremental cost for this measure is assumed to be $$30^{524}$ for an ENERGY STAR unit and $$140^{525}$ for a CEE Tier 2 unit.

DEEMED O&M COST ADJUSTMENTS

There are no operation and maintenance cost adjustments for this measure.

LOADSHAPE

Loadshape R05 - Residential Refrigerator

COINCIDENCE FACTOR

A coincidence factor is not used to calculate peak demand savings for this measure, see below.

	Algorithm
CALCULATION OF SAVINGS	
ELECTRIC ENERGY SAVINGS:	
ΔkWh	= UEC _{BASE} – UEC _{EE}
Where:	
UEC _{BASE}	= Annual Unit Energy Consumption of baseline unit as calculated in algorithm provided in table above.
UEC _{EE}	= Annual Unit Energy Consumption of ENERGY STAR unit as calculated in algorithm provided in table above.
	For CEE Tier 2, unit consumption is calculated as 25% lower than baseline.

⁵²³ From ENERGY STAR calculator:

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Consumer_Residential_Refrig_Sav_Calc.x

⁵²⁵ Based on weighted average of units participating in Efficiency Vermont program and retail cost data provided in Department of Energy, "TECHNICAL REPORT: Analysis of Amended Energy Conservation Standards for Residential Refrigerator-Freezers", October 2005;

http://www1.eere.energy.gov/buildings/appliance_standards/pdfs/refrigerator_report_1.pdf

⁵²⁴ Ibid.

Product Category	Volume Used ⁵²⁶	UEC _{base}	ENERGY STAR UEC _{EE}	CEE T2 UEC _{EE}	ENERGY STAR kWh Savings	CEE T2 kWh Savings
1. Refrigerators and Refrigerator- freezers with manual defrost	25.8	475.7	380.5	356.8	95.1	118.9
2. Refrigerator-Freezerpartial automatic defrost	25.8	475.7	380.5	356.8	95.1	118.9
3. Refrigerator-Freezers automatic defrost with top- mounted freezer without through- the-door ice service and all- refrigeratorsautomatic defrost	25.8	528.5	422.8	396.4	105.7	132.1
4. Refrigerator-Freezers automatic defrost with side- mounted freezer without through- the-door ice service	25.8	634.0	507.2	475.5	126.8	158.5
5. Refrigerator-Freezers automatic defrost with bottom- mounted freezer without through- the-door ice service	25.8	577.5	462.0	433.2	115.5	144.4
 Refrigerator-Freezers automatic defrost with top- mounted freezer with through- the-door ice service 	25.8	618.8	495.1	464.1	123.8	154.7
7. Refrigerator-Freezers automatic defrost with side- mounted freezer with through- the-door ice service	25.8	666.3	533.0	499.7	133.3	166.6

If volume is unknown, use the following defaults:

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = (\Delta kWh/8766) * TAF * LSAF$

Where:

TAF

= Temperature Adjustment Factor

 $= 1.25^{527}$

 $^{^{526}}$ Volume is based on the ENERGY STAR calculator average assumption of 14.75 ft^3 fresh volume and 6.76 ft^3 freezer volume.

⁵²⁷ Average temperature adjustment factor (to account for temperature conditions during peak period as compared to year as a whole) based on Blasnik, Michael, "Measurement and Verification of Residential Refrigerator Energy Use, Final Report, 2003-2004 Metering Study", July 29, 2004 (p. 47). It assumes 90 °F average outside temperature during peak period, 71°F average temperature in kitchens and 65°F average temperature in basement, and uses assumption that 66% of homes in Illinois having central cooling (CAC saturation: "Table HC7.9

LSAF = Load Shape Adjustment Factor

= 1.057 528

If volume is unknown, use the following defaults:

Product Category	ENERGY STAR kW Savings	CEE T2 kW Savings
 Refrigerators and Refrigerator-freezers with manual defrost 	0.0143	0.0179
2. Refrigerator-Freezerpartial automatic defrost	0.0143	0.0179
3. Refrigerator-Freezersautomatic defrost with top- mounted freezer without through-the-door ice service and all-refrigeratorsautomatic defrost	0.0159	0.0199
4. Refrigerator-Freezersautomatic defrost with side- mounted freezer without through-the-door ice service	0.0191	0.0239
5. Refrigerator-Freezersautomatic defrost with bottom- mounted freezer without through-the-door ice service	0.0174	0.0218
 Refrigerator-Freezersautomatic defrost with top- mounted freezer with through-the-door ice service 	0.0187	0.0233
7. Refrigerator-Freezersautomatic defrost with side- mounted freezer with through-the-door ice service	0.0201	0.0251

NATURAL GAS SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

Air Conditioning in Homes in Midwest Region, Divisions, and States, 2009 from Energy Information Administration", 2009 Residential Energy Consumption Survey;

http://www.eia.gov/consumption/residential/data/2009/xls/HC7.9%20Air%20Conditioning%20in%20Midwest%20 Region.xls)

⁵²⁸ Daily load shape adjustment factor (average load in peak period /average daily load) also based on Blasnik, Michael, "Measurement and Verification of Residential Refrigerator Energy Use, Final Report, 2003-2004 Metering Study", July 29, 2004 (p. 48, using the average Existing Units Summer Profile for hours 13 through 17) MEASURE CODE: RS-APL-ESRE-V01-120601

5.1.7 ENERGY STAR and CEE Tier 1 Room Air Conditioner

DESCRIPTION

This measure relates to the purchase and installation of a room air conditioning unit that meets CEE TIER 1 (equivalent to ENERGY STAR version 3.0 which is effective October 1st 2013) minimum qualifying efficiency specifications, in place of a baseline unit meeting ENERGY STAR Version 2.0 efficiency ratings presented below⁵²⁹. According to ENERGY STAR Shipment Data the estimated market penetration of ENERGY STAR Room AC went from 33%⁵³⁰ in 2010 to 62%⁵³¹ in 2011. Further in a 2012 Illinois program evaluation found a net-to-gross ratio of just 1% for a Version 2.0 ENERGY STAR unit. This has therefore become the baseline.

Product Class (Btu/H)	Baseline EER: ENERGY STAR V2.0, with louvered sides	Baseline EER: ENERGY STAR, without louvered sides	CEE TIER 1 EER
< 8,000	10.7	9.9	11.2
8,000 to 13,999	10.8	9.4	11.3
14,000 to 19,999	10.7	9.4	11.2
>= 20,000	9.4	9.4	9.8

This measure was developed to be applicable to the following program types: TOS, NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the new room air conditioning unit must meet the CEE TIER 1 (equivalent to ENERGY STAR version 3.0 which is effective October 1st 2013) efficiency standards presented above.

Reverse cycle refers to the heating function found in certain room air conditioner models.

⁵²⁹ <u>http://www.energystar.gov/index.cfm?c=roomac.pr_crit_room_ac_and http://www.cee1.org/resid/seha/rm-ac/rm-ac_specs.pdf</u>

Side louvers that extend from a room air conditioner model in order to position the unit in a window. A model without louvered sides is placed in a built-in wall sleeve and are commonly referred to as "through-the-wall" or "built-in" models.

Casement-only refers to a room air conditioner designed for mounting in a casement window of a specific size. Casement-slider refers to a room air conditioner with an encased assembly designed for mounting in a sliding or casement window of a specific size.

http://www.energystar.gov/ia/partners/product_specs/program_reqs/room_air_conditioners_prog_req.pdf 530

http://www.energystar.gov/ia/partners/downloads/unit_shipment_data/2010_USD_Summary_Report.pdf?3193-51e7

http://www.energystar.gov/ia/partners/downloads/unit_shipment_data/2011_USD_Summary_Report.pdf?3193-51e7

DEFINITION OF BASELINE EQUIPMENT

The baseline assumption is a new room air conditioning unit that meets the ENERGY STAR Version 2.0 efficiency standards as presented above.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The measure life is assumed to be 12 years 532 .

DEEMED MEASURE COST

The incremental cost for this measure is assumed to be \$40 for a CEE TIER 1 unit 533 .

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape R08 - Residential Cooling

COINCIDENCE FACTOR

The coincidence factor for this measure is assumed to be 0.3^{534} .

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = (FLH_{RoomAC} * Btu/H * (1/EERbase - 1/EERee))/1000$

Where:

FLH_{RoomAC} = Full Load Hours of room air conditioning unit

= dependent on location⁵³⁵:

http://neep.org/uploads/EMV%20Forum/EMV%20Studies/measure_life_GDS%5B1%5D.pdf

⁵³³ Based on field study conducted by Efficiency Vermont

⁵³² Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

⁵³⁴ Consistent with coincidence factors found in: RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008

⁽http://www.puc.nh.gov/Electric/Monitoring%20and%20Evaluation%20Reports/National%20Grid/117 RLW CF%2 ORes%20RAC.pdf)

⁵³⁵ Full load hours for room AC is significantly lower than for central AC. The average ratio of FLH for Room AC (provided in RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008: http://www.puc.nh.gov/Electric/Monitoring%20and%20Evaluation%20Reports/National%20Grid/117 RLW CF%2

Climate Zone (City based upon)	FLH _{RoomAC}
1 (Rockford)	220
2 (Chicago)	210
3 (Springfield)	319
4 (Belleville)	428
5 (Marion)	374
Weighted Average ⁵³⁶	248

	= Actual. If unknown assume minimum qualifying standard as provided in tables above
EERee	= Efficiency of CEE Tier 1 (or ENERGY STAR Version 3.0) unit
	= As provided in tables above
EERbase	= Efficiency of baseline unit
	= Actual. If unknown assume 8500 BTU/hour ⁵³⁷
Btu/H	= Size of rebated unit

SUMMER COINCIDENT PEAK DEMAND SAVINGS

ΔkW = Btu/H * ((1/EERbase - 1/EERee))/1000) * CF

Where:

CF

= Summer Peak Coincidence Factor for measure

= 0.3⁵³⁸

<u>ORes%20RAC.pdf</u>) to FLH for Central Cooling for the same location (provided by AHRI:

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC.xls) is 31%. This ratio is applied to those IL cities that have FLH for Central Cooling provided in the Energy Star calculator. For other cities this is extrapolated using the FLH assumptions VEIC have developed for Central AC. There is a county mapping table in the Appendix providing the appropriate city to use for each county of Illinois.

⁵³⁶ Weighted based on number of residential occupied housing units in each zone.

⁵³⁷ Based on maximum capacity average from the RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008

⁵³⁸ Consistent with coincidence factors found in: RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008 Other variable as defined above

For example for an 8,500 BTU/H capacity unit, with louvered sides, for an unknown location: $\Delta kW_{CEE TIER 1} = (8500 * (1/10.8 - 1/11.3)) / 1000 * 0.3$ = 0.010 kW

NATURAL GAS SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-APL-ESRA-V02-130601

(http://www.puc.nh.gov/Electric/Monitoring%20and%20Evaluation%20Reports/National%20Grid/117 RLW CF%2 ORes%20RAC.pdf)

5.1.8 Refrigerator and Freezer Recycling

DESCRIPTION

This measure describes savings from the retirement and recycling of inefficient but operational refrigerators and freezers. Savings are provided based on a 2013 workpaper provided by Cadmus that used data from a 2012 ComEd metering study and metering data from a Michigan study, to develop a regression equation that uses key inputs describing the retired unit. The savings are equivalent to the Unit Energy Consumption of the retired unit and should be claimed for the assumed remaining useful life of that unit. A part use factor is applied to account for those secondary units that are not in use throughout the entire year. The reader should note that the regression algorithm is designed to provide an accurate portrayal of savings for the population as a whole and includes those parameters that have a significant effect on the consumption. The precision of savings for individual units will vary.

The Net to Gross factor applied to these units should incorporate adjustments that account for:

- Those participants who would have removed the unit from the grid anyway (e.g. customers replacing their refrigerator via a big box store and using the pick-up option, customers taking their unit to the landfill or recycling station);
- Those participants who decided, based on the incentive provided by the Appliance Recycling program alone, to replace their existing inefficient unit with a new unit. This segment of participants is expected to be very small and documentation of their intentions will be gathered via telephone surveys (i.e., primary data sources). For such customers, the consumption of the new unit should be subtracted from the retired unit consumption and savings claimed for the remaining life of the existing unit. Note that participants who were already planning to replace their unit, and the incentive just ensured that the retired unit was recycled and not placed on the secondary market, should not be included in this adjustment.

This measure was developed to be applicable to the following program types: ERET. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

n/a

DEFINITION OF BASELINE EQUIPMENT

The existing inefficient unit must be operational and have a capacity of between 10 and 30 cubic feet.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The estimated remaining useful life of the recycling units is 8 years ⁵³⁹.

DEEMED MEASURE COST

Measure cost includes the cost of pickup and recycling of the refrigerator and should be based on actual costs of running the program. If unknown assume \$120⁵⁴⁰ per unit.

⁵³⁹ KEMA "Residential refrigerator recycling ninth year retention study", 2004

⁵⁴⁰ Based on similar Efficiency Vermont program.

DEEMED O&M COST ADJUSTMENTS

n/a

LOADSHAPE

Loadshape R05 - Residential Refrigerator

COINCIDENCE FACTOR

The coincidence factor is assumed to be 0.00012.

Algorithm

CALCULATION OF SAVINGS

ENERGY SAVINGS

Refrigerators:

Energy savings for refrigerators are based upon a linear regression model using the following coefficients⁵⁴¹:

Independent Variable Description	Estimate Coefficient
Intercept	116.843
Age (years)	10.895
Pre-1990 (=1 if manufactured pre-1990)	431.788
Size (cubic feet)	19.424
Dummy: Single Door (=1 if single door)	-795.368
Dummy: Side-by-Side (= 1 if side-by-side)	426.407
Dummy: Primary Usage Type (in absence of the program) (= 1 if primary unit)	170.984
Interaction: Located in Unconditioned Space x CDD/365.25	17.342
Interaction: Located in Unconditioned Space x HDD/365.25	-11.776

ΔkWh = [116.84 + (Age * 10.90) + (Pre-1990 * 431.79) + (Size * 19.42) + (Single-Door * -795.37) + (Side-by-side * 426.41) + (Proportion of Primary Appliances * 170.98) + (CDD/365.25 * unconditioned * 17.34) + (HDD/365.25 * unconditioned *-11.78)] * Part Use Factor

Where:

⁵⁴¹ Energy savings are based on an average 30-year TMY temperature of 51.1 degrees. Coefficients provided in January 31, 2013 memo from Cadmus: "Appliance Recycling Update".

Age	= Age of retired unit
Pre-1990	= Pre-1990 dummy (=1 if manufactured pre-1990, else 0)
Size	= Capacity (cubic feet) of retired unit
Side-by-side	= Side-by-side dummy (= 1 if side-by-side, else 0)
Single-Door	= Single-Door dummy (= 1 if Single-Door, else 0)
Primary Usage	= Primary Usage Type (in absence of the program) dummy
	(= 1 if Primary, else 0)

Interaction: Located in Unconditioned Space x CDD/365.25

(=1 * CDD/365.25 if in unconditioned space)

CDD = Cooling Degree Days

Climate Zone (City based upon)	CDD 65	CDD/365.25
1 (Rockford)	820	2.25
2 (Chicago)	842	2.31
3 (Springfield)	1,108	3.03
4 (Belleville)	1,570	4.30
5 (Marion)	1,370	3.75

= Dependent on location⁵⁴²:

Interaction: Located in Unconditioned Space x HDD/365.25

(=1 * HDD/365.25 if in unconditioned space)

HDD = Heating Degree Days

= Dependent on location:⁵⁴³

Climate Zone (City based upon)	HDD 65	HDD/365.25
1 (Rockford)	6,569	17.98
2 (Chicago)	6,339	17.36
3 (Springfield)	5,497	15.05
4 (Belleville)	4,379	11.99
5 (Marion)	4,476	12.25

Part Use Factor = To account for those units that are not running throughout the entire year. $= 0.876^{544}$

⁵⁴² National Climatic Data Center, calculated from 1981-2010 climate normals with a base temp of 65°F.

⁵⁴³ National Climatic Data Center, calculated from 1981-2010 climate normals with a base temp of 65°F.

⁵⁴⁴ Weighted average of Part Use factors from Ameren PY2-PY4 and ComEd PY2-PY4, weighted by units recycled.

For example, the program averages for AIC's ARP in PY4 produce the following equation:

 $\Delta kWh = [116.84+ (22.81 * 10.90) + (0.45 * 431.79) + (18.82 * 19.42) + (0.1 * -$ 795.37) + (0.17 * 426.41) + (0.34 * 170.98) + (1.29 * 17.34) + (6.49 * -11.78)] * 0.876= 920 * 0.876= 806 kWh

Freezers:

Energy savings for freezers are based upon a linear regression model using the following coefficients⁵⁴⁵:

Independent Variable Description	Estimate Coefficient
Intercept	132.122
Age (years)	12.130
Pre-1990 (=1 if manufactured pre-1990)	156.181
Size (cubic feet)	31.839
Chest Freezer Configuration (=1 if chest freezer)	-19.709
Interaction: Located in Unconditioned Space x CDD/365.25	-12.755
Interaction: Located in Unconditioned Space x HDD/365.25	9.778

ΔkWh = [132.12 + (Age * 12.13) + (Pre-1990 * 156.18) + (Size * 31.84) + (Chest Freezer * -19.71) + (CDDs* unconditioned *9.78) + (HDDs*unconditioned *-12.75)] * Part Use Factor

Where:

Age	= Age of retired unit	
Pre-1990	= Pre-1990 dummy (=1 if manufactured pre-1990, else 0)	
Size	= Capacity (cubic feet) of retired unit	
Chest Freezer = Chest Freezer dummy (= 1 if chest freezer, else 0)		
Interaction: Located in Unconditioned Space x CDD/365.25		

See 'Appliance Recycling Part Use Calc.xlsx'

⁵⁴⁵ Energy savings are based on an average 30-year TMY temperature of 51.1 degrees. Coefficients provided in January 31, 2013 memo from Cadmus: "Appliance Recycling Update".

- (=1 * CDD/365.25 if in unconditioned space)
- = Cooling Degree Days (see table above) CDD

Interaction: Located in Unconditioned Space x HDD/365.25

(=1 * HDD/365.25 if in unconditioned space)

- HDD = Heating Degree Days (see table above)
- Part Use Factor = To account for those units that are not running throughout the entire year. $= 0.825^{546}$

The program averages for AIC's ARP PY4 program are used as an example.	
ΔkWh	= [132.12 + (26.92 * 12.13) + (0.6 * 156.18) + (15.9 * 31.84) + (0.48 * - 19.71) + (6.61 * 9.78) + (1.3 * -12.75)] * 0.825
	= 977 * 0.825
	= 905 kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta kW = kWh/8760 * CF$$

Where:

kWh	= Savings provided in algorithm above
CF	= Coincident factor defined as summer kW/average kW
	= 1.081 for Refrigerators

= 1.028 for Freezers⁵⁴⁷

For example, the program averages for AIC's ARP in PY4 produce the following equation:

ΔkW = 806/8760 * 1.081 = 0.099 kW

⁵⁴⁶ Weighted average of Part Use factors from Ameren PY2-PY4 and ComEd PY2-PY4, weighted by units recycled. See 'Appliance Recycling Part Use Calc.xlsx' ⁵⁴⁷ Cadmus memo, February 12, 2013; "Appliance Recycling Update"

NATURAL GAS SAVINGS

n/a

WATER IMPACT DESCRIPTIONS AND CALCULATION

n/a

DEEMED O&M COST ADJUSTMENT CALCULATION

n/a

MEASURE CODE: RS-APL-RFRC-V02-130601

5.1.9 Room Air Conditioner Recycling

DESCRIPTION

This measure describes the savings resulting from running a drop off service taking existing residential, inefficient Room Air Conditioner units from service, prior to their natural end of life. This measure assumes that though a percentage of these units will be replaced this is not captured in the savings algorithm since it is unlikely that the incentive made someone retire a unit that they weren't already planning to retire. The savings therefore relate to the unit being taken off the grid as opposed to entering the secondary market. The Net to Gross factor applied to these units should incorporate adjustments that account for those participants who would have removed the unit from the grid anyway.

This measure was developed to be applicable to the following program types: ERET. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

N/A. This measure relates to the retiring of an existing inefficient unit.

DEFINITION OF BASELINE EQUIPMENT

The baseline condition is the existing inefficient room air conditioning unit.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The assumed remaining useful life of the existing room air conditioning unit being retired is 4 years⁵⁴⁸.

DEEMED MEASURE COST

The actual implementation cost for recycling the existing unit should be used.

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape R08 - Residential Cooling

COINCIDENCE FACTOR

The coincidence factor for this measure is assumed to be 30%⁵⁴⁹.

⁵⁴⁸ A third of assumed measure life for Room AC.

⁵⁴⁹ Consistent with coincidence factors found in: RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008

⁽http://www.puc.nh.gov/Electric/Monitoring%20and%20Evaluation%20Reports/National%20Grid/117 RLW CF%2 ORes%20RAC.pdf)

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = ((FLH_{RoomAC} * BtuH * (1/EERexist))/1000)$

Where:

FLH_{RoomAC} = Full Load Hours of room air conditioning unit

= dependent on location⁵⁵⁰:

Climate Zone (City based upon)	FLH _{RoomAC}
1 (Rockford)	220
2 (Chicago)	210
3 (Springfield)	319
4 (Belleville)	428
5 (Marion)	374
Weighted Average ⁵⁵¹	248

= Size of retired unit
= Actual. If unknown assume 8500 BTU/hour ⁵⁵²
= Efficiency of existing unit
= 7.7 ⁵⁵³

http://www.puc.nh.gov/Electric/Monitoring%20and%20Evaluation%20Reports/National%20Grid/117_RLW_CF%2 ORes%20RAC.pdf) to FLH for Central Cooling for the same location (provided by AHRI:

⁵⁵⁰ The average ratio of FLH for Room AC (provided in RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008:

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC.xls) is 31%. This ratio is applied to those IL cities that have FLH for Central Cooling provided in the Energy Star calculator. For other cities this is extrapolated using the FLH assumptions VEIC have developed for Central AC. There is a county mapping table in the Appendix providing the appropriate city to use for each county of Illinois.

⁵⁵¹ Weighted based on number of residential occupied housing units in each zone.

⁵⁵² Based on maximum capacity average from the RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008

⁵⁵³ Based on Nexus Market Research Inc, RLW Analytics, December 2005; "Impact, Process, and Market Study of the Connecticut Appliance Retirement Program: Overall Report."

For example for an 8500 BTU/h unit in Springfield:

$$\Delta kWh = ((319 * 8500 * (1/7.7)) / 1000)$$

= 352 kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

ΔkW = (BtuH * (1/EERexist))/1000) * CF

Where:

CF = Summer Peak Coincidence Factor for measure

 $= 0.3^{554}$

For example an 8500 BTU/h unit:	
ΔkW	= (8500 * (1/7.7)) / 1000) * 0.3
	= 0.33 kW

NATURAL GAS SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-APL-RARC-V01-120601

⁵⁵⁴ Consistent with coincidence factors found in:

RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008 (http://www.puc.nh.gov/Electric/Monitoring%20and%20Evaluation%20Reports/National%20Grid/117 RLW CF%2 ORes%20RAC.pdf)

5.2 Consumer Electronics End Use

5.2.1 Smart Strip

DESCRIPTION

This measure relates to Controlled Power Strips (or Smart Strips) which are multi-plug power strips with the ability to automatically disconnect specific connected loads depending upon the power draw of a control load, also plugged into the strip. Power is disconnected from the switched (controlled) outlets when the control load power draw is reduced below a certain adjustable threshold, thus turning off the appliances plugged into the switched outlets. By disconnecting, the standby load of the controlled devices, the overall load of a centralized group of equipment (i.e. entertainment centers and home office) can be reduced. Uncontrolled outlets are also provided that are not affected by the control device and so are always providing power to any device plugged into it. This measure characterization provides savings for a 5-plug strip and a 7-plug strip.

This measure was developed to be applicable to the following program types: TOS, NC, DI. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient case is the use of a 5 or 7-plug smart strip.

DEFINITION OF BASELINE EQUIPMENT

The assumed baseline is a standard power strip that does not control connected loads.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The assumed lifetime of the smart strip is 4 years⁵⁵⁵.

DEEMED MEASURE COST

The incremental cost of a smart strip over a standard power strip with surge protection is assumed to be \$16 for a 5-plug and \$26 for a 7-plug⁵⁵⁶.

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape R13 - Residential Standby Losses – Entertainment Loadshape R14 - Residential Standby Losses - Home Office

⁵⁵⁵ David Rogers, Power Smart Engineering, October 2008; "Smart Strip electrical savings and usability", p22.

⁵⁵⁶ Price survey performed in NYSERDA Measure Characterization for Advanced Power Strips, p4

COINCIDENCE FACTOR

CALCULATION OF SAVINGS ELECTRIC ENERGY SAVINGS ΔkWh_{5-Plug} $= 56.5 kWh^{558}$ ΔkWh_{7-Plug} $= 103 kWh^{559}$ SUMMER COINCIDENT PEAK DEMAND SAVINGS ΔkW $= \Delta kWh / Hours * CF$ Where: Hours E Annual number of hours during which the controlled standby load are turned off by the Smart Strip.
$\Delta kWh_{5-Plug} = 56.5 \text{ kWh}^{558}$ $\Delta kWh_{7-Plug} = 103 \text{ kWh}^{559}$ SUMMER COINCIDENT PEAK DEMAND SAVINGS $\Delta kW = \Delta kWh / \text{Hours * CF}$ Where: Hours = Annual number of hours during which the controlled standby load are turned off by the Smart Strip.
$\Delta kWh_{7-Plug} = 103 \text{ kWh}^{559}$ SUMMER COINCIDENT PEAK DEMAND SAVINGS $\Delta kW = \Delta kWh / \text{Hours * CF}$ Where: Hours = Annual number of hours during which the controlled standby load are turned off by the Smart Strip.
SUMMER COINCIDENT PEAK DEMAND SAVINGS $\Delta kW = \Delta kWh / Hours * CF$ Where: Hours = Annual number of hours during which the controlled standby load are turned off by the Smart Strip.
ΔkW = ΔkWh / Hours * CF Where: = Annual number of hours during which the controlled standby load are turned off by the Smart Strip.
Where: = Annual number of hours during which the controlled standby load are turned off by the Smart Strip.
Hours = Annual number of hours during which the controlled standby load are turned off by the Smart Strip.
are turned off by the Smart Strip.
= 7,129 ⁵⁶⁰
CF = Summer Peak Coincidence Factor for measure
= 0.8 ⁵⁶¹
$\Delta kW_{5-Plug} = 56.5 / 7129 * 0.8$
= 0.00634 kW

The summer peak coincidence factor for this measure is assumed to be 80%⁵⁵⁷.

⁵⁵⁷ Efficiency Vermont coincidence factor for smart strip measure –in the absence of empirical evaluation data, this was based on assumptions of the typical run pattern for televisions and computers in homes.

⁵⁵⁸ NYSERDA Measure Characterization for Advanced Power Strips. Study based on review of:

I. Smart Strip Electrical Savings and Usability, Power Smart Engineering, October 27, 2008.

II. Final Field Research Report, Ecos Consulting, October 31, 2006. Prepared for California Energy Commission's PIER Program.

III. Developing and Testing Low Power Mode Measurement Methods, Lawrence Berkeley National Laboratory (LBNL), September 2004. Prepared for California Energy Commission's Public Interest Energy Research (PIER) Program.

IV. 2005 Intrusive Residential Standby Survey Report, Energy Efficient Strategies, March, 2006.

V. Smart Strip Portfolio of the Future, Navigant Consulting for San Diego G&E, March 31, 2009. ⁵⁵⁹ Ibid.

⁵⁶⁰ Average of hours for controlled TV and computer from; NYSERDA Measure Characterization for Advanced Power Strips

⁵⁶¹ Efficiency Vermont coincidence factor for smart strip measure –in the absence of empirical evaluation data, this was based on assumptions of the typical run pattern for televisions and computers in homes.

 $\Delta kW_{7-Plug} = 102.8 / 7129 * 0.8$

= 0.0115 kW

NATURAL GAS SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-CEL-SSTR-V01-120601

5.3 HVAC End Use

5.3.1 Air Source Heat Pump

DESCRIPTION

A heat pump provides heating or cooling by moving heat between indoor and outdoor air.

This measure characterizes:

- a) Time of Sale:
 - a. The installation of a new residential sized (<= 65,000 BTU/hr) air source heat pump that is more efficient than required by federal standards. This could relate to the replacement of an existing unit at the end of its useful life, or the installation of a new system in a new home.
- b) Early Replacement:
 - a. The early removal of functioning electric heating and cooling (SEER 10 or under if present) systems from service, prior to its natural end of life, and replacement with a new high efficiency air source heat pump unit. Savings are calculated between existing unit and efficient unit consumption during the remaining life of the existing unit, and between new baseline unit and efficient unit consumption for the remainder of the measure life.
 - b. The assumption of the existing unit efficiency in the Early Replacement section of this TRM is based upon the average efficiency of units that were classified in Ameren's PY3-PY4 as functioning and SEER <=10. Therefore it is only appropriate to use these Early Replacement assumptions where those conditions are met. The TAC defined "functioning" as the unit is fully operational providing sufficient space conditioning (i.e. heat exchanger, compressors, pumps work effectively) and/or the cost of repair is under 20% of the new baseline replacement cost. Therefore in order to apply early replacement assumptions the programs should apply the following eligibility criteria: SEER <=10 and cost of any repairs <\$249 per ton.</p>

This measure was developed to be applicable to the following program types: TOS, NC, EREP. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

A new residential sized (<= 65,000 BTU/hr) air source heat pump with specifications to be determined by program.

DEFINITION OF BASELINE EQUIPMENT

A new residential sized (<= 65,000 BTU/hr) air source heat pump meeting federal standards.

The baseline for the Time of Sale measure is based on the current Federal Standard efficiency level; 13 SEER and 7.7HSPF.

The baseline for the early replacement measure is the efficiency of the existing equipment for the assumed remaining useful life of the unit and the new baseline as defined above⁵⁶² for the remainder of the measure life.

⁵⁶² Baseline SEER and EER should be updated when new minimum federal standards become effective.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 18 years⁵⁶³.

Remaining life of existing equipment is assumed to be 6 years 564 .

DEEMED MEASURE COST

Time of sale: The incremental capital cost for this measure is dependent on the efficiency and capacity of the new unit⁵⁶⁵. Note these costs are per ton of unit capacity:

Efficiency (SEER)	Incremental Cost per Ton of Capacity (\$/ton)
14	\$137
15	\$274
16	\$411
17	\$548
18	\$685

Early replacement: The capital cost for this measure is the actual cost of removing the existing unit and installing the new one. If this is unknown, assume the following (note these costs are per ton of unit capacity)⁵⁶⁶:

Efficiency (SEER)	Full Retrofit Cost (including labor) per Ton of Capacity (\$/ton)
14	\$1,381
15	\$1,518
16	\$1,655
17	\$1,792
18	\$1,929

Assumed deferred cost (after 6 years) of replacing existing equipment with new baseline unit is assumed to be \$1,244 per ton of capacity⁵⁶⁷. This cost should be discounted to present value using the utilities discount rate.

⁵⁶³ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007,

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf

⁵⁶⁴ Assumed to be one third of effective useful life

⁵⁶⁵ Based on costs derived from DEER 2008 Database Technology and Measure Cost Data (www.deeresources.com). 566 Ibid. See 'ASHP_Revised DEER Measure Cost Summary.xls' for calculation.

⁵⁶⁷ Ibid.

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape R10 - Residential Electric Heating and Cooling

COINCIDENCE FACTOR

The summer peak coincidence factor for cooling is provided in two different ways below. The first is used to estimate peak savings during the utility peak hour and is most indicative of actual peak benefits, and the second represents the *average* savings over the defined summer peak period, and is presented so that savings can be bid into PJM's Forward Capacity Market. Both values provided are based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren.

- CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C (during utility peak hour) = 91.5%⁵⁶⁸
- CF_{PJM} = PJM Summer Peak Coincidence Factor for Central A/C (average during PJM peak period) = 46.6%⁵⁶⁹

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Time of sale:

ΔkWh = ((FLH_cooling * Capacity_cooling * (1/SEER_base - 1/SEER_ee)) / 1000) + ((FLH_heat * Capacity_heating * (1/HSPF_base - 1/HSFP_ee)) / 1000)

Early replacement⁵⁷⁰:

ΔkWH for remaining life of existing unit (1st 6 years):

= ((FLH_cooling * Capacity_cooling * (1/SEER_exist - 1/SEER_ee)) / 1000) + ((FLH_heat * Capacity_heating * (1/HSPF_exist - 1/HSFP_ee)) / 1000)

ΔkWH for remaining measure life (next 12 years):

⁵⁶⁸ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The AC load during the utility's peak hour is divided by the maximum AC load during the year.

⁵⁶⁹ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

⁵⁷⁰ The two equations are provided to show how savings are determined during the initial phase of the measure (existing to efficient) and the remaining phase (new baseline to efficient). In practice, the screening tools used may either require a First Year savings (using the first equation) and then a "number of years to adjustment" and "savings adjustment" input which would be the (new base to efficient savings)/(existing to efficient savings).

= ((FLH_cooling * Capacity_cooling * (1/SEER_base - 1/SEER_ee)) / 1000) + ((FLH_heat * Capacity_heating * (1/HSPF_base - 1/HSFP_ee)) / 1000)

Where:

- FLH_cooling = Full load hours of air conditioning
 - = dependent on location⁵⁷¹:

Climate Zone (City based upon)	FLH_cooling (single family)	FLH_cooling (multi family)
1 (Rockford)	512	467
2 (Chicago)	570	506
3 (Springfield)	730	663
4 (Belleville)	1,035	940
5 (Marion)	903	820
Weighted Average ⁵⁷²	629	564

Capacity_cooling = Cooling Capacity of Air Source Heat Pump (Btu/h)

= Actual (1 ton = 12,000Btu/h)

SEER_exist = Seasonal Energy Efficiency Ratio of existing cooling system (kBtu/kWh)

= Use actual SEER rating where it is possible to measure or reasonably estimate.

Existing Cooling System	SEER_exist ⁵⁷³
Air Source Heat Pump	9.12
Central AC	8.60
No central cooling ⁵⁷⁴	Make '1/SEER_exist' = 0

⁵⁷¹ Full load hours for Chicago, Moline and Rockford are provided in "Final Evaluation Report: Central Air Conditioning Efficiency Services (CACES), 2010, Navigant Consulting",

http://ilsag.org/yahoo site admin/assets/docs/ComEd PY2 CACES Evaluation Report 2010-10-18.299122020.pdf, p.33. An average FLH/Cooling Degree Day (from NCDC) ratio was calculated for these locations and applied to the CDD of the other locations in order to estimate FLH. There is a county mapping table in the

Appendix providing the appropriate city to use for each county of Illinois.

⁵⁷² Weighted based on number of occupied residential housing units in each zone.

⁵⁷³ Average nameplate efficiencies of all Early Replacement qualifying equipment in Ameren PY3-PY4.

⁵⁷⁴ If there is no central cooling in place but the incentive encourages installation of a new ASHP with cooling, the added cooling load should be subtracted from any heating benefit.

SEER_base = Seasonal Energy Efficiency Ratio of baseline Air Source Heat Pump (kBtu/kWh)

= 13 ⁵⁷⁵

- SEER_ee = Seasonal Energy Efficiency Ratio of efficient Air Source Heat Pump (kBtu/kWh)
 - = Actual
- FLH_heat = Full load hours of heating

= Dependent on location⁵⁷⁶:

Climate Zone (City based upon)	FLH_heat
1 (Rockford)	1,969
2 (Chicago)	1,840
3 (Springfield)	1,754
4 (Belleville)	1,266
5 (Marion)	1,288
Weighted Average ⁵⁷⁷	1,821

Capacity_heating = Heating Capacity of Air Source Heat Pump (Btu/h)

= Actual (1 ton = 12,000Btu/h)

HSPF_exist =Heating System Performance Factor of existing heating system (kBtu/kWh)

= Use actual HSPF rating where it is possible to measure or reasonably estimate. If not available use:

http://www1.eere.energy.gov/buildings/appliance_standards/residential/residential_cac_hp.html.

⁵⁷⁵ Based on Minimum Federal Standard;

⁵⁷⁶ Full load heating hours for heat pumps are provided for Rockford, Chicago and Springfield in the Energy Star Calculator. Estimates for the other locations were calculated based on the FLH to Heating Degree Day (from NCDC) ratio. VEIC consider Energy Star estimates to be high due to oversizing not being adequately addressed. Using average Illinois billing data (from <u>http://www.icc.illinois.gov/ags/consumereducation.aspx</u>) VEIC estimated the average gas heating load and used this to estimate the average home heating output (using 83% average gas heat efficiency). Dividing this by a typical 36,000 Btu/h ASHP gives an estimate of average ASHP FLH_heat of 1821 hours. We used the ratio of this value to the average of the locations using the Energy Star data (1994 hours) to scale down the Energy Star estimates. There is a county mapping table in the Appendix providing the appropriate city to use for each county of Illinois.

⁵⁷⁷ Weighted based on number of occupied residential housing units in each zone.

Existing Heating System	HSPF_exist
Air Source Heat Pump	5.44 ⁵⁷⁸
Electric Resistance	3.41 ⁵⁷⁹

HSPF_base =Heating System Performance Factor of baseline Air Source Heat Pump (kBtu/kWh)

= 7.7 ⁵⁸⁰

HSFP_ee =Heating System Performance Factor of efficient Air Source Heat Pump (kBtu/kWh)

= Actual

⁵⁷⁸ This is estimated based on finding the average HSPF/SEER ratio from the AHRI directory data (using the least efficient models – SEER 12 and SEER 13) – 0.596, and applying to the average nameplate SEER rating of all Early Replacement qualifying equipment in Ameren PY3-PY4. This estimation methodology appears to provide a result within 10% of actual HSPF.

 $^{^{579}}$ Electric resistance has a COP of 1.0 which equals 1/0.293 = 3.41 HSPF.

⁵⁸⁰ Based on Minimum Federal Standard;

http://www1.eere.energy.gov/buildings/appliance_standards/residential/residential cac_hp.html.

Time of Sale: For example, a three ton, 15 SEER, 12EER, 9 HSPF Air Source Heat Pump installed in Marion: ΔkWh = ((903 * 36,000 * (1/13 - 1/15)) / 1000) + ((1,288 * 36,000 * (1/7.7 - 1/9)) / 1000) = 1,203 kWh Early Replacement: For example, a three ton, 15 SEER, 12EER, 9 HSPF Air Source Heat Pump replaces an existing working Air Source Heat Pump with unknown efficiency ratings in Marion: ΔkWH for remaining life of existing unit (1st 6 years): = ((903 * 36,000 * (1/9.12 - 1/15)) / 1000) + ((1,288 * 36,000 * (1/5.44 - 1/9)) / 1000) = 4769 kWh ΔkWH for remaining measure life (next 12 years): = ((903 * 36,000 * (1/13 - 1/15)) / 1000) + ((1,288 * 36,000 * (1/7.7 - 1/9)) / 1000) = 1,203 kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

Time of sale:

 $\Delta kW = (Capacity_cooling * (1/EER_base - 1/EER_ee)) / 1000) * CF$

Early replacement⁵⁸¹:

 ΔkW for remaining life of existing unit (1st 6 years):

= ((Capacity_cooling * (1/EERexist - 1/EERee))/1000 * CF);

 ΔkW for remaining measure life (next 12 years):

= ((Capacity_cooling * (1/EERbase - 1/EERee))/1000 * CF)

Where:

⁵⁸¹ The two equations are provided to show how savings are determined during the initial phase of the measure (existing to efficient) and the remaining phase (new baseline to efficient). In practice, the screening tools used may either require a First Year savings (using the first equation) and then a "number of years to adjustment" and "savings adjustment" input which would be the (new base to efficient savings)/(existing to efficient savings).

EER_exist = Energy Efficiency Ratio of existing cooling system (kBtu/h / kW)

= Use actual EER rating where it is possible to measure or reasonably estimate. If EER unknown but SEER available convert using the equation:

EER base = $(-0.02 * SEER base^2) + (1.12 * SEER)^{582}$

If SEER rating unavailable use:

Existing Cooling System	EER_exist ⁵⁸³
Air Source Heat Pump	8.55
Central AC	8.15
No central cooling ⁵⁸⁴	Make '1/EER_exist' = 0

EER_base	= Energy Efficiency Ratio of baseline Air Source Heat Pump (kBtu/h / kW)
	= 11.2 ⁵⁸⁵
EER_ee	= Energy Efficiency Ratio of baseline Air Source Heat Pump (kBtu/h / kW)
	= Actual, If not provided convert SEER to EER using this formula: ⁵⁸⁶
	= (-0.02 * SEER ²) + (1.12 * SEER)
CF_{SSP}	= Summer System Peak Coincidence Factor for Central A/C (during system peak hour)
	= 91.5% ⁵⁸⁷
CF_{PJM}	= PJM Summer Peak Coincidence Factor for Central A/C (average during peak period)

⁵⁸² From Wassmer, M. (2003). A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at Boulder.

⁵⁸³ Average nameplate efficiencies of all Early Replacement qualifying equipment in Ameren PY3-PY4.

⁵⁸⁴ If there is no central cooling in place but the incentive encourages installation of a new ASHP with cooling, the added cooling load should be subtracted from any heating benefit.

 ⁵⁸⁵ The Federal Standard does not include an EER requirement, so it is approximated with this formula: (-0.02 *
 SEER2) + (1.12 * SEER) Wassmer, M. (2003). A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at Boulder. Note this is appropriate for single speed units only.
 ⁵⁸⁶ Based on Wassmer, M. (2003). A Component-Based Model for Residential Air Conditioner and Heat Pump

⁵⁸⁶ Based on Wassmer, M. (2003). A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at Boulder. Note this is appropriate for single speed units only.

⁵⁸⁷ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The AC load during the utility's peak hour is divided by the maximum AC load during the year.

Time of Sale: For example, a three ton, 15 SEER, 12EER, 9 HSPF Air Source Heat Pump installed in Marion: $\Delta kW_{SSP} = ((36,000 * (1/11.2 - 1/12)) / 1000) * 0.915$ = 0.196 kW $\Delta kW_{PJM} = ((36,000 * (1/11.2 - 1/12)) / 1000) * 0.466$ = 0.100 kW Early Replacement: For example, a three ton, 15 SEER, 12EER, 9 HSPF Air Source Heat Pump replaces an existing working Air Source Heat Pump with unknown efficiency ratings in Marion: ΔkW_{SSP} for remaining life of existing unit (1st 6 years): = ((36,000 * (1/8.55 - 1/12)) / 1000) * 0.915 = 1.11 kW ΔkW_{SSP} for remaining measure life (next 12 years): = ((36,000 * (1/11.2 - 1/12)) / 1000) * 0.915 = 0.196 kW ΔkW_{PJM} for remaining life of existing unit (1st 6 years): = ((36,000 * (1/8.55 - 1/12)) / 1000) * 0.466 = 0.564 kW ΔkW_{PJM} for remaining measure life (next 12 years): = ((36,000 * (1/11.2 - 1/12)) / 1000) * 0.466 = 0.100 kW

⁵⁸⁸ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

= 46.6%⁵⁸⁸

NATURAL GAS SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-HVC-ASHP-V02-130601

5.3.2 Boiler Pipe Insulation

DESCRIPTION

This measure describes adding insulation to un-insulated boiler pipes in un-conditioned basements or crawlspaces.

This measure was developed to be applicable to the following program types: TOS, RNC, RF, DI. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient case is installing pipe wrap insulation to a length of boiler pipe.

DEFINITION OF BASELINE EQUIPMENT

The baseline is an un-insulated boiler pipe.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The measure life is assumed to be 15 years⁵⁸⁹.

DEEMED MEASURE COST

The measure cost including material and installation is assumed to be \$3 per linear foot⁵⁹⁰.

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

N/A

COINCIDENCE FACTOR

N/A

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

N/A

⁵⁸⁹ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf ⁵⁹⁰ Consistent with DEER 2008 Database Technology and Measure Cost Data (www.deeresources.com).

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

NATURAL GAS SAVINGS

```
\Delta Therm = (((1/R_{exist} * C_{exist}) - (1/R_{new} * C_{new})) * FLH_heat * L * \Delta T) / \eta Boiler / 100,000
```

Where:

R _{exist}	= Pipe heat loss coefficient of uninsulated pipe (existing) [(hr-°F-ft ²)/Btu]			
	= 0.5 ⁵⁹¹			
R _{new}	= Pipe he	eat loss coefficient of insula	ited pipe (new)	[(hr-°F-ft ²)/Btu]
	= Actual	(0.5 + R value of insulation)	
FLH_heat	= Full load hours of heating			
= Dependent on location ⁵⁹² :				
		Climate Zone (City based upon)	FLH_heat	
		1 (Rockford)	1,969	
		2 (Chicago)	1,840	
		3 (Springfield)	1,754	
		4 (Belleville)	1,266	

L

= Length of boiler pipe in unconditioned space covered by pipe wrap (ft)

1,288

1,821

= Actual

5 (Marion)

Weighted Average⁵⁹³

⁵⁹¹ Assumption based on data obtained from the 3E Plus heat loss calculation software provided by the NAIMA (North American Insulation Manufacturer Association) and derived from Table 15 and Table 16 of 2009 ASHRAE Fundamentals Handbook, Chapter 23 Insulation for Mechanical Systems, page 23.17.

⁵⁹² Full load heating hours for heat pumps are provided for Rockford, Chicago and Springfield in the Energy Star Calculator. Estimates for the other locations were calculated based on the FLH to Heating Degree Day (from NCDC) ratio. VEIC consider Energy Star estimates to be high due to oversizing not being adequately addressed. Using average Illinois billing data (from <u>http://www.icc.illinois.gov/ags/consumereducation.aspx</u>) VEIC estimated the average gas heating load and used this to estimate the average home heating output (using 83% average gas heat efficiency). Dividing this by a typical 36,000 Btu/h ASHP gives an estimate of average ASHP FLH_heat of 1821 hours. We used the ratio of this value to the average of the locations using the Energy Star data (1994 hours) to scale down the Energy Star estimates. There is a county mapping table in the Appendix providing the appropriate city to use for each county of Illinois.

⁵⁹³ Weighted based on number of occupied residential housing units in each zone.

- C_{exist} = Circumference of bare pipe (ft) (Diameter (in) * $\pi/12$)
 - = Actual (0.5" pipe = 0.131ft, 0.75" pipe = 0.196ft)
- C_{new} = Circumference of pipe with insulation (ft) (Diameter (in) * $\pi/12$)

= Actual

= Average temperature difference between circulated heated water and unconditioned space air temperature (°F) ⁵⁹⁴

Pipes in unconditioned basement:

Outdoor reset controls	$\Delta T (^{\circ}F)$
Boiler without reset control	110
Boiler with reset control	70

Pipes in crawl space:

Climate Zone	ΔT (°F)		
(City based upon)	Boiler without reset control	Boiler with reset control	
1 (Rockford)	127	87	
2 (Chicago)	126	86	
3 (Springfield)	122	82	
4 (Belleville)	120	80	
5 (Marion)	120	80	
Weighted Average ⁵⁹⁵	125	85	

ηBoiler

ΔТ

= Efficiency of boiler

= 0.819 596

⁵⁹⁴ Assumes 160°F water temp for a boiler without reset control, 120°F for a boiler with reset control, and 50°F air temperature for pipes in unconditioned basements and the following average heating season outdoor temperatures as the air temperature in crawl spaces: Zone 1 - 33.1, Zone 2 - 34.4, Zone 3 - 37.7, Zone 4 - 40.0, Zone 5 - 39.8, Weighted Average - 35.3 (NCDC 1881-2010 Normals, average of monthly averages Nov - Apr for zones 1-3 and Nov-March for zones 4 and 5).

⁵⁹⁵ Weighted based on number of occupied residential housing units in each zone.

⁵⁹⁶ Average efficiency of boiler units found in Ameren PY3-PY4 data.

For example, insulating 10 feet of 0.75" pipe with R-3 wrap (0.75" thickness) in a crawl space of a Marion home with a boiler without reset control: $\Delta Therm = (((1/0.5 * 0.196) - (1/3.5 * 0.589)) * 10 * 120 * 1288) / 0.819 /$

= (((1/0.5 * 0.196) - (1/3.5 * 0.589)) * 10 * 120 * 1288) / 0.819 / 100,000

= 4.2 therms

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-HVC-PINS-V01-130601

5.3.3 Central Air Conditioning > 14.5 SEER

DESCRIPTION

This measure characterizes:

- a) Time of Sale:
 - a. The installation of a new residential sized (<= 65,000 BTU/hr) Central Air Conditioning ducted split system meeting ENERGY STAR efficiency standards presented below. This could relate to the replacement of an existing unit at the end of its useful life, or the installation of a new system in a new home.
- b) Early Replacement:
 - a. The early removal of an existing residential sized (<= 65,000 BTU/hr) inefficient Central Air Conditioning unit from service, prior to its natural end of life, and replacement with a new ENERGY STAR qualifying unit. Savings are calculated between existing unit and efficient unit consumption during the remaining life of the existing unit, and between new baseline unit and efficient unit consumption for the remainder of the measure life.
 - b. The assumption of the existing unit efficiency in the Early Replacement section of this TRM is based upon the average efficiency of units that were classified in Ameren's PY3-PY4 as functioning and SEER <=10. Therefore it is only appropriate to use these Early Replacement assumptions where those conditions are met. The TAC defined "functioning" as the unit is fully operational providing sufficient space conditioning (i.e. heat exchanger, compressors, pumps work effectively) and/or the cost of repair is under 20% of the new baseline replacement cost. Therefore in order to apply early replacement assumptions the programs should apply the following eligibility criteria: SEER <=10 and cost of any repairs <\$190 per ton.</p>

This measure was developed to be applicable to the following program types: TOS, NC, EREP. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the efficient equipment is assumed to be a ducted split central air conditioning unit meeting the minimum ENERGY STAR efficiency level standards; 14.5 SEER and 12 EER.

DEFINITION OF BASELINE EQUIPMENT

The baseline for the Time of Sale measure is based on the current Federal Standard efficiency level; 13 SEER and 11 EER.

The baseline for the early replacement measure is the efficiency of the existing equipment for the assumed remaining useful life of the unit and the new baseline as defined above⁵⁹⁷ for the remainder of the measure life.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 18 years ⁵⁹⁸.

⁵⁹⁷ Baseline SEER and EER should be updated when new minimum federal standards become effective.

⁵⁹⁸ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June

Remaining life of existing equipment is assumed to be 6 years⁵⁹⁹.

DEEMED MEASURE COST

Time of sale: The incremental capital cost for this measure is dependent on equipment size and efficiency. Assumed costs per ton of cooling capacity are provided below⁶⁰⁰:

Efficiency Level	Cost per Ton
SEER 14	\$119
SEER 15	\$238
SEER 16	\$357
SEER 17	\$476
SEER 18	\$596
SEER 19	\$715
SEER 20	\$834
SEER 21	\$908
Average	\$530

Early replacement: The incremental capital cost for this measure is the actual cost of removing the existing unit and installing the new one. If this is unknown, assume \$3,413⁶⁰¹.

Assumed deferred cost (after 6 years) of replacing existing equipment with new baseline unit is assumed to be \$2,857⁶⁰². This cost should be discounted to present value using the utilities discount rate.

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape R08 - Residential Cooling

2007.

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf

The "lifespan" of a central air conditioner is about 15 to 20 years (US DOE:

http://www.energysavers.gov/your home/space heating cooling/index.cfm/mytopic=12440).

⁵⁹⁹ Assumed to be one third of effective useful life

⁶⁰⁰ DEER 2008 Database Technology and Measure Cost Data (www.deeresources.com)

⁶⁰¹ Based on 3 ton initial cost estimate for an ENERGY STAR unit from ENERGY STAR Central AC calculator (<u>http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC.xls</u>).
 ⁶⁰² Based on 3 ton initial cost estimate for a conventional unit from ENERGY STAR Central AC calculator

⁶⁰² Based on 3 ton initial cost estimate for a conventional unit from ENERGY STAR Central AC calculator (<u>http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC.xls</u>). While baselines are likely to shift in the future, there is currently no good indication of what the cost of a new baseline unit will be in 6 years. In the absence of this information, assuming a constant federal baseline cost is within the range of error for this prescriptive measure.

COINCIDENCE FACTOR

The summer peak coincidence factor for cooling is provided in two different ways below. The first is used to estimate peak savings during the utility peak hour and is most indicative of actual peak benefits, and the second represents the average savings over the defined summer peak period, and is presented so that savings can be bid into PJM's Forward Capacity Market. Both values provided are based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren.

CF _{SSP}	= Summer System Peak Coincidence Factor for Central A/C (during system peak hour)		
	= 91.5% ⁶⁰³		
CF_{PJM}	= PJM Summer Peak Coincidence Factor for Central A/C (average during PJM peak period)		

= 46.6%⁶⁰⁴

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Time of sale:

```
\Delta kWH = (FLHcool * BtuH * (1/SEERbase - 1/SEERee))/1000
```

Early replacement⁶⁰⁵:

 Δ kWH for remaining life of existing unit (1st 6 years):

=((FLHcool * Capacity * (1/SEERexist - 1/SEERee))/1000);

 Δ kWH for remaining measure life (next 12 years):

= ((FLHcool * Capacity * (1/SEERbase - 1/SEERee))/1000)

Where:

⁶⁰³ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The AC load during the utility's peak hour is divided by the maximum AC load during the year.

⁶⁰⁴ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

⁶⁰⁵ The two equations are provided to show how savings are determined during the initial phase of the measure (existing to efficient) and the remaining phase (new baseline to efficient). In practice, the screening tools used may either require a First Year savings (using the first equation) and then a "number of years to adjustment" and "savings adjustment" input which would be the (new base to efficient savings)/(existing to efficient savings).

		Et the state	Fillers	1
	Climata Zana	FLHcool	FLHcool (multi	
	Climate Zone (City based upon)	(single family)	(multi family)	
	1 (Rockford)	512	467	
	2 (Chicago)	570	506	
	3 (Springfield)	730	663	
	4 (Belleville)	1035	940	
	5 (Marion)	903	820	
	Weighted Average ⁶⁰⁷	629	564	
	Weighted Average	029	304	ł
SEERbase	 Actual installed, or if actual size unknown 33,600Btuh for single-family buildings⁶⁰⁸ Seasonal Energy Efficiency Ratio of baseline unit (kBtu/kWh) 			
	= 13 ⁶⁰⁹			
SEERexist	= Seasonal Energy Efficient	cy Ratio of existi	ing unit (kBtu/k\	Wh)
	= Use actual SEER rating estimate. If unknown assured		possible to me	easure or reasonably
SEERee	= Seasonal Energy Efficient	cy Ratio of ENER	RGY STAR unit (k	Btu/kWh)
	= Actual installed or 14.5 if	funknown		

= dependent on location and building type⁶⁰⁶:

⁶⁰⁶ Full load hours for Chicago, Moline and Rockford are provided in "Final Evaluation Report: Central Air Conditioning Efficiency Services (CACES), 2010, Navigant Consulting", http://ilsag.org/yahoo_site_admin/assets/docs/ComEd_PY2_CACES_Evaluation_Report_2010-10-

<u>18.299122020.pdf</u>, p.33. An average FLH/Cooling Degree Day (from NCDC) ratio was calculated for these locations and applied to the CDD of the other locations in order to estimate FLH. There is a county mapping table in the Appendix providing the appropriate city to use for each county of Illinois.

⁶⁰⁷ Weighted based on number of residential occupied housing units in each zone.

⁶⁰⁸ Actual unit size required for multi-family building, no size assumption provided because the unit size and resulting savings can vary greatly depending on the number of units.

⁶⁰⁹ Based on Minimum Federal Standard;

http://www1.eere.energy.gov/buildings/appliance_standards/residential/residential_cac_hp.html.

⁶¹⁰ VEIC estimate based on Department of Energy Federal Standard between 1992 and 2006. If utilities have specific evaluation results providing a more appropriate assumption for homes in a particular market or geographical area then that should be used.

Time of sale example: a 3 ton unit with SEER rating of 14.5, in unknown location:

$$\Delta kWH = (629 * 36,000 * (1/13 - 1/14.5)) / 1000$$

= 180 kWh

Early replacement example: a 3 ton unit, with SEER rating of 14.5 replaces an existing unit in unknown location:

 $\Delta kWH(\text{for first 6 years}) = (629 * 36,000 * (1/10 - 1/14.5)) / 1000$ = 702 kWh $\Delta kWH(\text{for next 12 years}) = (629 * 36,000 * (1/13 - 1/14.5)) / 1000$ = 180 kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

Time of sale:

 $\Delta kW = (Capacity * (1/EERbase - 1/EERee))/1000 * CF$

Early replacement⁶¹¹:

 ΔkW for remaining life of existing unit (1st 6 years):

= ((Capacity * (1/EERexist - 1/EERee))/1000 * CF);

 ΔkW for remaining measure life (next 12 years):

= ((Capacity * (1/EERbase - 1/EERee))/1000 * CF)

Where:

EERbase	= EER Efficiency of baseline unit		
	= 11.2 ⁶¹²		
EERexist	= EER Efficiency of existing unit		

⁶¹¹ The two equations are provided to show how savings are determined during the initial phase of the measure (existing to efficient) and the remaining phase (new baseline to efficient). In practice, the screening tools used may either require a First Year savings (using the first equation) and then a "number of years to adjustment" and "savings adjustment" input which would be the (new base to efficient savings)/(existing to efficient savings).
⁶¹² The federal Standard does not currently include an EER component. The value is approximated based on the SEER standard (13) and equals EER 11.2. To perform this calculation we are using this formula: (-0.02 * SEER2) + (1.12 * SEER) (from Wassmer, M. (2003). A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at Boulder).

	= Actual EER of unit should be used, if EER is unknown, use 9.2 ⁶¹³
EERee	= EER Efficiency of ENERGY STAR unit
	= Actual installed or 12 if unknown
CF _{SSP}	= Summer System Peak Coincidence Factor for Central A/C (during system peak hour)
	= 91.5% ⁶¹⁴
CF_{PJM}	= PJM Summer Peak Coincidence Factor for Central A/C (average during peak period)
	= 46.6% ⁶¹⁵

Time of sale example: a 3 ton unit with EER rating of 12:			
	$\Delta kW_{SSP} = (36,00)$	00 * (1/11.2- 1/12)) / 1000 * 0.915	
		= 0.196 kW	
	ΔkW_{PJM}	= (36,000 * (1/11.2- 1/12)) / 1000 * 0.466	
		= 0.100 kW	
Early rep	placement example: a 3 to	n unit with EER rating of 12 replaces an existing unit:	
	ΔkW_{SSP} (for first 6 years)	= (36,000 * (1/9.2– 1/12)) / 1000 * 0.915	
		= 0.835 kW	
	ΔkW_{SSP} (for next 12 years	s) = (36,000 * (1/11.2– 1/12)) / 1000 * 0.915	
		= 0.196 kW	
	ΔkW_{PJM} (for first 6 years)	= (36,000 * (1/9.2– 1/12)) / 1000 * 0.466	
		= 0.425 kW	
	ΔkW_{PJM} (for next 12 years	s)= (36,000 * (1/11.2– 1/12)) / 1000 * 0.466	
		= 0.100 kW	

⁶¹³ Based on SEER of 10,0, using formula above to give 9.2 EER.

⁶¹⁴ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The AC load during the utility's peak hour is divided by the maximum AC load during the year.

⁶¹⁵ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

NATURAL GAS SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-HVC-CAC1-V02-130601

5.3.4 Duct Insulation and Sealing

DESCRIPTION

This measure describes evaluating the savings associated with performing duct sealing using mastic sealant or metal tape to the distribution system of homes with either central air conditioning or a ducted heating system.

Two methodologies for estimating the savings associate from sealing the ducts are provided. The first preferred method requires the use of a blower door and the second requires careful inspection of the duct work.

- 1. Modified Blower Door Subtraction this technique is described in detail on p.44 of the Energy Conservatory Blower Door Manual; <u>http://www.energyconservatory.com/download/bdmanual.pdf</u>
- Evaluation of Distribution Efficiency this methodology requires the evaluation of three duct characteristics below, and use of the Building Performance Institutes 'Distribution Efficiency Look-Up Table';

http://www.bpi.org/files/pdf/DistributionEfficiencyTable-BlueSheet.pdf

- a. Percentage of duct work found within the conditioned space
- b. Duct leakage evaluation
- c. Duct insulation evaluation

This measure was developed to be applicable to the following program types: RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient condition is sealed duct work throughout the unconditioned space in the home.

DEFINITION OF BASELINE EQUIPMENT

The existing baseline condition is leaky duct work within the unconditioned space in the home.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The assumed lifetime of this measure is 20 years⁶¹⁶.

DEEMED MEASURE COST

The actual duct sealing measure cost should be used.

⁶¹⁶ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

http://neep.org/uploads/EMV%20Forum/EMV%20Studies/measure_life_GDS%5B1%5D.pdf

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape R08 - Residential Cooling Loadshape R09 - Residential Electric Space Heat Loadshape R10 - Residential Electric Heating and Cooling (Shell Measures)

COINCIDENCE FACTOR

The summer peak coincidence factor for cooling is provided in two different ways below. The first is used to estimate peak savings during the utility peak hour and is most indicative of actual peak benefits, and the second represents the *average* savings over the defined summer peak period, and is presented so that savings can be bid into PJM's Forward Capacity Market. Both values provided are based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren.

CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C (during utility peak hour)

= 91.5%⁶¹⁷

CF_{PJM} = PJM Summer Peak Coincidence Factor for Central A/C (average during PJM peak period)

= 46.6%⁶¹⁸

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Methodology 1: Modified Blower Door Subtraction

a) Determine Duct Leakage rate before and after performing duct sealing:

```
Duct Leakage (CFM50<sub>DL</sub>) = (CFM50<sub>Whole House</sub> - CFM50<sub>Envelope Only</sub>) * SCF
```

Where:

CFM50 _{Whole House}	= Standard Blower Door test result finding Cubic Feet per Minute at 50 Pascal pressure differential
CFM50 _{Envelope Only}	= Blower Door test result finding Cubic Feet per Minute at 50 Pascal pressure differential with all supply and return registers sealed.

⁶¹⁷ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The AC load during the utility's peak hour is divided by the maximum AC load during the year.

⁶¹⁸ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

	SCF	= Subtraction Correction Factor to account for underestimation of duct leakage due to connections between the duct system and the home. Determined by measuring pressure in duct system with registers sealed and using look up table provided by Energy Conservatory.
b)	Calculate duct leakag	e reduction, convert to CFM25 $_{DL}$ and factor in Supply and Return Loss Factors
	Duct Leakage Reducti	on ($\Delta CFM25_{DL}$) = (Pre CFM50 _{DL} – Post CFM50 _{DL}) * 0.64 * (SLF + RLF)
	Where:	
	0.64	= Converts CFM50 to CFM25 ⁶¹⁹
	SLF	= Supply Loss Factor
		= % leaks sealed located in Supply ducts * 1 620
		Default = 0.5 ⁶²¹
	RLF	= Return Loss Factor
		= % leaks sealed located in Return ducts * 0.5 ⁶²²
		$Default = 0.25^{623}$
	c) Calculate Energy Sa	ivings:
	$\Delta kWh_{cooling} = ((A))$	ΔCFM25 _{DL})/ ((Capacity/12,000) * 400)) * FLHcool * Capacity) / 1000 / ηCool
Where:		
	۵CFM25 م	= Duct leakage reduction in CFM25

⁶¹⁹ 25 Pascals is the standard assumption for typical pressures experienced in the duct system under normal operating conditions. To convert CFM50 to CFM25 you multiply by 0.64 (inverse of the "Can't Reach Fifty" factor for CFM25; see Energy Conservatory Blower Door Manual).

⁶²⁰ Assumes that for each percent of supply air loss there is one percent annual energy penalty. This assumes supply side leaks are direct losses to the outside and are not recaptured back to the house. This could be adjusted downward to reflect regain of usable energy to the house from duct leaks. For example, during the winter some of the energy lost from supply leaks in a crawlspace will probably be regained back to the house (sometimes 1/2 or more may be regained). More information provided in "Appendix E Estimating HVAC System Loss From Duct Airtightness Measurements" from <u>http://www.energyconservatory.com/download/dbmanual.pdf</u> ⁶²¹ Assumes 50% of leaks are in supply ducts.

⁶²² Assumes that for each percent of return air loss there is a half percent annual energy penalty. Note that this assumes that return leaks contribute less to energy losses than do supply leaks. This value could be adjusted upward if there was reason to suspect that the return leaks contribute significantly more energy loss than "average" (e.g. pulling return air from a super heated attic), or can be adjusted downward to represent significantly less energy loss (e.g. pulling return air from a moderate temperature crawl space). More information provided in "Appendix E Estimating HVAC System Loss From Duct Airtightness Measurements" from http://www.energyconservatory.com/download/dbmanual.pdf

⁶²³ Assumes 50% of leaks are in return ducts.

	= calculated above
Capacity	= Capacity of Air Cooling system (Btu/H)
	=Actual
12,000	= Converts Btu/H capacity to tons
400	= Converts capacity in tons to CFM (400CFM / ton)
FLHcool	= Full load cooling hours

= Dependent on location as below⁶²⁴:

Climate Zone (City based upon)	FLHcool Single Family	FLHcool Multifamily
1 (Rockford)	512	467
2 (Chicago)	570	506
3 (Springfield)	730	663
4 (Belleville)	1,035	940
5 (Marion)	903	820
Weighted Average ⁶²⁵	629	564

1000

= Converts Btu to kBtu

ηCool

= Efficiency (SEER) of Air Conditioning equipment (kBtu/kWh)

= Actual. If unknown assume the following 626 :

Age of Equipment	SEER Estimate
Before 2006	10
After 2006	13

⁶²⁴ Based on Full Load Hours from ENERGY Star with adjustments made in a Navigant Evaluation, other cities were scaled using those results and CDD. There is a county mapping table in the Appendix providing the appropriate city to use for each county of Illinois.

⁶²⁵ Weighted based on number of occupied residential housing units in each zone.

⁶²⁶ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Central AC was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.

	For every low dust eaching in a single for the bases in Caria field with a 20 000 Dtv /U. CEED 44 control air			
	example, duct sealing in a single family house in Springfield with a 36,000 Btu/H, SEER 11 central air litioning and the following blower door test results:			
Before: C	CFM50 _{Whole House}	= 4800 CFM50		
c	CFM50 _{Envelope Only}	= 4500 CFM50		
ŀ	House to duct pr	essure of 45 Pascals. = 1.29 SCF (Energy Conservatory look up table)		
After: C	CFM50 _{Whole House}	= 4600 CFM50		
C	CFM50 _{Envelope Only}	= 4500 CFM50		
F	House to duct pr	essure of 43 Pascals = 1.39 SCF (Energy Conservatory look up table)		
Duct Leak	age:			
C	CFM50 _{DL before}	= (4800 – 4500) * 1.29		
		= 387 CFM		
C	CFM50 _{DL after}	= (4600 – 4500) * 1.39		
		= 139 CFM		
Duct Leak	age reduction at	t CFM25:		
	ΔCFM25 _{DL}	= (387 – 139) * 0.64 * (0.5 + 0.25)		
		= 119 CFM25		
Energy Sa	vings:			
	\kWh _{cooling}	= ((119 / ((36,000/12,000) * 400)) * 730 * 36,000) / 1000 / 11		
		= 237 kWh		

Heating savings for homes with electric heat (Heat Pump):

 $\Delta kWh_{heating} = (((\Delta CFM25_{DL}/((Capacity/12,000) * 400)) * FLHheat * Capacity) / \eta Heat / 3412$

Where:

FLHheat = Full load heating hours

	Dependent on		627
=	Dependent on	Incation as	helow
	Dependent on	location as	

Climate Zone (City based upon)	FLH_heat
1 (Rockford)	1,969
2 (Chicago)	1,840
3 (Springfield)	1,754
4 (Belleville)	1,266
5 (Marion)	1,288
Weighted	1,821
Average ⁶²⁸	

ηHeat

= Efficiency in COP of Heating equipment

= Actual. If not available use⁶²⁹:

System Type	Age of Equipment	HSPF Estimate	COP Estimate
Heat Pump	Before 2006	6.8	2.00
	After 2006	7.7	2.26
Resistance	N/A	N/A	1.00

3412 = Converts Btu to kWh

For example, duct sealing in a 36,000 Btu/H 2.5 COP heat pump heated single family house in Springfield with the blower door results described above:

 $\Delta kWh_{heating} = (((119 / ((36,000/12,000) * 400)) * 1,754 * 36,000) / 2.5 / 3412$

= 734 kWh

Methodology 2: Evaluation of Distribution Efficiency

Determine Distribution Efficiency by evaluating duct system before and after duct sealing using Building Performance Institute "Distribution Efficiency Look-Up Table"

 $\Delta kWh_{cooling} = ((DE_{after} - DE_{before})/DE_{after})) * FLHcool * Capacity)/1000 / \etaCool$

 ⁶²⁷ Heating EFLH based on ENERGY Star EFLH for Rockford, Chicago, and Springfield and on NCDC/NOAA HDD for
 the other two cities. In all cases, the hours were adjusted based on average natural gas heating consumption in IL.
 ⁶²⁸ Weighted based on number of occupied residential housing units in each zone.

⁶²⁹ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.

Where:

DE_{after}	= Distribution Efficiency after duct sealing
DE _{before}	= Distribution Efficiency before duct sealing

FLHcool = Full load cooling hours

= Dependent on location as below⁶³⁰:

Climate Zone (City based upon)	FLHcool Single Family	FLHcool Multifamily
1 (Rockford)	512	467
2 (Chicago)	570	506
3 (Springfield)	730	663
4 (Belleville)	1,035	940
5 (Marion)	903	820
Weighted Average ⁶³¹	629	564

Capacity = Capacity of Air Cooling system (Btu/H)

=Actual

1000 = Converts Btu to kBtu

ηCool = Efficiency (SEER) of Air Conditioning equipment (kBtu/kWh)

= Actual. If unknown assume⁶³²:

Age of Equipment	SEER Estimate
Before 2006	10
After 2006	13

⁶³⁰ Based on Full Load Hours from ENERGY Star with adjustments made in a Navigant Evaluation, other cities were scaled using those results and CDD. There is a county mapping table in the Appendix providing the appropriate city to use for each county of Illinois.

⁶³¹ Weighted based on number of occupied residential housing units in each zone.

⁶³² These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Central AC was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.

For example, duct sealing in a single family house in Springfield, with 36,000 Btu/H SEER 11 central air conditioning and the following duct evaluation results: $DE_{before} = 0.85$ $DE_{after} = 0.92$ Energy Savings: $\Delta kWh_{cooling} = ((0.92 - 0.85)/0.92) * 730 * 36,000) / 1000 / 11$ = 182 kWh

Heating savings for homes with electric heat (Heat Pump or resistance):

 $\Delta kWh_{\text{heating}}$

= (($DE_{after} - DE_{before}$)/ DE_{after})) * FLHheat * Capacity) / η Heat / 3412

Where:

FLHheat = Full load heating hours

= Dependent on location as below⁶³³:

Climate Zone (City based upon)	FLH_heat
1 (Rockford)	1,969
2 (Chicago)	1,840
3 (Springfield)	1,754
4 (Belleville)	1,266
5 (Marion)	1,288
Weighted	1,821
Average ⁶³⁴	

 ⁶³³ Heating EFLH based on ENERGY Star EFLH for Rockford, Chicago, and Springfield and on NCDC/NOAA HDD for
 the other two cities. In all cases, the hours were adjusted based on average natural gas heating consumption in IL.
 ⁶³⁴ Weighted based on number of occupied residential housing units in each zone.

= Coefficient of Performance of electric heating system⁶³⁵

= Actual. If not available use 636 :

System Type	Age of	HSPF	СОР	
	Equipment	Estimate	Estimate	
Heat Pump	Before 2006	6.8	2.00	
	After 2006	7.7	2.26	
Resistance	N/A	N/A	1.00	

For example, duct sea with the following duc	-	000 Btu/H, 2.5 COP heat pump heated single family house in Springfield results:
DE_{after}	= 0.92	
DE _{before}	= 0.85	
Energy Saving	gs:	
ΔkW	$h_{heating}$	= ((0.92 – 0.85)/0.92) * 1,967 * 36,000) / 2.5) / 3412
		= 632 kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh_{cooling}/FLHcool * CF$

Where:

COP

FLHcool = Full load cooling hours:

= Dependent on location as below⁶³⁷:

 $^{^{635}}$ Note that the HSPF of a heat pump is equal to the COP * 3.413.

⁶³⁶ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.

⁶³⁷ Based on Full Load Hours from ENERGY Star with adjustments made in a Navigant Evaluation, other cities were scaled using those results and CDD. There is a county mapping table in the Appendix providing the appropriate city to use for each county of Illinois.

	Climate Zone (City based upon)	FLHcool Single Family	FLHcool Multifamily	
	1 (Rockford)	512	467	
	2 (Chicago)	570	506	
	3 (Springfield)	730	663	
	4 (Belleville)	1,035	940	
	5 (Marion)	903	820	
	Weighted Average ⁶³⁸	629	564	
CF_{SSP}	= Summer System Pe	eak Coincidence Fa	ctor for Central A/	C (during system peak hour)
	= 91.5% ⁶³⁹			
CF_{PJM}	= PJM Summer Peak Coincidence Factor for Central A/C (average during peak period)			

= 46.6%⁶⁴⁰

NATURAL GAS SAVINGS

For homes with Natural Gas Heating:

Methodology 1: Modified Blower Door Subtraction

ΔTherm	= (((ΔCFM25 _{DL} / (Capacity * 0.0123)) * FLHheat * Capacity) / 100,000 / ηHeat
--------	---

Where:

$\Delta CFM25_{DL}$	= Duct leakage reduction in CFM25	
Capacity	= Capacity of Air Cooling system (Btu/H)	
	=Actual	
0.0123	= Conversion of Capacity to CFM (0.0123CFM / Btu/h) 641	
FLHheat	= Full load heating hours	
	=Dependent on location as below ⁶⁴² :	

⁶³⁸ Weighted based on number of occupied residential housing units in each zone.

⁶³⁹ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The AC load during the utility's peak hour is divided by the maximum AC load during the year.

⁶⁴⁰ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

⁶⁴¹ Based on Natural Draft Furnaces requiring 100 CFM per 10,000 BTU, Induced Draft Furnaces requiring 130CFM per 10,000BTU and Condensing Furnaces requiring 150 CFM per 10,000 BTU (rule of thumb from http://contractingbusiness.com/enewsletters/cb_imp_43580/). Data provided by GAMA during the federal rule-making process for furnace efficiency standards, suggested that in 2000, 24% of furnaces purchased in Illinois were condensing units. Therefore a weighted average required airflow rate is calculated assuming a 50:50 split of natural v induced draft non-condensing furnaces, as 123 per 10,000BTU or 0.0123/Btu.

Climate Zone (City based upon)	FLH_heat
1 (Rockford)	1,969
2 (Chicago)	1,840
3 (Springfield)	1,754
4 (Belleville)	1,266
5 (Marion)	1,288
Weighted	1,821
Average ⁶⁴³	

100,000 = Converts Btu to therms

nHeat

= Average Net Heating System Efficiency (Equipment Efficiency * Distribution Efficiency)⁶⁴⁴

= Actual. If not available use $70\%^{645}$.

(0.24*0.92) + (0.76*0.8) * (1-0.15) = 0.70

 ⁶⁴² Heating EFLH based on ENERGY Star EFLH for Rockford, Chicago, and Springfield and on NCDC/NOAA HDD for
 the other two cities. In all cases, the hours were adjusted based on average natural gas heating consumption in IL.
 ⁶⁴³ Weighted based on number of occupied residential housing units in each zone.

⁶⁴⁴ The System Efficiency can be obtained either by recording the AFUE of the unit, or performing a steady state efficiency test. The Distribution Efficiency can be estimated via a visual inspection and by referring to a look up table such as that provided by the Building Performance Institute:

^{(&}lt;u>http://www.bpi.org/files/pdf/DistributionEfficiencyTable-BlueSheet.pdf</u>) or by performing duct blaster testing. If there are more than one heating systems, the weighted (by consumption) average efficiency should be used. If the heating system or distribution is being upgraded within a package of measures together with the insulation upgrade, the new average heating system efficiency should be used.

⁶⁴⁵ This has been estimated assuming that natural gas central furnace heating is typical for Illinois residences (66% of Illinois homes have a Natural Gas Furnace (based on Energy Information Administration, 2009 Residential Energy Consumption Survey:

http://www.eia.gov/consumption/residential/data/2009/xls/HC6.9%20Space%20Heating%20in%20Midwest%20R egion.xls))

In 2000, 24% of furnaces purchased in Illinois were condensing (based on data from GAMA, provided to Department of Energy during the federal standard setting process for residential heating equipment - see Furnace Penetration.xls). Furnaces tend to last up to 20 years and so units purchased 10 years ago provide a reasonable proxy for the current mix of furnaces in the State. Assuming typical efficiencies for condensing and non-condensing furnaces and duct losses, the average heating system efficiency is estimated as follows:

For example, duct sealing in a house in Springfield with an 80% AFUE, 105,000 Btu/H natural gas furnace and the following blower door test results:
Before: CFM50 _{Whole House} = 4800 CFM50
CFM50 _{Envelope Only} = 4500CFM50
House to duct pressure of 45 Pascals = 1.29 SCF (Energy Conservatory look up table)
After: CFM50 _{Whole House} = 4600 CFM50
CFM50 _{Envelope Only} = 4500CFM50
House to duct pressure of 43 Pascals = 1.39 SCF (Energy Conservatory look up table)
Duct Leakage:
CFM50 _{DL before} = (4800 – 4500) * 1.29
= 387 CFM
$CFM50_{DL after} = (4600 - 4500) * 1.39$
= 119 CFM
Duct Leakage reduction at CFM25:
$\Delta CFM25_{DL}$ = (387 - 139) * 0.64 * (0.5 + 0.25)
= 119 CFM25
Energy Savings:
ΔTherm = ((119/ (105,000 * 0.0123)) * 1,754 * 105,000) / 100,000 / 0.80
= 212 therms

Methodology 2: Evaluation of Distribution Efficiency

 Δ Therm = ((DE_{after} – DE_{before})/ DE_{after})) * FLHheat * Capacity) / 100,000 / η Heat

Where:

DE_{after} = Distribution Efficiency after duct sealing

DE_{before} = Distribution Efficiency before duct sealing

Other variables as defined above

For example, duct sealing in a house in Springfield an 80% AFUE, 105,000 Btu/H natural gas furnace and the following duct evaluation results:

DE_{after} = 0.92 DE_{before} = 0.85 Energy Savings:

 Δ Therm = ((0.92 - 0.85)/0.92) * 1,754 * 105,000) / 100,000 / 0.80

= 175 therm

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-HVC-DINS-V01-120601

5.3.5 Furnace Blower Motor

DESCRIPTION

A new furnace with a brushless permanent magnet (BPM) blower motor is installed instead of a new furnace with a lower efficiency motor. This measure characterizes only the electric savings associated with the fan and could be coupled with gas savings associated with a more efficient furnace. Savings decrease sharply with static pressure so duct improvements, and clean, low pressure drop filters can maximize savings. Savings improve when the blower is used for cooling as well and when it is used for continuous ventilation, but only if the non-BPM motor would have been used for continuous ventilation too. If the resident runs the BPM blower continuously because it is a more efficient motor and would not run a non-BPM motor that way, savings are near zero and possibly negative. This characterization uses a 2009 Focus on Energy study of BPM blower motor savings in Wisconsin, which accounted for the effects of this behavioral impact.

This measure was developed to be applicable to the following program types: TOS, NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

A furnace with a brushless permanent magnet (BPM) blower motor, also known by the trademark ECM, BLDC, and other names.

DEFINITION OF BASELINE EQUIPMENT

A furnace with a non-BPM blower motor.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 20 years⁶⁴⁶.

DEEMED MEASURE COST

The capital cost for this measure is assumed to be $$97^{647}$.

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape R08 - Residential Cooling

Loadshape R09 - Residential Electric Space Heat

Loadshape R10 - Residential Electric Heating and Cooling

http://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/fb_fr_tsd/chapter_8.pdf 647 Adapted from Tables 8.2.3 and 8.2.13 in

http://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/hvac_ch_08_lcc_2011-06-24.pdf

⁶⁴⁶ Consistent with assumed life of a new gas furnace. Table 8.3.3 The Technical support documents for federal residential appliance standards:

COINCIDENCE FACTOR

The summer peak coincidence factor for cooling is provided in two different ways below. The first is used to estimate peak savings during the utility peak hour and is most indicative of actual peak benefits, and the second represents the *average* savings over the defined summer peak period, and is presented so that savings can be bid into PJM's Forward Capacity Market. Both values provided are based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren.

- CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C (during utility peak hour) = 91.5%⁶⁴⁸
- CF_{PJM} = PJM Summer Peak Coincidence Factor for Central A/C (average during PJM peak period) = 46.6%⁶⁴⁹

	Algorithm		
Calculation of Savings	CALCULATION OF SAVINGS		
ELECTRIC ENERGY SAVINGS			
ΔkWh = Heating Savings + Cooling Savings + Shoulder Season Savings			
Where:			
Heating Savings	= Blower motor savings during heating season		
	= 418 kWh ⁶⁵⁰		
Cooling Savings	= Blower motor savings during cooling season		
	If Central AC = 263 kWh		
	If No Central AC = 175 kWh		
	If unknown (weighted average)		
	= 241 kWh ⁶⁵¹		

⁶⁴⁸ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The AC load during the utility's peak hour is divided by the maximum AC load during the year.

⁶⁴⁹ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

⁶⁵⁰ To estimate heating, cooling and shoulder season savings for Illinois, VEIC adapted results from a 2009 Focus on Energy study of BPM blower motor savings in Wisconsin. This study included effects of behavior change based on the efficiency of new motor greatly increasing the amount of people that run the fan continuously. The savings from the Wisconsin study were adjusted to account for different run hour assumptions (average values used) for Illinois. See: FOE to IL Blower Savings.xlsx.

⁶⁵¹ The weighted average value is based on assumption that 75% of homes installing BPM furnace blower motors have Central AC. 66% of IL housing units have CAC and 66% have gas furnaces. It is logical these two groups

Shoulder Season Savings = Blower motor savings during shoulder seasons

= 51 kWh

For example, a blower motor in a home where Central AC presence is unknown:

ΔkWh = Heating Savings + Cooling Savings + Shoulder Season Savings

= 418 +251 + 51

= 721 kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

ΔkW = Cooling Savings / FLH_cooling * CF

Where:

FLH_cooling

= Full load hours of air conditioning

= Dependent on location⁶⁵²:

Climate Zone (City based upon)	FLH_cooling
1 (Rockford)	512
2 (Chicago)	570
3 (Springfield)	730
4 (Belleville)	1,035
5 (Marion)	903
Weighted Average ⁶⁵³	629

CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C (during system peak hour)

= 91.5%⁶⁵⁴

CF_{PJM} = PJM Summer Peak Coincidence Factor for Central A/C (average during peak period)

overlap to a large extent (like the 95% in the FOE study above).

⁶⁵² Full load hours for Chicago, Moline and Rockford are provided in "Final Evaluation Report: Central Air Conditioning Efficiency Services (CACES), 2010, Navigant Consulting",

http://ilsag.org/yahoo site admin/assets/docs/ComEd PY2 CACES Evaluation Report 2010-10-

<u>18.299122020.pdf</u>, p.33. An average FLH/Cooling Degree Day (from NCDC) ratio was calculated for these locations and applied to the CDD of the other locations in order to estimate FLH. There is a county mapping table in the Appendix providing the appropriate city to use for each county of Illinois.

⁶⁵³ Weighted based on number of occupied residential housing units in each zone.

⁶⁵⁴ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The AC load during the utility's peak hour is divided by the maximum AC load during the year.

= 46.6%⁶⁵⁵

For example, a blower motor in a home of unknown location where Central AC prevalence is unknown: $\Delta kW_{SSP} = 251 / 629 * 0.915$ = 0.365 kW $\Delta kW_{SSP} = 251 / 629 * 0.466$ = 0.186 kW

NATURAL GAS SAVINGS

 Δ therms⁶⁵⁶ = - Heating Savings * 0.03412 therms/kWh

= - (418 * 0.03412)

= - 14.3 therms⁶⁵⁷

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-HVC-FBMT-V01-120601

⁶⁵⁵ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

⁶⁵⁶ The blower fan is in the heating duct so all, or very nearly all, of its waste heat is delivered to the conditioned space.

⁶⁵⁷ Negative value since this measure will increase the heating load due to reduced waste heat.

5.3.6 Gas High Efficiency Boiler

DESCRIPTION

High efficiency boilers achieve most gas savings through the utilization of a sealed combustion chamber and multiple heat exchangers that remove a significant portion of the waste heat from flue gasses. Because multiple heat exchangers are used to remove waste heat from the escaping flue gasses, some of the flue gasses condense and must be drained.

This measure characterizes:

- a) Time of Sale:
 - a. The installation of a new high efficiency, gas-fired hot water boiler in a residential location. This could relate to the replacement of an existing unit at the end of its useful life, or the installation of a new system in a new home.
- b) Early Replacement:
 - a. The early removal of an existing functional AFUE 75% or less boiler from service, prior to its natural end of life, and replacement with a new high efficiency unit. Savings are calculated between existing unit and efficient unit consumption during the remaining life of the existing unit, and between new baseline unit and efficient unit consumption for the remainder of the measure life.
 - b. The assumption of the existing unit efficiency in the Early Replacement section of this TRM is based upon the average efficiency of units that were classified in Ameren's PY3-PY4 as functioning and AFUE <=75%. Therefore it is only appropriate to use these Early Replacement assumptions where those conditions are met. The TAC defined "functioning" as the unit is fully operational providing sufficient space conditioning (i.e. heat exchanger, compressors, pumps work effectively) and/or the cost of repair is under 20% of the new baseline replacement cost. Therefore in order to apply early replacement assumptions the programs should apply the following eligibility criteria: AFUE <=75% and cost of any repairs <\$709.</p>

This measure was developed to be applicable to the following program types: TOS, NC, EREP. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the installed Boiler must be ENERGY STAR qualified (AFUE rated at or greater than 85% and input capacity less than 300,000 BTUh).

DEFINITION OF BASELINE EQUIPMENT

Time of sale: The baseline equipment for this measure is a new, gas-fired, standard-efficiency water boiler. The current Federal Standard minimum AFUE rating is 80%. For boilers manufactured after September 2012 the Federal Standards is raised to 82% AFUE. Baseline assumptions are therefore provided below:

Program Year	AFUE
June 2012 – May 2013 ⁶⁵⁸	80%
June 2013 on	82%

⁶⁵⁸ There will be some delay to the baseline shift while existing stocks of lower efficiency equipment is sold.

Early replacement: The baseline for this measure is the efficiency of the existing equipment for the assumed remaining useful life of the unit and the new baseline as defined above for the remainder of the measure life.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 25 years⁶⁵⁹.

Early replacement: Remaining life of existing equipment is assumed to be 8 years⁶⁶⁰.

DEEMED MEASURE COST

Time of sale: The incremental install cost for this measure is dependent on tier⁶⁶¹:

		Incremental Install Cost	Incremental Install Cost
Measure Type	Installation Cost	(June 2012 – May 2013)	(June 2013 on)
AFUE 80%	\$3334	n/a	
AFUE 82%	\$3543		
AFUE 85% (Energy Star Minimum)	\$4268	\$934	\$725
AFUE 90%	\$4815	\$1,481	\$1,272
AFUE 95%	\$5328	\$1,994	\$1,785

Early Replacement: The full installation cost is provided in the table above. The assumed deferred cost (after 8 years) of replacing existing equipment with a new baseline unit is assumed to be \$3543. This cost should be discounted to present value using the utilities discount rate.

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

N/A

COINCIDENCE FACTOR

N/A

⁶⁵⁹ Table 8.3.3 The Technical support documents for federal residential appliance standards:

http://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/fb_fr_tsd/chapter_8.pdf ⁶⁶⁰ Assumed to be one third of effective useful life

⁶⁶¹ Based on data provided in Appendix E of the Appliance Standards Technical Support Documents including equipment cost and installation labor

^{(&}lt;u>http://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/fb_fr_tsd/appendix_e.pdf</u>). Where efficiency ratings are not provided, the values are interpolated from those that are.

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

N/A

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

NATURAL GAS SAVINGS

Time of Sale:

ΔTherms = Gas_Boiler_Load * (1/AFUE(base) - 1/AFUE(eff))

Early replacement⁶⁶²:

ΔTherms for remaining life of existing unit (1st 8 years):

= Gas_Boiler_Load * (1/AFUE(exist) - 1/AFUE(eff)))

ΔTherms for remaining measure life (next 17 years):

= Gas_Boiler_Load * (1/AFUE(base) - 1/AFUE(eff)))

Where:

Gas_Boiler_Load⁶⁶³

= Estimate of annual household Load for gas boiler heated single-family homes. If location is unknown, assume the average below 664 .

= or Actual if informed by site-specific load calculations, ACCA Manual J or

⁶⁶² The two equations are provided to show how savings are determined during the initial phase of the measure (existing to efficient) and the remaining phase (new baseline to efficient). In practice, the screening tools used may either require a First Year savings (using the first equation) and then a "number of years to adjustment" and "savings adjustment" input which would be the (new base to efficient savings)/(existing to efficient savings).

⁶⁶³ Boiler consumption values are informed by an evaluation which did not identify any fraction of heating load due to domestic hot water (DHW) provided by the boiler. Thus these values are an average of both homes with boilers only providing heat, and homes with boilers that also provide DHW. Heating load is used to describe the household heating need, which is equal to (gas heating consumption * AFUE)

⁶⁶⁴ Values are based on household heating consumption values and inferred average AFUE results from Table 3-4, Program Sample Analysis, *Nicor R29 Res Rebate Evaluation Report 092611_REV FINAL to Nicor*). Adjusting to a statewide average using relative HDD values to adjust for the evaluation results focus on northern region. Values for individual cities are then calculated by comparing average HDD to the individual city's HDD.

equivalent⁶⁶⁵.

Climate Zone (City based upon)	Gas_Boiler Load (therms)
1 (Rockford)	1275
2 (Chicago)	1218
3 (Springfield)	1043
4 (Belleville)	805
5 (Marion)	819
Average	1158

AFUE(exist) = Existing Boiler Annual Fuel Utilization Efficiency Rating

= Use actual AFUE rating where it is possible to measure or reasonably estimate.

If unknown, assume 61.6 AFUE%

AFUE(base) = Baseline Boiler Annual Fuel Utilization Efficiency Rating

= Dependent on year as listed below:

Program Year	AFUE(base)
June 2012 – May 2013	80%
June 2013 on	82%

AFUE(eff)

= Efficent Boiler Annual Fuel Utilization Efficiency Rating

= Actual. If unknown, use defaults dependent⁶⁶⁷ on tier as listed below:

Measure Type	AFUE(eff)
ENERGY STAR [®]	87.5%
AFUE 90%	92.5%
AFUE 95%	95%

⁶⁶⁵ The Air Conditioning Contractors of America Manual J, Residential Load Calculation 8th Edition produces equipment sizing loads for Single Family, Multi-single, and Condominiums using input characteristics of the home. A best practice for equipment selection and installation of Heating and Air Conditioning, load calculations should be completed by contractors during the selection process and may be readily available for program data purposes. ⁶⁶⁶ Average nameplate efficiencies of all Early Replacement qualifying equipment in Ameren PY3-PY4.

⁶⁶⁷ Default values per tier selected based upon the average AFUE value for the tier range except for the top tier where the minimum is used due to proximity to the maximum possible.

Time of Sale: For example, a default sized ENERGY STAR boiler purchased and installed near Springfield in the year 2012 $\Delta Therms = (1043) * (1/0.8) - 1/0.875)$ = 112 ThermsEarly Replacement: For example, an existing function boiler with unknown efficiency is replaced with an ENERGY STAR boiler purchased and installed in Springfield in 2013. $\Delta Therms for remaining life of existing unit (1st 8 years):$ = 1043 * (1/0.616 - 1/0.875) = 501 Therms $\Delta Therms for remaining measure life (next 17 years):$ = (1043) * (1/0.82 - 1/0.875) = 80.0 Therms

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-HVC-GHEB-V02-130601

5.3.7 Gas High Efficiency Furnace

DESCRIPTION

High efficiency furnace features may include improved heat exchangers and modulating multi-stage burners.

This measure characterizes:

- b) Time of sale:
 - a. The installation of a new high efficiency, gas-fired condensing furnace in a residential location. This could relate to the replacement of an existing unit at the end of its useful life, or the installation of a new system in a new home.
- c) Early Replacement:
 - a. The early removal of an existing functioning AFUE 75% or less furnace from service, prior to its natural end of life, and replacement with a new high efficiency unit. Savings are calculated between existing unit and efficient unit consumption during the remaining life of the existing unit, and between new baseline unit and efficient unit consumption for the remainder of the measure life. At time of writing, the DOE had rescinded the next Federal Standard change for furnaces, however it is likely that a new standard will be in effect after the assumed remaining useful life of the existing unit. For the purposes of this measure- the new baseline is assumed to be 90%.
 - b. The assumption of the existing unit efficiency in the Early Replacement section of this TRM is based upon the average efficiency of units that were classified in Ameren's PY3-PY4 as functioning and AFUE <=75%. Therefore it is only appropriate to use these Early Replacement assumptions where those conditions are met. The TAC defined "functioning" as the unit is fully operational providing sufficient space conditioning (i.e. heat exchanger, compressors, pumps work effectively) and/or the cost of repair is under 20% of the new baseline replacement cost. Therefore in order to apply early replacement assumptions the programs should apply the following eligibility criteria: AFUE <=75% and cost of any repairs <\$528.</p>

This measure was developed to be applicable to the following program types: TOS, NC, EREP. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the installed equipment must be a residential sized (input energy less than 225,000 BTUh) natural gas fired furnace with an Annual Fuel Utilization Efficiency (AFUE) rating exceeding the program requirements.

DEFINITION OF BASELINE EQUIPMENT

Time of Sale: Although the current Federal Standard for gas furnaces is an AFUE rating of 78%, based upon review of available product in the AHRI database, the baseline efficiency for this characterization is assumed to be 80%. The baseline will be adjusted when the Federal Standard is updated.

Early replacement: The baseline for this measure is the efficiency of the existing equipment for the assumed remaining useful life of the unit and a new baseline unit for the remainder of the measure life. As discussed above we estimate that the new baseline unit that could be purchased in the year the existing unit would have needed replacing is 90%.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 20 years⁶⁶⁸.

For early replacement: Remaining life of existing equipment is assumed to be 6 years⁶⁶⁹.

DEEMED MEASURE COST

Time of sale: The incremental capital cost for this measure depends on efficiency as listed below⁶⁷⁰:

AFUE	Installation Cost	Incremental Install Cost
80%	\$2011	n/a
90%	\$2641	\$630
91%	\$2727	\$716
92%	\$2813	\$802
93%	\$3025	\$1014
94%	\$3237	\$1226
95%	\$3449	\$1438
96%	\$3661	\$1650

Early Replacement: The full installation cost is provided in the table above. The assumed deferred cost (after 6 years) of replacing existing equipment with a new baseline unit is assumed to be \$2641. This cost should be discounted to present value using the utilities discount rate.

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

N/A

COINCIDENCE FACTOR

N/A

⁶⁶⁸ Table 8.3.3 The Technical support documents for federal residential appliance standards:

http://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/fb_fr_tsd/chapter_8.pdf Assumed to be one third of effective useful life

⁶⁷⁰ Based on data from Appendix E of the Appliance Standards Technical Support Documents including equipment cost and installation labor

⁽http://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/fb_fr_tsd/appendix_e.pdf). Where efficiency ratings are not provided, the values are interpolated from those that are.

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Electrical energy savings from the more fan-efficient (typically using brushless permanent magnet (BPM) blower motor) should also be claimed, please refer to "Furnace Blower Motor" characterization for details.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

If the blower motor is also used for cooling, coincident peak demand savings should also be claimed, please refer to "Furnace Blower Motor" characterization for savings details.

NATURAL GAS SAVINGS

Time of Sale:

```
∆Therms = Gas_Furnace_Heating_Load * (1/AFUE(base) - 1/AFUE(eff))
```

Early replacement⁶⁷¹:

ΔTherms for remaining life of existing unit (1st 6 years):

```
= Gas_Furnace_Heating_Load * (1/AFUE(exist) - 1/AFUE(eff)))
```

ΔTherms for remaining measure life (next 14 years):

= Gas_Furnace_Heating_Load * (1/AFUE(base) - 1/AFUE(eff)))

Where:

Gas_Furnace_Heating_Load

= Estimate of annual household heating load 672 for gas furnace heated single-family homes. If location is unknown, assume the average below 673 .

= Actual if informed by site-specific load calculations, ACCA Manual J or equivalent 674 .

⁶⁷¹ The two equations are provided to show how savings are determined during the initial phase of the measure (existing to efficient) and the remaining phase (new baseline to efficient). In practice, the screening tools used may either require a First Year savings (using the first equation) and then a "number of years to adjustment" and "savings adjustment" input which would be the (new base to efficient savings)/(existing to efficient savings).
⁶⁷² Heating load is used to describe the household heating need, which is equal to (gas consumption * AFUE)

⁶⁷³ Values are based on household heating consumption values and inferred average AFUE results from Table 3-4, Program Sample Analysis, *Nicor R29 Res Rebate Evaluation Report 092611_REV FINAL to Nicor*) Adjusting to a statewide average using relative HDD values to adjust for the evaluation results focus on northern region. Values for individual cities are then calculated by comparing average HDD to the individual city's HDD.

⁶⁷⁴ The Air Conditioning Contractors of America Manual J, Residential Load Calculation 8th Edition produces equipment sizing loads for Single Family, Multi-single, and Condominiums using input characteristics of the home. A best practice for equipment selection and installation of Heating and Air Conditioning, load calculations are

Climate Zone (City based upon)	Gas_Furnace_Heating_Load (therms)
1 (Rockford)	843
2 (Chicago)	806
3 (Springfield)	690
4 (Belleville)	532
5 (Marion)	542
Average	766

AFUE(exist)	= Existing Furnace Annual Fuel Utilization Efficiency Rating	
-------------	--	--

= Use actual AFUE rating where it is possible to measure or reasonably estimate.

If unknown, assume 64.4 AFUE% .

AFUE(base) = Baseline Furnace Annual Fuel Utilization Efficiency Rating

= Dependent on program type as listed below 676 :

Program Year	AFUE(base)
Time of Sale	80%
Early Replacement	90%

AFUE(eff) = Efficent Furnace Annual Fuel Utilization Efficiency Rating

= Actual. If unknown, assume 95%⁶⁷⁷

commonly completed by contractors during the selection process and may be readily available for program data purposes.

purposes. ⁶⁷⁵ Average nameplate efficiencies of all Early Replacement qualifying equipment in Ameren PY3-PY4.

⁶⁷⁶ Though the Federal Minimum AFUE is 78%, there were only 50 models listed in the AHRI database at that level. At AFUE 79% the total rises to 308. There are 3,548 active furnace models listed with AFUE ratings between 78 and 80.

⁶⁷⁷ Minimum ENERGY STAR efficiency after 2.1.2012.

Time of Sale: For example, a 95% AFUE furnace near Rockford and purchased in the year 2012 $\Delta Therms = 843 * (1/0.8 - 1/0.95)$ = 166 thermsEarly Replacement: For example, an existing function furnace with unknown efficiency is replaced with an 95% furnace purchased and installed in Rockford in 2013. $\Delta Therms \text{ for remaining life of existing unit (1st 6 years):}$ = 843 * (1/0.644 - 1/0.95) = 422 therms $\Delta Therms for remaining measure life (next 14 years):$ = 843 * (1/0.9 - 1/0.95) = 49.3 therms

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-HVC-GHEF-V02-130601

5.3.8 Ground Source Heat Pump

DESCRIPTION

This measure characterizes:

- a) Time of sale:
 - a. The installation of a new residential sized Ground Source Heat Pump system meeting ENERGY STAR efficiency standards presented below. This could relate to the replacement of an existing unit at the end of its useful life, or the installation of a new system in a new home.
- b) Early Replacement:
 - a. The early removal of functioning electric heating and cooling (SEER 10 or under if present) systems from service, prior to the natural end of life, and replacement with a new high efficiency Ground Source Heat Pump system. Savings are calculated between existing unit and efficient unit consumption during the remaining life of the existing unit, and between new baseline unit and efficient unit consumption for the remainder of the measure life.
 - b. The assumption of the existing unit efficiency in the Early Replacement section of this TRM is based upon the average efficiency of units that were classified in Ameren's PY3-PY4 as functioning and <=SEER 10. Therefore it is only appropriate to use these Early Replacement assumptions where those conditions are met. The TAC defined "functioning" as the unit is fully operational providing sufficient space conditioning (i.e. heat exchanger, compressors, pumps work effectively) and/or the cost of repair is under 20% of the new baseline replacement cost. Therefore in order to apply early replacement assumptions the programs should apply the following eligibility criteria: SEER <=10 and cost of any repairs <\$249 per ton.</p>

The ENERGY STAR efficiency standards are presented below.

Product Type	EER	СОР
Water-to-air		
Closed Loop	17.1	3.6
Open Loop	21.1	4.1
Water-to-Water		
Closed Loop	16.1	3.1
Open Loop	20.1	3.5
DGX	16	3.6

ENERGY STAR Requirements (Effective January 1, 2012)

This measure was developed to be applicable to the following program types: TOS, NC, EREP. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the efficient equipment must be a Ground Source Heat Pump unit meeting the minimum ENERGY STAR efficiency level standards effective at the time of installation as detailed above.

DEFINITION OF BASELINE EQUIPMENT

Time of Sale: The baseline equipment is assumed to be an Air Source Heat Pump meeting the Federal Standard efficiency level; 13 SEER, 7.7 HSPF and 11 EER.

Early replacement: The baseline for this measure is the efficiency of the existing equipment for the assumed remaining useful life of the unit and the new baseline as defined above for the remainder of the measure life.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 18 years⁶⁷⁸.

Remaining life of existing equipment is assumed to be 6 years⁶⁷⁹.

DEEMED MEASURE COST

The actual installed cost of the Ground Source Heat Pump should be used, minus the assumed installation cost of a 3 ton standard baseline Air Source Heat Pump of \$3,609⁶⁸⁰.

Early Replacement: The full installation cost of the Ground Source Heat Pump should be used. The assumed deferred cost (after 6 years) of replacing existing equipment with a new baseline unit is assumed to be \$3609 (corresponding to a new baseline Air Source Heat Pump). This cost should be discounted to present value using the utilities discount rate.

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape R10 - Residential Electric Heating and Cooling

COINCIDENCE FACTOR

The summer peak coincidence factor for cooling is provided in two different ways below. The first is used to

http://neep.org/uploads/EMV%20Forum/EMV%20Studies/measure_life_GDS%5B1%5D.pdf

⁶⁷⁸ Lifetime for an air source heat pump. The ground loop has a much longer life, but the compressor and other mechanical components are the same as an ASHP. The more moderate operating conditions for a GSHP may extend the life of these components beyond the life of an ASHP. Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

⁶⁷⁹ Assumed to be one third of effective useful life

⁶⁸⁰ Based on DEER 2008 Database Technology and Measure Cost Data (<u>www.deeresources.com</u>). Material cost of 13 SEER AC is \$796 per ton, and labor cost of \$407 per ton. For a 3 ton unit this would be (796+407) *3 = \$3609.

estimate peak savings during the utility peak hour and is most indicative of actual peak benefits, and the second represents the *average* savings over the defined summer peak period, and is presented so that savings can be bid into PJM's Forward Capacity Market. Both values provided are based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren.

- CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C (during utility peak hour) = 91.5%⁶⁸¹
- CF_{PJM} = PJM Summer Peak Coincidence Factor for Central A/C (average during PJM peak period) = 46.6%⁶⁸²

	Algorithm	
CALCULATION OF SAVINGS		
ELECTRIC ENERGY SAVINGS		
ELECTRIC ENERGY SAVINGS		
Time of sale:		
Δk	Wh = (FLHcool * Capacity_cooling * (1/SEERbase – (1/(EERee * 1.02))/1000 + (FLHheat * Capacity_heating * (1/HSPFbase – (1/COPee * 3.412))/1000	
Early replacement ⁶⁸	3.	
ΔkWH for r	emaining life of existing unit (1st 6 years):	
	= (FLHcool * Capacity_cooling * (1/SEERexist – (1/(EERee * 1.02))/1000 + (FLHheat ' Capacity_heating * (1/HSPFexist – (1/COPee * 3.412))/1000	
Δk	WH for remaining measure life (next 12 years):	
=	(FLHcool * Capacity_cooling * (1/SEERbase – (1/(EERee * 1.02))/1000 + (FLHheat * Capacity_heating * (1/HSPFbase – (1/COPee * 3.412))/1000	
Where:		
FLHcool	= Full load cooling hours	
	Dependent on location as below ⁶⁸⁴ :	

⁶⁸¹ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The AC load during the utility's peak hour is divided by the maximum AC load during the year.

⁶⁸² Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

⁶⁸³ The two equations are provided to show how savings are determined during the initial phase of the measure (existing to efficient) and the remaining phase (new baseline to efficient). In practice, the screening tools used may either require a First Year savings (using the first equation) and then a "number of years to adjustment" and "savings adjustment" input which would be the (new base to efficient savings)/(existing to efficient savings).

⁶⁸⁴ Based on Full Load Hours from ENERGY Star with adjustments made in a Navigant Evaluation, other cities were

Climate Zone (City based upon)	FLHcool Single Family	FLHcool Multifamily
1 (Rockford)	512	467
2 (Chicago)	570	506
3 (Springfield)	730	663
4 (Belleville)	1,035	940
5 (Marion)	903	820
Weighted Average ⁶⁸⁵	629	564

Capacity_cooling = Cooling Capacity of Ground Source Heat Pump (Btu/h)

= Actual (1 ton = 12,000Btu/h)

SEERexist = SEER Efficiency of existing cooling unit

= Use actual SEER rating where it is possible to measure or reasonably estimate.

Existing Cooling System	SEER_exist ⁶⁸⁶
Air Source Heat Pump	9.12
Central AC	8.60
No central cooling ⁶⁸⁷	Make ' 1 /SEER_exist' = 0

= SEER Efficiency of baseline ASHP unit SEERbase

= 13⁶⁸⁸

- = EER Efficiency of efficient GSHP unit EERee
 - = Actual installed
- 1.02 = Constant used to estimate the equivalent air conditioning SEER based on the GSHP unit's EER⁶⁸⁹.
- FLHheat = Full load heating hours

p. 7170-7200. ⁶⁸⁹ Note that EERs of GSHPs are measured differently than EERs of air source heat pumps (focusing on entering water temperatures rather than ambient air temperatures). The equivalent SEER of a GSHP can be estimated by multiplying EER by 1.02, based on VEIC extrapolation of manufacture data.

scaled using those results and CDD. There is a county mapping table in the Appendix providing the appropriate city to use for each county of Illinois.

⁶⁸⁵ Weighted based on number of occupied residential housing units in each zone.

⁶⁸⁶ Average nameplate efficiencies of all Early Replacement qualifying equipment in Ameren PY3-PY4.

⁶⁸⁷ If there is no central cooling in place but the incentive encourages installation of a new ASHP with cooling, the added cooling load should be subtracted from any heating benefit.

⁶⁸⁸ Minimum Federal Standard; Federal Register, Vol. 66, No. 14, Monday, January 22, 2001/Rules and Regulations,

Dependent on location as below⁶⁹⁰:

Climate Zone (City based upon)	FLH_heat
1 (Rockford)	1,969
2 (Chicago)	1,840
3 (Springfield)	1,754
4 (Belleville)	1,266
5 (Marion)	1,288
Weighted Average ⁶⁹¹	1,821

Capacity_heating = Heating Capacity of Ground Source Heat Pump (Btu/h)

= Actual (1 ton = 12,000Btu/h)

HSPF_exist =Heating System Performance Factor of existing heating system (kBtu/kWh)

= Use actual HSPF rating where it is possible to measure or reasonably estimate.

Existing Cooling System	HSPF_exist	
Air Source Heat Pump	5.44	
Electric Resistance	3.41 ⁶⁹³	

HSPFbase	=Heating Season Performance Factor for baseline unit
----------	--

=7.7 694

- COPee = Coefficient of Performance of efficient unit
 - = Actual Installed
- 3.412 = Constant to convert the COP of the unit to the Heating Season Performance Factor (HSPF).

 ⁶⁹⁰ Heating EFLH based on ENERGY Star EFLH for Rockford, Chicago, and Springfield and on NCDC/NOAA HDD for the other two cities. In all cases, the hours were adjusted based on average natural gas heating consumption in IL.
 There is a county mapping table in the Appendix providing the appropriate city to use for each county of Illinois.
 ⁶⁹¹ Weighted based on number of occupied residential housing units in each zone.

 $^{^{692}}$ This is estimated based on finding the average HSPF/SEER ratio from the AHRI directory data (using the least efficient models – SEER 12 and SEER 13) – 0.596, and applying to the average nameplate SEER rating of all Early Replacement qualifying equipment in Ameren PY3-PY4. This estimation methodology appears to provide a result within 10% of actual HSPF.

 $^{^{693}}$ Electric resistance has a COP of 1.0 which equals 1/0.293 = 3.41 HSPF.

⁶⁹⁴ Minimum Federal Standard; Federal Register, Vol. 66, No. 14, Monday, January 22, 2001/Rules and Regulations, p. 7170-7200.

```
Time of Sale:
For example, a 3 ton unit with EER rating of 16 and COP of 3.5 in single family house in Springfield:
        \Delta kWh = (FLHcool * Btu/H * (1/SEERbase - (1/(EERee * 1.02))/1000+ (FLHheat * Btu/H * (
                 1/HSPFbase - (1/COPee * 3.412))/1000
        \Delta kWh = (730 * 36,000 * (1/13 - 1/ (16*1.02))) / 1000 + (1967 * 36,000 * (1/7.7 - 1/
                 (3.5*3.412)) / 1000
                 = 3680 kWh
Early Replacement:
For example, a 3 ton unit with EER rating of 16 and COP of 3.5 in single family house in Springfield replaces
an existing working Air Source Heat Pump with unknown efficiency ratings:
        \DeltakWH for remaining life of existing unit (1st 6 years):
                 = (730* 36,000 * (1/9.12 - 1/(16*1.02))) / 1000) + ((1,967 * 36,000 * (1/5.44 - 1/(3.5 *
                 3.412))) / 1000)
                 = 8359 kWh
        \DeltakWH for remaining measure life (next 12 years):
                 = (730 * 36,000 * (1/13 - 1/ (16*1.02))) / 1000 + (1967 * 36,000 * (1/7.7 - 1/
                 (3.5*3.412)) / 1000
                 = 1,203 kWh
```

SUMMER COINCIDENT PEAK DEMAND SAVINGS

Time of sale:

 $\Delta kW = (Capacity_cooling * (1/EERbase - 1/EERee_{AC equivalent}))/1000) * CF$

Early replacement⁶⁹⁵:

 ΔkW for remaining life of existing unit (1st 6 years):

= (Capacity_cooling * (1/EERexist - 1/EERee_{AC equivalent}))/1000) * CF

 ΔkW for remaining measure life (next 12 years):

⁶⁹⁵ The two equations are provided to show how savings are determined during the initial phase of the measure (existing to efficient) and the remaining phase (new baseline to efficient). In practice, the screening tools used may either require a First Year savings (using the first equation) and then a "number of years to adjustment" and "savings adjustment" input which would be the (new base to efficient savings)/(existing to efficient savings).

= (Capacity_cooling * (1/EERexist - 1/EERee_{AC equivalent}))/1000) * CF

Where:

EERexist = Energy Efficiency Ratio of existing cooling unit (kBtu/h / kW)

= Use actual EER rating where it is possible to measure or reasonably estimate. If EER unknown but SEER available convert using the equation:

 $EER_base = (-0.02 * SEER_base^2) + (1.12 * SEER)^{696}$

If SEER rating unavailable use:

Existing Cooling System	EER_exist ⁶⁹⁷
Air Source Heat Pump	8.55
Central AC	8.15
No central cooling ⁶⁹⁸	Make '1/EER_exist' = 0

EERbase = EER Efficiency of baseline ASHP unit

= 11 ⁶⁹⁹

EERee_{AC equivalent} = Equivalent Air Conditioning EER Efficiency of ENERGY STAR GSHP unit⁷⁰⁰

To calculate this, the actual EER of the GSHP is converted to an air conditioning SEER equivalent by multiplying by 1.02 701

This is then converted to the air conditioning EER equivalent resulting in the following algorithm:

 $EERee_{AC equivalent} = (-0.02 * (EERee * 1.02)^{2} + (1.12 * (EERee * 1.02))^{702}$

CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C (during system peak hour)

= 91.5%⁷⁰³

⁶⁹⁶ From Wassmer, M. (2003). A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at Boulder.

⁶⁹⁷ Average nameplate efficiencies of all Early Replacement qualifying equipment in Ameren PY3-PY4.

⁶⁹⁸ If there is no central cooling in place but the incentive encourages installation of a new ASHP with cooling, the added cooling load should be subtracted from any heating benefit.

⁶⁹⁹ Minimum Federal Standard; as above.

⁷⁰⁰ EERs of GSHPs are measured differently than EERs of air source heat pumps (focusing on entering water temperatures rather than ambient air temperatures).

⁷⁰¹ Based on VEIC extrapolation of manufacturer data.

⁷⁰² Air conditioning SEER to EER algorithm based on Wassmer, M. (2003). A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at Boulder. Note this is appropriate for single speed units only.

⁷⁰³ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The AC

CF_{PJM} = PJM Summer Peak Coincidence Factor for Central A/C (average during peak period)

= 46.6%⁷⁰⁴

load during the utility's peak hour is divided by the maximum AC load during the year.

⁷⁰⁴ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

Time of Sale: For example, a 3 ton unit with EER rating of 16: $\Delta k W_{SSP} = ((36,000 * (1/11 - 1/(-0.02 * (16 * 1.02)^{2} + (1.12 * (16 * 1.02))))/1000) * 0.915$ = 0.451 kW $\Delta k W_{PJM} = ((36,000 * (1/11 - 1/(-0.02 * (16 * 1.02)^{2} + (1.12 * (16 * 1.02))))/1000) * 0.466$ = 0.230 kW Early Replacement: For example, a 3 ton 16 EER replaces an existing working Air Source Heat Pump with unknown efficiency ratings in Marion: ΔkW_{SSP} for remaining life of existing unit (1st 6 years): $= ((36,000 * (1/8.55 - 1/(-0.02 * (16 * 1.02)^{2} + (1.12 * (16 * 1.02))))/(1000) * 0.915)$ = 1.98 kW ΔkW_{SSP} for remaining measure life (next 12 years): $=((36,000 * (1/11 - 1/(-0.02 * (16 * 1.02)^{2} + (1.12 * (16 * 1.02))))/1000) * 0.915$ = 0.451 kW ΔkW_{PJM} for remaining life of existing unit (1st 6 years): $= ((36,000 * (1/8.55 - 1/(-0.02 * (16 * 1.02)^{2} + (1.12 * (16 * 1.02))))/1000) * 0.466$ = 1.01 kW ΔkW_{PJM} for remaining measure life (next 12 years): $= ((36,000 * (1/11 - 1/(-0.02 * (16 * 1.02)^{2} + (1.12 * (16 * 1.02))))/1000) * 0.466$ = 0.230 kW

NATURAL GAS SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-HVC-GSHP-V02-130601

5.3.9 High Efficiency Bathroom Exhaust Fan

DESCRIPTION

This market opportunity is defined by the need for continuous mechanical ventilation due to reduced airinfiltration from a tighter building shell. In retrofit projects, existing fans may be too loud, or insufficient in other ways, to be operated as required for proper ventilation. This measure assumes a fan capacity of 50 CFM rated at a sound level of less than 2.0 sones at 0.1 inches of water column static pressure. This measure may be applied to larger capacity, up to 130 CFM, efficient fans with bi-level controls because the savings and incremental costs are very similar. All eligible installations shall be sized to provide the mechanical ventilation rate indicated by ASHRAE 62.2.

This measure was developed to be applicable to the following program types: TOS, NC, RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

New efficient (average CFM/watt of 8.3^{705}) exhaust-only ventilation fan, quiet (< 2.0 sones) Continuous operation in accordance with recommended ventilation rate indicated by ASHRAE 62.2^{706}

DEFINITION OF BASELINE EQUIPMENT

New standard efficiency (average CFM/Watt of 3.1⁷⁰⁷) exhaust-only ventilation fan, quiet (< 2.0 sones) operating in accordance with recommended ventilation rate indicated by ASHRAE 62.2⁷⁰⁸

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 19 years⁷⁰⁹.

DEEMED MEASURE COST

Incremental cost per installed fan is \$43.50 for quiet, efficient fans⁷¹⁰.

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape R11 - Residential Ventilation

⁷⁰⁵ VEIC analysis looking at average efficient fan (i.e. Brushless Permanent Magnet) efficacies at static pressures of 0.1 and 0.25 inches of water column for quiet fans rated for 50 CFM.

⁷⁰⁶ Bi-level controls may be used by efficient fans larger than 50 CFM

⁷⁰⁷ VEIC analysis looking at average baseline fan (i.e. non-Brushless Permanent Magnet) efficacies at static pressures of 0.1 and 0.25 inches of water column for quiet fans rated for 50 CFM.

⁷⁰⁸ On/off cycling controls may be required of baseline fans larger than 50CFM.

⁷⁰⁹ Conservative estimate based upon GDS Associates Measure Life Report "Residential and C&I Lighting and HVAC measures" 25 years for whole-house fans, and 19 for thermostatically-controlled attic fans.

⁷¹⁰ VEIC analysis using cost data collected from wholesale vendor; <u>http://www.westsidewholesale.com/</u>.

COINCIDENCE FACTOR

The summer Peak Coincidence Factor is assumed to be 100% because the fan runs continuously.

Algorithm				
CALCULATION OF SAVINGS				
ELECTRIC ENERGY SAVINGS				
$\Delta kWh = (CFM * (1/\eta_{BASELINE} - 1/\eta_{EFFICIENT})/1000) * Hours$				
Where:				
CFM	= Nominal Capacity of the exhaust fan			
	= 50 CFM ⁷¹¹			
η _{BASELINE}	= Average efficacy for baseline fan			
	= 3.1 CFM/Watt ⁷¹²			
η _{εffcient}	= Average efficacy for efficient fan			
	= 8.3 CFM/Watt ⁷¹³			
Hours	= assumed annual run hours,			
	= 8766 for continuous ventilation.			
ΔkWh	= (50 * (1/3.1 – 1/8.3)/1000) * 8766			
	= 88.6 kWh			
Summer Coincident Peak Demand Savings				
$\Delta kW = (CFM * (1/\eta_{BASELINE} - 1/\eta_{EFFICIENT})/1000) * CF$				
Where:				

⁷¹¹ 50CFM is the closest available fan size to ASHRAE 62.2 Section 4.1 Whole House Ventilation rates based upon typical square footage and bedrooms.

⁷¹² VEIC analysis looking at average baseline fan (i.e. non-Brushless Permanent Magnet) efficacies at static pressures of 0.1 and 0.25 inches of water column for quiet fans rated for 50 CFM. ⁷¹³ VEIC analysis looking at average efficient fan (i.e. Brushless Permanent Magnet) efficacies at static pressures of

^{0.1} and 0.25 inches of water column for quiet fans rated for 50 CFM.

 CF

= Summer Peak Coincidence Factor

= 1.0 (continuous operation)

Other variables as defined above

 $\Delta kW = (50 * (1/3.1 - 1/8.3)/1000) * 1.0$

= 0.0101 kW

NATURAL GAS SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-HVC-BAFA-V01-120601

5.3.10 HVAC Tune Up (Central Air Conditioning or Air Source Heat Pump)

DESCRIPTION

This measure involves the measurement of refrigerant charge levels and airflow over the central air conditioning or heat pump unit coil, correction of any problems found and post-treatment re-measurement. Measurements must be performed with standard industry tools and the results tracked by the efficiency program.

Savings from this measure are developed using a reputable Wisconsin study. It is recommended that future evaluation be conducted in Illinois to generate a more locally appropriate characterization.

This measure was developed to be applicable to the following program types: RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

N/A

DEFINITION OF BASELINE EQUIPMENT

This measure assumes that the existing unit being maintained is either a residential central air conditioning unit or an air source heat pump that has not been serviced for at least 3 years.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

THE MEASURE LIFE IS ASSUMED TO BE **2** YEARS⁷¹⁴.

DEEMED MEASURE COST

If the implementation mechanism involves delivering and paying for the tune up service, the actual cost should be used. If however the customer is provided a rebate and the program relies on private contractors performing the work, the measure cost should be assumed to be \$175⁷¹⁵.

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape R08 - Residential Cooling

COINCIDENCE FACTOR

The summer peak coincidence factor for cooling is provided in two different ways below. The first is used to estimate peak savings during the utility peak hour and is most indicative of actual peak benefits, and the second represents the *average* savings over the defined summer peak period, and is presented so that savings can be bid into PJM's Forward Capacity Market. Both values provided are based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren.

⁷¹⁴ Based on VEIC professional judgment.

⁷¹⁵ Based on personal communication with HVAC efficiency program consultant Buck Taylor or Roltay Inc., 6/21/10, who estimated the cost of tune up at \$125 to \$225, depending on the market and the implementation details.

CF _{SSP}	CF _{SSP} = Summer System Peak Coincidence Factor for Central A/C (during utility peak hour)				
	= 91.5% ⁷¹⁶				
CF_{PJM}	CF _{PJM} = PJM Summer Peak Coincidence Factor for Central A/C (average during PJM peak period)				
	= 46.6% ⁷¹⁷				
	Algorithm				
Calculation of Savings					
ELECTRIC ENERGY SA	ELECTRIC ENERGY SAVINGS				
∆kWh _c	$\Delta kWh_{Central AC}$ = (FLHcool * Capacity_cooling* (1/SEER _{CAC}))/1000 * MFe				
∆kWh _¢	<pre>ir Source Heat Pump = ((FLHcool * Capacity_cooling * (1/SEER_{ASHP}))/1000 * MFe) + (FLHheat * Capacity_heating * (1/HSPF_{ASHP}))/1000 * MFe)</pre>				

Where:

FLHcool = Full load cooling hours

Dependent on location as below:⁷¹⁸

Climate Zone (City based upon)	FLHcool Single Family	FLHcool Multifamily
1 (Rockford)	512	467
2 (Chicago)	570	506
3 (Springfield)	730	663
4 (Belleville)	1,035	940
5 (Marion)	903	820
Weighted Average ⁷¹⁹	629	564

Capacity_cooling = Cooling cpacity of equipment in Btu/h (note 1 ton = 12,000 Btu/h)

= Actual

SEER_{CAC} = SEER Efficiency of existing central air conditioning unit receiving maintenence

⁷¹⁸ Based on Full Load Hours from ENERGY Star with adjustments made in a Navigant Evaluation, other cities were scaled using those results and CDD. There is a county mapping table in the Appendix providing the appropriate city to use for each county of Illinois.

⁷¹⁹ Weighted based on number of occupied residential housing units in each zone.

⁷¹⁶ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The AC load during the utility's peak hour is divided by the maximum AC load during the year.

⁷¹⁷ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

	= Actual. If unknown assume 10 SEER ⁷²⁰
MFe	= Maintenance energy savings factor
	= 0.05 ⁷²¹
SEER _{ASHP}	= SEER Efficiency of existing air source heat pump unit receiving maintenence
	= Actual. If unknown assume 10 SEER 722
FLHheat	= Full load heating hours

Dependent on location:⁷²³

Climate Zone (City based upon)	FLHheat
1 (Rockford)	2208
2 (Chicago)	2064
3 (Springfield)	1967
4 (Belleville)	1420
5 (Marion)	1445
Weighted Average ⁷²⁴	1821

Capacity_heating = Heating cpacity of equipment in Btu/h (note 1 ton = 12,000 Btu/h)

= Actual

HSPFbase = Heating Season Performance Factor of existing air source heat pump unit receiving maintenence

= Actual. If unknown assume 6.8 HSPF ⁷²⁵

⁷²⁰ Use actual SEER rating where it is possible to measure or reasonably estimate. Unknown default of 10 SEER is a VEIC estimate of existing unit efficiency, based on minimum federal standard between the years of 1992 and 2006.
⁷²¹ Energy Center of Wisconsin, May 2008; "Central Air Conditioning in Wisconsin, A Compilation of Recent Field

Research."

⁷²² Use actual SEER rating where it is possible to measure or reasonably estimate. Unknown default of 10 SEER is a VEIC estimate of existing unit efficiency, based on minimum federal standard between the years of 1992 and 2006.

⁷²³ Full load heating hours for heat pumps are provided for Rockford, Chicago and Springfield in the Energy Star Calculator. Estimates for the other locations were calculated based on the FLH to Heating Degree Day (from NCDC) ratio. VEIC consider Energy Star estimates to be high due to oversizing not being adequately addressed. Using average Illinois billing data (from <u>http://www.icc.illinois.gov/ags/consumereducation.aspx</u>) VEIC estimated the average gas heating load and used this to estimate the average home heating output (using 83% average gas heat efficiency). Dividing this by a typical 36,000 Btu/h ASHP gives an estimate of average ASHP FLH_heat of 1821 hours. We used the ratio of this value to the average of the locations using the Energy Star data (1994 hours) to scale down the Energy Star estimates. There is a county mapping table in the Appendix providing the appropriate city to use for each county of Illinois.

⁷²⁴ Weighted based on number of occupied residential housing units in each zone.

⁷²⁵ Use actual HSPF rating where it is possible to measure or reasonably estimate. Unknown default of 6.8 HSPF is a

Illinois Statewide Technical Reference Manual - 5.3.10 HVAC Tune Up (Central Air Conditioning or Air Source Heat Pump)

For example, maintenance of a 3-ton, SEER 10 air conditioning unit in a single family house in Springfield:			
	$\Delta kWh_{CAC} = (730 * 36,000 * (1/10))/1000 * 0.05$		
		= 131 kWh	
For example, n Springfield:	For example, maintenance of a 3-ton, SEER 10, HSPF 6.8 air source heat pump unit in a single family house in Springfield:		
	$\Delta kWh_{ASHP} = ((730 * 36,000 * (1/10))/1000 * 0.05) + (1967 * 36,000 * (1/6.8))/100 0.05)$		
		= 652 kWh	

SUMMER COINCIDENT PEAK DEMAND SAVINGS

Where:

	ΔkW	= Capacity_cooling * (1/EER)/1000 * MFd * CF
EER		= EER Efficiency of existing unit receiving maintenance in Btu/H/Watts
		= Calculate using Actual SEER
		= - 0.02*SEER ² + 1.12*SEER ⁷²⁶
MFd		= Maintenance demand savings factor
		= 0.02 ⁷²⁷
CF_{SSP}		= Summer System Peak Coincidence Factor for Central A/C (during system peak hour)
		= 91.5% ⁷²⁸
CF_{PJM}		= PJM Summer Peak Coincidence Factor for Central A/C (average during peak period)
		= 46.6% ⁷²⁹

VEIC estimate based on minimum Federal Standard between 1992 and 2006.

⁷²⁶ Based on Wassmer, M. (2003). A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at Boulder. Note this is appropriate for single speed units only.

 ⁷²⁷ Based on June 2010 personal conversation with Scott Pigg, author of Energy Center of Wisconsin, May 2008;
 "Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research" suggesting the average WI unit system draw of 2.8kW under peak conditions, and average peak savings of 50W.
 ⁷²⁸ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The AC load

⁷²⁸ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The AC load during the utility's peak hour is divided by the maximum AC load during the year.

⁷²⁹ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

Illinois Statewide Technical Reference Manual - 5.3.10 HVAC Tune Up (Central Air Conditioning or Air Source Heat Pump)

For example, maintenance of 3-ton, SEER 10 (equals EER 9.2) unit:		
ΔkW _{SSP}	= 36,000 * 1/(9.2)/1000 * 0.02 * 0.915	
	= 0.0716 kW	
ΔkW _{PJM}	= 36,000 * 1/(9.2)/1000 * 0.02 * 0.466	
	= 0.0365 kW	

NATURAL GAS SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

Conservatively not included

MEASURE CODE: RS-HVC-TUNE-V01-120601

5.3.11 Programmable Thermostats

DESCRIPTION

This measure characterizes the household energy savings from the installation of a new or reprogramming of an existing Programmable Thermostat for reduced heating energy consumption through temperature set-back during unoccupied or reduced demand times. Because a literature review was not conclusive in providing a defensible source of prescriptive cooling savings from programmable thermostats, cooling savings from programmable thermostats are assumed to be zero for this version of the measure. It is not appropriate to assume a similar pattern of savings from setting a thermostat down during the heating season and up during the cooling season. Note that the EPA's EnergyStar program is developing a new specification for this project category, and if/when evaluation results demonstrate consistent cooling savings, subsequent versions of this measure will revisit this assumption⁷³⁰.

This measure was developed to be applicable to the following program types: TOS, NC, RF, DI. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The criteria for this measure are established by replacement of a manual-only temperature control, with one that has the capability to adjust temperature setpoints according to a schedule without manual intervention. This category of equipment is broad and rapidly advancing in regards to the capability, and usability of the controls and their sophistication in setpoint adjustment and information display, but for the purposes of this characterization, eligibility is perhaps most simply defined by what it isn't: a manual only temperature control.

For the thermostat reprogramming measure, the auditor consults with the homeowner to determine an appropriate set back schedule, reprograms the thermostat and educates the homeowner on its appropriate use.

DEFINITION OF BASELINE EQUIPMENT

For new thermostats the baseline is a non-programmable thermostat requiring manual intervention to change temperature setpoint.

For the purpose of thermostat reprogramming, an existing programmable thermostat that an auditor determines is being used in override mode or otherwise effectively being operated like a manual thermostat.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life of a programmable thermostat is assumed to be 10 years⁷³¹ based upon equipment life only⁷³². For the purposes of claiming savings for a new programmable thermostat, this is reduced by a 50% persistence factor to give final measures life of 5 years. For reprogramming, this is reduced further to give a measure life of 2 years.

⁷³⁰ The EnergyStar program discontinued its support for this measure category effective 12/31/09, and is presently developing a new specification for 'Residential Climate Controls'.

⁷³¹ Table 1, HVAC Controls, Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, 2007

⁷³² Future evaluation is strongly encouraged to inform the persistence of savings to further refine measure life assumption. As this characterization depends heavily upon a large scale but only 2-year study of the energy impacts of programmable thermostats, the longer term impacts should be assessed.

DEEMED MEASURE COST

Actual material and labor costs should be used if the implementation method allows. If unknown (e.g. through a retail program) the capital cost for the new installation measure is assumed to be $$30^{733}$. The cost for reprogramming is assumed to be \$10 to account for the auditors time to reprogram and educate the homeowner.

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape R09 - Residential Electric Space Heat

COINCIDENCE FACTOR

N/A due to no savings attributable to cooling during the summer peak period.

		Algorithm		
CALCULATION OF SAVINGS				
ELECTRIC ENERGY SAVINGS				
ΔkWh ⁷³⁴		tricHeat * Elec_Heating_Con s * F _e * 29.3)	nsumption * Heating_	Reduction * HF * Eff_ISR +
Where:				
%Elec	ctricHeat	= Percentage of heating sav	rings assumed to be ele	ectric
		Heating fuel	%ElectricHeat	
		Electric	100%	
		Natural Gas	0%	
		Unknown	13% ⁷³⁵	
Elec_	Heating_Co	nsumption		
	= Estima	ate of annual household h	eating consumption for	or electrically heated single-

⁷³³ Market prices vary significantly in this category, generally increasing with thermostat capability and sophistication. The basic functions required by this measure's eligibility criteria are available on units readily available in the market for the listed price.

⁷³⁴ Note the second part of the algorithm relates to furnace fan savings if the heating system is Natural Gas.

⁷³⁵ Average (default) value of 13% electric space heating from 2010 Residential Energy Consumption Survey for Illinois. If utilities have specific evaluation results providing a more appropriate assumption for homes in a particular market or geographical area then that should be used.

Climate Zone (City based upon)	Electric Resistance Elec_Heating_ Consumption (kWh)	Electric Heat Pump Elec_Heating_ Consumption (kWh)
1 (Rockford)	26,038	13,019
2 (Chicago)	24,875	12,438
3 (Springfield)	21,304	10,652
4 (Belleville)	16,434	8,217
5 (Marion)	16,726	8,363
Average	23,645	11,822

family homes⁷³⁶. If location and heating type is unknown, assume 17,734 kWh⁷³⁷

Heating Reduction

 Assumed percentage reduction in heating energy consumption due to programmable thermostat

= 6.2%⁷³⁸

ΗF

= Household factor, to adjust heating consumption for non-single-family households.

Household Type	HF
Single-Family	100%
Multi-Family	65% ⁷³⁹
Actual	Custom ⁷⁴⁰

Eff_ISR

= Effective In-Service Rate, the percentage of thermostats installed and programmed effectively

⁷³⁶ Values in table are based on converting an average household heating consumption (849 therms) for Chicago based on 'Table 3-4, Program Sample Analysis, Nicor R29 Res Rebate Evaluation Report 092611_REV FINAL to Nicor', to an electric heat consumption (divide by 0.03413 and assuming efficiencies of 100% for resistance and 200% for HP) and then adjusting to a statewide average using relative HDD assumptions to adjust for the evaluation results focus on northern region. Values for individual cities are then calculated by comparing average HDD to the individual city's HDD.

 ⁷³⁷ Assumption that 1/2 of electrically heated homes have electric resistance and 1/2 have Heat Pump, based on
 2010 Residential Energy Consumption Survey for Illinois.

⁷³⁸ The savings from programmable thermostats are highly susceptible to many factors best addressed, so far for this category, by a study that controlled for the most significant issues with a very large sample size. To the extent that the treatment group is representative of the program participants for IL, this value is suitable. Higher and lower values would be justified based upon clear dissimilarities due to program and product attributes. Future evaluation work should assess program specific impacts associated with penetration rates, baseline levels, persistence, and other factors which this value represents.

⁷³⁹ Multifamily household heating consumption relative to single-family households is affected by overall household square footage and exposure to the exterior. This 65% reduction factor is applied to MF homes with electric resistance, based on professional judgment that average household size, and heat loads of MF households are smaller than single-family homes

⁷⁴⁰ Program-specific household factors may be utilized on the basis of sufficiently validated program evaluations.

		Program Delivery	EII_ISR		
		Direct Install	100%		
		Other, or unknown	56% ⁷⁴¹		
	ΔTherms	= Therm savings if Nat	ural Gas heating syste	m	
		= See calculation in Na	atural Gas section belo	W	
	F _e	= Furnace Fan energy consumption	y consumption as a p	percentage of annual fuel	
		= 3.14% ⁷⁴²			
	29.3	= kWh per therm			
,	a programmable the	ermostat directly installed in	an electric resistance	e heated, single-family	

Program Delivery Eff ISP

For example, home in Springfield:

 $\Delta kWH = 1 * 20,214 * 0.062 * 100\% * 100\% + (0 * 0.0314 * 29.3)$

= 1253 kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A due to no savings from cooling during the summer peak period.

NATURAL GAS ENERGY SAVINGS

ΔTherms = %FossilHeat * Gas Heating Consumption * Heating Reduction * HF * Eff ISR

Where:

= Percentage of heating savings assumed to be Natural Gas %FossilHeat

Heating fuel	%FossilHeat
Electric	0%
Natural Gas	100%
Unknown	87% ⁷⁴³

Gas_Heating_Consumption

⁷⁴¹"Programmable Thermostats. Report to KeySpan Energy Delivery on Energy Savings and Cost Effectiveness," GDS Associates, Marietta, GA. 2002GDS

⁷⁴² F_e is not one of the AHRI certified ratings provided for residential furnaces, but can be reasonably estimated from a calculation based on the certified values for fuel energy (Ef in MMBTU/yr) and Eae (kWh/yr). An average of a 300 record sample (non-random) out of 1495 was 3.14%. This is, appropriately, ~50% greater than the Energy Star version 3 criteria for 2% Fe. See "Programmable Thermostats Furnace Fan Analysis.xlsx" for reference.

⁷⁴³ Average (default) value of 87% electric space heating from 2010 Residential Energy Consumption Survey for Illinois. If utilities have specific evaluation results providing a more appropriate assumption for homes in a particular market or geographical area then that should be used.

= Estimate of annual household heating consumption for gas heated single-family homes. If location is unknown, assume the average below⁷⁴⁴.

Climate Zone (City based upon)	Gas_Heating_ Consumption (therms)
1 (Rockford)	889
2 (Chicago)	849
3 (Springfield)	727
4 (Belleville)	561
5 (Marion)	571
Average	807

For example, a programmable thermostat directly-installed in a gas heated single-family home in Chicago:

ΔTherms = 1.0 * 849* 0.062 * 100% * 100%

= 52.6 therms

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-HVC-PROG-V02-130601

⁷⁴⁴ Values are based on adjusting the average household heating consumption (849 therms) for Chicago based on 'Table 3-4, Program Sample Analysis, Nicor R29 Res Rebate Evaluation Report 092611_REV FINAL to Nicor' adjusting to a statewide average using relative HDD assumptions to adjust for the evaluation results focus on northern region. Values for individual cities are then calculated by comparing average HDD to the individual city's HDD.

5.4 Hot Water End Use

5.4.1 Domestic Hot Water Pipe Insulation

DESCRIPTION

This measure describes adding insulation to un-insulated domestic hot water pipes. The measure assumes the pipe wrap is installed to the first length of both the hot and cold pipe up to the first elbow. This is the most cost effective section to insulate since the water pipes act as an extension of the hot water tank up to the first elbow which acts as a heat trap. Insulating this length therefore helps reduce standby losses. Default savings are provided per 3ft length and are appropriate up to 6ft of the hot water pipe and 3ft of the cold.

This measure was developed to be applicable to the following program types: TOS, NC, RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient case is installing pipe wrap insulation to a length of hot water pipe.

DEFINITION OF BASELINE EQUIPMENT

The baseline is an un-insulated hot water pipe.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The measure life is assumed to be 15 years⁷⁴⁵.

DEEMED MEASURE COST

The measure cost including material and installation is assumed to be \$3 per linear foot⁷⁴⁶.

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape C53 - Flat

COINCIDENCE FACTOR

This measure assumes a flat loadshape since savings relate to reducing standby losses and as such the coincidence factor is 1.

Algorithm

⁷⁴⁵ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf

⁷⁴⁶ Consistent with DEER 2008 Database Technology and Measure Cost Data (www.deeresources.com).

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

For electric DHW systems:

$$\Delta kWh = ((1/Rexist - 1/Rnew) * (L * C) * \Delta T * 8,766) / \eta DHW / 3413$$

Where:

Rexist	= Pipe heat loss coefficient of uninsulated pipe (existing) [(hr-°F-ft)/Btu]
	$= 1.0^{747}$
Rnew	= Pipe heat loss coefficient of insulated pipe (new) [(hr-°F-ft)/Btu]
	= Actual (1.0 + R value of insulation)
L	= Length of pipe from water heating source covered by pipe wrap (ft)
	= Actual
С	= Circumference of pipe (ft) (Diameter (in) * $\pi/12$)
	= Actual (0.5" pipe = 0.131ft, 0.75" pipe = 0.196ft)
ΔΤ	 Average temperature difference between supplied water and outside air temperature (°F)
	= 60°F ⁷⁴⁸
8,766	= Hours per year
ηDHW	= Recovery efficiency of electric hot water heater
	= 0.98 ⁷⁴⁹
3412	= Conversion from Btu to kWh

⁷⁴⁷ Navigant Consulting Inc., April 2009; "Measures and Assumptions for Demand Side Management (DSM) Planning; Appendix C Substantiation Sheets", p77.

 ⁷⁴⁸ Assumes 125°F water leaving the hot water tank and average temperature of basement of 65°F.
 ⁷⁴⁹ Electric water heater have recovery efficiency of 98%: <u>http://www.ahrinet.org/ARI/util/showdoc.aspx?doc=576</u>

For example, insulating 5 feet of 0.75" pipe with R-5 wrap: $\Delta kWh = ((1/Rexist - 1/Rnew) * (L * C) * \Delta T * 8,766) / \eta DHW / 3412$ = ((1/1 - 1/5) * (5 * 0.196) * 60 * 8766) / 0.98 / 3412 = 123 kWh

If inputs above are not available the following default per 3ft R-5 length can be used for up to 6 ft length on the hot pipe and 3 ft on the cold pipe.

 $\Delta kWh = ((1/Rexist - 1/Rnew) * (L * C) * \Delta T * 8,766) / \eta DHW / 3412$ = ((1/1-1/5) * (3 * 0.196) * 60 * 8766) / 0.98 / 3412= 74.0 kWh per 3ft length

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta kW = \Delta kWh / 8766$$

Where:

ΔkWh	= kWh savings from pipe wrap installation
8766	= Number of hours in a year (since savings are assumed to be constant over year).

For example, insulating 5 feet of 0.75" pipe with R-5 wrap:		
ΔkW	= 123/8766	
	= 0.014kW	

If inputs above are not available the following default per 3ft R-4 length can be used for up to 6 ft length on the hot pipe and 3 ft on the cold pipe.

 $\Delta kW = 73.9/8766$

= 0.0084 kW

NATURAL GAS SAVINGS

For Natural Gas DHW systems:

 Δ Therm = ((1/Rexist – 1/Rnew) * (L * C) * Δ T * 8,766) / η DHW /100,000

Where:

= 0.78⁷⁵⁰

Other variables as defined above

For example, insulating 5 feet of 0.75" pipe with R-5 wrap:		
ΔTherm	= ((1/1-1/5) * (5 * 0.196) * 60 * 8766) / 0.78 / 100,000	
	= 5.29 therms	

If inputs above are not available the following default per 3ft R-4 length can be used for up to 6ft length on the hot pipe and 3ft on the cold pipe.

ΔTherm	= ((1/Rexist – 1/Rnew) * (L * C) * ΔT * 8,766) / ηDHW / 100,000
	= ((1/1-1/5) * (3 * 0.196) * 60 * 8766) / 0.78 /100,000
	= 3.17 therms per 3ft length

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-HWE-PINS-V01-120601

⁷⁵⁰ Review of AHRI Directory suggests range of recovery efficiency ratings for new Gas DHW units of 70-87%. Average of existing units is estimated at 78%

5.4.2 Gas Water Heater

DESCRIPTION

This measure characterizes the purchase and installation of a new efficient gas-fired water heater, in place of a Federal Standard unit in a residential setting. Savings are provided for power-vented, condensing storage, and whole-house tankless units meeting specific EF criteria.

This measure was developed to be applicable to the following program types: TOS, NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the efficient equipment must be a water heater rated with the following minimum efficiency ratings:

Water heater Type	Minimum Energy Factor
Gas Storage	0.67
Condensing gas storage	0.80
Tankless whole-house unit	0.82

DEFINITION OF BASELINE EQUIPMENT

The baseline condition is assumed to be a standard gas storage water heater of the same capacity as the efficient unit, rated at the federal minimum $(0.67 - 0.0019 * \text{ storage size in gallons})^{751}$. For a 40-gallon storage water heater this would be 0.594 EF.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 13 years⁷⁵².

⁷⁵¹ Federal Standard as of January 2004,

http://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/water_heater_fr.pdf

⁷⁵² DOE, 2010 Residential Heating Products Final Rule Technical Support Document, Table 8.2.14 http://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/htgp_finalrule_ch8.pdf Note: This source is used to support this category in aggregate. For all water heaters, life expectancy will depend on local variables such as water chemistry and homeowner maintenance. Some categories, including condensing storage and tankless water heaters do not yet have sufficient field data to support separate values. Preliminary data show lifetimes may exceed 20 years, though this has yet to be sufficiently demonstrated.

DEEMED MEASURE COST

The incremental capital cost for this measure is dependent on the type of water heater as listed below⁷⁵³:

Water heater Type	Incremental Cost
Gas Storage	\$400
Condensing gas storage	\$685
Tankless whole-house unit	\$605

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

N/A

COINCIDENCE FACTOR

N/A

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

N/A

SUMMER COINCIDENT PEAK DEMAND SAVINGS

N/A

NATURAL GAS ENERGY SAVINGS

 Δ Therms = (1/ EF_{BASE} - 1/EF_{EFFICIENT}) * (GPD * 365.25 * γ Water * (T_{OUT} - T_{IN}) * 1.0)/100,000

Where:

⁷⁵³ Source for cost info; DOE, 2010 Residential Heating Products Final Rule Technical Support Document, Table 8.2.14 (http://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/htgp_finalrule_ch8.pdf)

EF_Baseline

= Energy Factor rating for baseline equipment

 $= (0.67 - 0.0019 * tank_size)^{754}$

Tank_size (gallons)	EF_Baseline
40	0.594
50	0.575
60	0.556

= If tank size unknown assume 40 gallons and EF_Baseline of 0.594

EF Efficient

= Energy Factor Rating for efficient equipment

= Actual. If Tankless whole-house multiply rated efficiency by 0.91^{755} . If unknown assume values in look up in table below

Water Heater Type	EF_Efficient
Condensing Gas	0.80
Storage	
Gas Storage	0.67
Tankless whole-house	0.82 * 0.91 = 0.75

GPD	= Gallons Per Day of hot water use per household	
	= 50 ⁷⁵⁶	
365.25	= Days per year, on average	
γWater	= Specific Weight of water	
	= 8.33 pounds per gallon	
T _{OUT}	= Tank temperature	
	= 125°F	

⁷⁵⁴ Algorithm based on current Federal Standard;

<u>http://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/water_heater_fr.pdf</u> Note that changes to the Federal Standard will be applied from April 16, 2015, see link below for more details:

⁷⁵⁶ Federal Register, Test Procedures for Water Heaters, Comments on "Test Conditions," <u>http://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/wtrhtr.pdf</u>

http://www1.eere.energy.gov/buildings/appliance_standards/residential/heating_products_fr.html

⁷⁵⁵ The disconnect between rated energy factor and in-situ energy consumption is markedly different for tankless units due to significantly higher contributions to overall household hot water usage from short draws. In tankless units the large burner and unit heat exchanger must fire and heat up for each draw. The additional energy losses incurred when the mass of the unit cools to the surrounding space in-between shorter draws was found to be 9% in a study prepared for Lawrence Berkeley National Laboratory by Davis Energy Group, 2006. "Field and Laboratory Testing of Tankless Gas Water Heater Performance" Due to the similarity (storage) between the other categories and the baseline, this derating factor is applied only to the tankless category.

TIN= Incoming water temperature from well or municipal system= 54°F7571.0= Heat Capacity of water (1 Btu/lb*°F)

For example, a 40 gallon condensing gas storage water heater, with an energy factor of 0.80:

 Δ Therms = (1/0.594) - 1/0.8) * (50 * 365.25* 8.33 * (125 - 54) * 1) / 100,000

= 46.8 therms

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-HWE-GWHT-V01-120601

⁷⁵⁷ US DOE Building America Program. Building America Analysis Spreadsheet. For Chicago, IL <u>http://www1.eere.energy.gov/buildings/building_america/analysis_spreadsheets.html</u>

5.4.3 Heat Pump Water Heaters

DESCRIPTION

The installation of a heat pump domestic hot water heater in place of a standard electric water heater in a home. Savings are presented dependent on the heating system installed in the home due to the impact of the heat pump water heater on the heating loads.

This measure was developed to be applicable to the following program types: TOS, NC, RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the installed equipment must be a Heat Pump domestic water heater.

DEFINITION OF BASELINE EQUIPMENT

The baseline condition is assumed to be a new electric water heater meeting federal minimum efficiency standards.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 13 years⁷⁵⁸.

DEEMED MEASURE COST

The incremental capital cost for this measure is \$1,000, for a HPWH with an energy factor of 2.0. The full cost, applicable in a retrofit, is \$1,575. For a HPWH with an energy factor of 2.35, these costs are \$1,134 and \$1,703 respectively⁷⁵⁹.

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape R03 - Residential Electric DHW

COINCIDENCE FACTOR

The summer Peak Coincidence Factor is assumed to be 12%⁷⁶⁰.

 ⁷⁵⁸ DOE, 2010 Residential Heating Products Final Rule Technical Support Document, Page 8-52
 <u>http://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/htgp_finalrule_ch8.pdf</u>
 ⁷⁵⁹ DOE, 2010 Residential Heating Products Final Rule Technical Support Document, Table 8.2.14

http://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/htgp_finalrule_ch8.pdf ⁷⁶⁰ Calculated from Figure 8 "Combined six-unit summer weekday average electrical demand" in FEMP study; Field

Testing of Pre-Production Prototype Residential Heat Pump Water Heaters http://www1.eere.energy.gov/femp/pdfs/tir_heatpump.pdf_as (average kW usage during peak period * hours in

peak period) / [(annual kWh savings / FLH) * hours in peak period] = (0.1 kW * 5 hours) / [(2100 kWh (default assumptions) / 2533 hours) * 5 hours] = 0.12

	Algorithm			
CALCULATION OF SAV	CALCULATION OF SAVINGS			
ELECTRIC ENERGY SAV	/INGS			
ΔkWh	= (((1/EF _{BASE} – 1/EF _{EFFICIENT}) * GPD * 365.25 * γ Water * (T _{OUT} – T _{IN}) * 1.0) / 3412) + kWh_cooling - kWh_heating			
Where:				
	EF _{BASE}	= Energy Factor (efficiency) of standard electric water heater according to federal standards:		
		= 0.93 – (0.00132 * rated volume in gallons) ⁷⁶¹		
		= 0.904 for a 50 gallon tank, the most common size for HPWH		
	EF _{EFFICIENT}	= Energy Factor (efficiency) of Heat Pump water heater		
		= Actual		
	GPD	= Gallons Per Day of hot water use per household		
		= 50 ⁷⁶²		
	365.25	= Days per year		
	γWater	= Specific weight of water		
		= 8.33 pounds per gallon		
	T _{OUT}	= Tank temperature		
		= 125°F		
	T _{IN}	= Incoming water temperature from well or municiple system		
		= 54°F ⁷⁶³		
	1.0	= Heat Capacity of water (1 Btu/lb*°F)		
	3412	= Conversion from BTU to kWh		

⁷⁶¹ Current Federal Standard EF, since 2004, for a 50-gal electric storage WH, Federal Register Vol. 66, No. 11/1/17/2001, page 4497,

http://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/water_heater_fr.pdf ⁷⁶² Federal Register, Test Procedures for Water Heaters, Comments on "Test Conditions,"

http://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/wtrhtr.pdf

⁷⁶³ US DOE Building America Program. Building America Analysis Spreadsheet. For Chicago, IL http://www1.eere.energy.gov/buildings/building_america/analysis_spreadsheets.html

 $kWh_{cooling}^{764}$ = Cooling savings from conversion of heat in home to water heat

=(([(GPD * 365.25 *
$$\gamma$$
Water * (T_{OUT} - T_{IN}) * 1.0) / 3412) - (GPD * 365.25 * γ Water * (T_{OUT} - T_{IN}) * 1.0) / 3412) / EF_{NEW}] * LF * 27%) / COP_{COOL}) * LM

Where:

LF	= Location Factor
	= 1.0 for HPWH installation in a conditioned space
	= 0.5 for HPWH installation in an unknown location
	= 0.0 for installation in an unconditioned space
27%	= Portion of reduced waste heat that results in cooling savings ⁷⁶⁵
COP _{COOL}	= COP of central air conditioning
	= Actual, if unknown, assume 3.08 (10.5 SEER / 3.412)
LM	= Latent multiplier to account for latent cooling demand
	= 1.33 ⁷⁶⁶ :
kWh_heating	= Heating cost from conversion of heat in home to water heat (dependent on heating fuel)
	For Natural Gas heating, kWh_heating = 0
	For electric heating:
	= ([(GPD * 365.25 * ρ * (T _{OUT} – T _{IN}) * 1.0) / 3412) – (GPD * 365.25 * ρ * (T _{OUT} – T _{IN}) * 1.0) / 3412) / EF _{NEW}] * LF * 49%) / COP _{HEAT}

Where:

⁷⁶⁴ This algorithm calculates the heat removed from the air by subtracting the HPWH electric consumption from the total water heating energy delivered. This is then adjusted to account for location of the HP unit and the coincidence of the waste heat with cooling requirements, the efficiency of the central cooling and latent cooling demands.

⁷⁶⁵ REMRate determined percentage (27%) of lighting savings that result in reduced cooling loads (lighting is used as a proxy for hot water heating since load shapes suggest their seasonal usage patterns are similar).

⁷⁶⁶ A sensible heat ratio (SHR) of 0.75 corresponds to a latent multiplier of 4/3 or 1.33. SHR of 0.75 for typical split system from page 10 of "Controlling Indoor Humidity Using Variable-Speed Compressors and Blowers" by M. A. Andrade and C. W. Bullard, 1999: www.ideals.illinois.edu/bitstream/handle/2142/11894/TR151.pdf

49% = Portion of reduced waste heat that results in increased heating load⁷⁶⁷

COP_{HEAT} = COP of electric heating system

= actual. If not available use⁷⁶⁸:

System Type	Age of Equipment	HSPF Estimate	COP _{HEAT} (COP Estimate)
Heat Pump	Before 2006	6.8	2.00
	After 2006	7.7	2.26
Resistance	N/A	N/A	1.00

For example, a 2.0 EF heat pump water heater, in a conditioned space in a home with gas space heat and central air conditioning (SEER 10.5) in Belleville:

 $\Delta kWh = [(1 / 0.904 - 1 / 2.0) * 50 * 365.25 * 8.33 * (125 - 54)] / 3412 + 185 - 0$

= 2100 kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh / Hours * CF$

Where:

Hours	= Full load hours of water heater	
	= 2533 ⁷⁶⁹	
CF	= Summer Peak Coincidence Factor for measure	
	= 0.12 770	

⁷⁶⁷ REMRate determined percentage (49%) of lighting savings that result in increased heating loads (lighting is used as a proxy for hot water heating since load shapes suggest their seasonal usage patterns are similar).

⁷⁶⁸ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.

⁷⁶⁹ Full load hours assumption based on Efficiency Vermont analysis of Itron eShapes.

⁷⁷⁰ Calculated from Figure 8 "Combined six-unit summer weekday average electrical demand" in FEMP study; Field Testing of Pre-Production Prototype Residential Heat Pump Water Heaters

<u>http://www1.eere.energy.gov/femp/pdfs/tir_heatpump.pdf</u> as (average kW usage during peak period * hours in peak period) / [(annual kWh savings / FLH) * hours in peak period] = (0.1 kW * 5 hours) / [(2100 kWh / 2533 hours) * 5 hours] = 0.12

For example, a 2.0 COP heat pump water heater, in a conditioned space in a home with gas space heat and central air conditioning in Belleville:

kW = 2100 / 2533 * 0.12

= 0.099 kW

NATURAL GAS SAVINGS

∆Therm		GPD * 365.25 * γWater * (T _{OUT} – T _{IN}) * 1.0) / 3412) – (((GPD * 365.25 * γWater * T _{IN}) * 1.0) / 3412) / EF _{EFFICIENT})) * LF * 49% * 0.03412) / (ηHeat * % Natural Gas)
Where:		
	ΔTherms	= Heating cost from conversion of heat in home to water heat for homes with Natural Gas heat. ⁷⁷¹
	0.03412	= conversion factor (therms per kWh)
	ηHeat	= Efficiency of heating system
		= Actual. ⁷⁷² If not available use 70%. ⁷⁷³

(http://www.bpi.org/files/pdf/DistributionEfficiencyTable-BlueSheet.pdf) or by performing duct blaster testing. ⁷⁷³ This has been estimated assuming that natural gas central furnace heating is typical for Illinois residences (66%

(0.24*0.92) + (0.76*0.8) * (1-0.15) = 0.70

⁷⁷¹ This is the additional energy consumption required to replace the heat removed from the home during the heating season by the heat pump water heater. kWh_heating (electric resistance) is that additional heating energy for a home with electric resistance heat (COP 1.0). This formula converts the additional heating kWh for an electric resistance home to the MMBtu required in a Natural Gas heated home, applying the relative efficiencies.

⁷⁷² Ideally, the System Efficiency should be obtained either by recording the AFUE of the unit, or performing a steady state efficiency test. The Distribution Efficiency can be estimated via a visual inspection and by referring to a look up table such as that provided by the Building Performance Institute:

of Illinois homes have a Natural Gas Furnace (based on Energy Information Administration, 2009 Residential Energy Consumption Survey:

http://www.eia.gov/consumption/residential/data/2009/xls/HC6.9%20Space%20Heating%20in%20Midwest%20R egion.xls))

In 2000, 24% of furnaces purchased in Illinois were condensing (based on data from GAMA, provided to Department of Energy during the federal standard setting process for residential heating equipment - see Furnace Penetration.xls). Furnaces tend to last up to 20 years and so units purchased 10 years ago provide a reasonable proxy for the current mix of furnaces in the State. Assuming typical efficiencies for condensing and non-condensing furnaces and duct losses, the average heating system efficiency is estimated as follows:

% Natural Gas = Factor dependent on heating fuel:

Heating System	%Natural Gas
Electric resistance or heat pump	0%
Natural Gas	100%
Unknown heating fuel ⁷⁷⁴	87%

Other factors as defined above

For example, a 2.0 COP heat pump water heater in conditioned space, in a home with gas space heat (70% system efficiency):

ΔTherms = - (1582.9 * 1 * 0.49 * 0.03412) / 0.7 * 1

= - 35.1 therms

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-HWE-HPWH-V01-120601

⁷⁷⁴ 2010 American Community Survey.

5.4.4 Low Flow Faucet Aerators

This measure relates to the installation of a low flow faucet aerator in a household kitchen or bath faucet fixture.

This measure may be used for units provided through Efficiency Kit's however the in service rate for such measures should be derived through evaluation results specifically for this implementation methodology.

This measure was developed to be applicable to the following program types: TOS, NC, RF, DI, KITS. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the installed equipment must be a low flow faucet aerator, for bathrooms rated at 1.5 gallons per minute (GPM) or less, or for kitchens rated at 2.2 GPM or less. Savings are calculated on an average savings per faucet fixture basis.

DEFINITION OF BASELINE EQUIPMENT

The baseline condition is assumed to be a standard bathroom faucet aerator rated at 2.25 GPM or greater, or a standard kitchen faucet aerator rated at 2.75 GPM or greater.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 9 years⁷⁷⁵.

DEEMED MEASURE COST

The incremental cost for this measure is \$8⁷⁷⁶ or program actual.

For faucet aerators provided in Efficiency Kits, the actual program delivery costs should be utilized.

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape R03 - Residential Electric DHW

COINCIDENCE FACTOR

The coincidence factor for this measure is assumed to be $2.2\%^{777}$.

⁷⁷⁵ Table C-6, Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

[&]quot;http://neep.org/uploads/EMV%20Forum/EMV%20Studies/measure_life_GDS%5B1%5D.pdf"

⁷⁷⁶ Direct-install price per faucet assumes cost of aerator and install time. (2011, Market research average of \$3 and assess and install time of \$5 (20min @ \$15/hr)

⁷⁷⁷ Calculated as follows: Assume 18% aerator use takes place during peak hours (based on: <u>http://www.aquacraft.com/sites/default/files/pub/DeOreo-%282001%29-Disaggregated-Hot-Water-Use-in-Single-Family-Homes-Using-Flow-Trace-Analysis.pdf</u>) There are 65 days in the summer peak period, so the percentage of

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

NOTE THESE SAVINGS ARE *PER* **FAUCET RETROFITTED**⁷⁷⁸**.**

ΔkWh = %ElectricDHW * ((GPM_base * L_base - GPM_low * L_low) * Household * 365.25 *DF / FPH) * EPG_electric * ISR

Where:

%ElectricDHW = proportion of water heating supplied by electric resistance heating

DHW fuel	%ElectricDHW
Electric	100%
Natural Gas	0%
Unknown	16% ⁷⁷⁹

GPM_base	= Average flow rate, in gallons per minute, of the baseline faucet "as-used"
	= 1.2 ⁷⁸⁰ or custom based on metering studies ⁷⁸¹
GPM_low	= Average flow rate, in gallons per minute, of the low-flow faucet aerator "as- used"

= 0.94^{782} or custom based on metering studies⁷⁸³

total annual aerator use in peak period is 0.18*65/365 = 3.21%. The number of hours of recovery during peak periods is therefore assumed to be 3.21%*180 = 5.8 hours of recovery during peak period where 180 equals the average annual electric DHW recovery hours for faucet use including SF and MF homes. There are 260 hours in the peak period so the probability you will see savings during the peak period is 5.8/260 = 0.022

⁷⁷⁸ This algorithm calculates the amount of energy saved per aerator by determining the fraction of water consumption savings for the upgraded fixture.

⁷⁷⁹ Default assumption for unknown fuel is based on EIA Residential Energy Consumption Survey (RECS) 2009 for Midwest Region, data for the state of IL. If utilities have specific evaluation results providing a more appropriate assumption for homes in a particular market or geographical area then that should be used

⁷⁸⁰ Representative baseline flow rate for kitchen and bathroom faucet aerators from sources 2, 4, 5, and 7 (see source table at end of characterization). This accounts for all throttling and differences from rated flow rates. The most comprehensive available studies did not disaggregate kitchen use from bathroom use, but instead looked at total flow and length of use for all faucets. This makes it difficult to reliably separate kitchen water use from bathroom water use.

⁷⁸¹ Measurement should be based on actual average flow consumed over a period of time rather than a onetime spot measurement for maximum flow. Studies have shown maximum flow rates do not correspond well to average flow rate due to occupant behavior which does not always use maximum flow.

⁷⁸² Average retrofit flow rate for kitchen and bathroom faucet aerators from sources 2, 4, 5, and 7(see source table at end of characterization). This accounts for all throttling and differences from rated flow rates. Assumes all kitchen aerators at 2.2 gpm or less and all bathroom aerators at 1.5 gpm or less. The most comprehensive available studies did not disaggregate kitchen use from bathroom use, but instead looked at total flow and length

L_base = Average baseline length faucet use per capita for all faucets in minutes

Faucet Type	Relative usage percentage ⁷⁸⁴	L_base (min/person/day)
Kitchen	70%	6.90
Bathroom	30%	2.95
If location unknown	100%	9.85 ⁷⁸⁵
(total)		

= if available custom based on metering studies, if not use:

L_low = Average retrofit length faucet use per capita for all faucets in minutes

= if available custom based on metering studies, if not use:

Faucet Type	Relative usage percentage	L_low (min/person/day)
Kitchen	70%	6.90
Bathroom	30%	2.95
If location unknown	100%	9.85 ⁷⁸⁶
(total)		

Household

= Average number of people per household

Household Unit Type	Household
	2.56 ⁷⁸⁷
Multi-Family - Deemed	2.1 ⁷⁸⁸

of use for all faucets. This makes it difficult to reliably separate kitchen water use from bathroom water use. It is possible that programs installing low flow aerators lower than the 2.2 gpm for kitchens and 1.5 gpm for bathrooms will see a lower overall average retrofit flow rate.

⁷⁸³ Measurement should be based on actual average flow consumed over a period of time rather than a onetime spot measurement for maximum flow. Studies have shown maximum flow rates do not correspond well to average flow rate due to occupant behavior which does not always use maximum flow.

⁷⁸⁴ A robust data source for the relative usage of kitchen v bathroom faucets could not be found. The 70v30% split is based on professional judgment. As per Navigant there is a current study that may allow a recommendation to be made, but that data is not publicly available at this time. This assumption will be revisited when it becomes available.
⁷⁸⁵ This coincides with the middle of the range (6.74 min/person/day to 13.4 min/person/day) from sources 2, 3, 4,

⁷⁸⁵ This coincides with the middle of the range (6.74 min/person/day to 13.4 min/person/day) from sources 2, 3, 4, and 5 (See Source Table at end of measure section). A recent Midwest evaluation study included a small metering sample with measured faucet use at 4.5 min/person/day for kitchen faucets and 2.6 min/person/day for bathroom faucets. This sample was too small to extrapolate to the population as a whole, but is within the range of total faucet time per the referenced reports and confirms previous findings.

⁷⁸⁶ Set equal to L_base. Studies show conflicting results with some studies showing increased time for retrofit homes and some showing decreased time. Engineering judgment leads us to conclude that using the baseline time is a reasonable assumption.

⁷⁸⁷ ComEd Energy Efficiency/ Demand Response Plan: Plan Year 2 (6/1/2009-5/31/2010) Evaluation Report: All Electric Single Family Home Energy Performance Tune-Up Program citing 2006-2008 American Community Survey data from the US Census Bureau for Illinois cited on p. 17 of the PY2 Evaluation report. 2.75 * 93% evaluation adjustment

⁷⁸⁸ Navigant, ComEd PY3 Multi-Family Home Energy Savings Program Evaluation Report Final, May 16, 2012.

Custom	Actual Occupancy or
	Number of Bedrooms ⁷⁸⁹

365.25	= Days in a year, on average
--------	------------------------------

DF

Faucet Type	Drain Factor ⁷⁹⁰
Kitchen	75%
Bath	90%
Unknown	79.5%

FPH

= Faucets Per Household

Faucet Type	FPH
Kitchen Faucets Per Home (KFPH)	1
Bathroom Faucets Per Home (BFPH): Single-Family	2.83 ⁷⁹¹
Bathroom Faucets Per Home (BFPH): Multi-Family	1.5 ⁷⁹²
If location unknown (total): Single-Family	3.83
If location unknown (total): Multi-Family	2.5

EPG_electric	= Energy per gallon of water used by faucet supplied by electric water heater	
	= (8.33 * 1.0 * (WaterTemp - SupplyTemp)) / (RE_electric * 3412)	
	= (8.33 * 1.0 * (90 – 54.1)) / (0.98 * 3412)	
	= 0.0894 kWh/gal	
8.33	= Specific weight of water (lbs/gallon)	
1.0	= Heat Capacity of water (btu/lb-F)	
WaterTemp	= Assumed temperature of mixed water	

⁷⁸⁹ Bedrooms are suitable proxies for household occupancy, and may be preferable to actual occupancy due to turnover rates in residency and non-adult population impacts.

 $^{^{790}}$ Because faucet usages are at times dictated by volume, only usage of the sort that would go straight down the drain will provide savings. VEIC is unaware of any metering study that has determined this specific factor and so through consensus with the Illinois Technical Advisory Group have deemed these values to be 75% for the kitchen and 90% for the bathroom. If the aerator location is unknown an average of 79.5% should be used which is based on the assumption that 70% of household water runs through the kitchen faucet and 30% through the bathroom (0.7*0.75)+(0.3*0.9)=0.795.

 ⁷⁹¹Based on findings from a 2009 ComEd residential survey of 140 sites, provided by Cadmus.
 ⁷⁹² Ibid.

	= 90F ⁷⁹³		
SupplyTemp	= Assumed temperature of water entering house		
	= 54.1F ⁷⁹⁴		
RE_electric	= Recovery efficiency of electric water heater		
	= 98% ⁷⁹⁵		
3412	= Converts Btu to kWh (btu/kWh)		
ISR	= In service rate of faucet aerators dependant on install method as listed in table below		
	Selection	ISR	
	Direct Install - Single Family	0.95 ⁷⁹⁶	
	Direct Install – Multi Family Kitchen	0.91 ⁷⁹⁷	

 0.95^{798}

To be determined through evaluation

Direct Install – Multi Family Bathroom

Efficiency Kits

⁷⁹³ Temperature cited from SBW Consulting, Evaluation for the Bonneville Power Authority, 1994,

http://www.bpa.gov/energy/n/reports/evaluation/residential/faucet_aerator.cfm. This is a variable that would benefit from further evaluation.

 ⁷⁹⁴ US DOE Building America Program. Building America Analysis Spreadsheet. For Chicago, IL
 <u>http://www1.eere.energy.gov/buildings/building_america/analysis_spreadsheets.html</u>.
 ⁷⁹⁵ Electric water heater have recovery efficiency of 98%: <u>http://www.ahrinet.org/ARI/util/showdoc.aspx?doc=576</u>

 ⁷⁹⁵ Electric water heater have recovery efficiency of 98%: <u>http://www.ahrinet.org/ARI/util/showdoc.aspx?doc=576</u>
 ⁷⁹⁶ ComEd Energy Efficiency/ Demand Response Plan: Plan Year 2 (6/1/2009-5/31/2010) Evaluation Report: All

Electric Single Family Home Energy Performance Tune-Up Program Table 3-8

⁷⁹⁷ Navigant, ComEd-Nicor Gas EPY4/GPY1 Multi-Family Home Energy Savings Program Evaluation Report DRAFT 2013-01-28

⁷⁹⁸ Ibid

For example, a direct installed kitchen low flow faucet aerator in a single-family electric DHW home: $\Delta kWh = 1.0 * (((1.2 * 6.90 - 0.94 * 6.90) * 2.56 * 365.25 * 0.75) / 1) * 0.0894 * 0.97$ = 106.9 kWhFor example, a direct installed bath low flow faucet aerator in a multi-family electric DHW home: $\Delta kWh = 1.0 * (((1.2 * 2.95 - 0.94 * 2.95) * 2.1 * 365.25 * 0.90) / 1.5) * 0.0894 *$ 0.95 = 30.0 kWhFor example, a direct installed low flow faucet aerator in unknown faucet in a single-family electric DHW home: $\Delta kWh = 1.0 * (((1.2 * 9.85 - 0.94 * 9.85) * 2.56 * 365.25 * 0.795) / 3.83) * 0.0894 *$ 0.95 = 42.2 kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta kW = \Delta kWh / Hours * CF$$

Where:

 ΔkWh = calculated value above

Hours = Annual electric DHW recovery hours for faucet use per faucet

= ((GPM_base * L_base) * Household/FPH * 365.25 * DF) * 0.545⁷⁹⁹ / GPH

Building Type	Faucet location	Calculation	Hours per faucet
Single Family	Kitchen	((1.2 * 6.9) * 2.56/1 * 365.25 * 0.75) * 0.545 / 27.51	115
	Bathroom	((1.2 * 2.95) * 2.56/2.83 * 365.25 * 0.9) * 0.545 / 27.51	21
	Unknown	((1.2 * 9.85) * 2.56/3.83 * 365.25 * 0.795) * 0.545 / 27.51	45

 799 54.5% is the proportion of hot 120F water mixed with 54.1F supply water to give 90F mixed faucet water.

Multi Family	Kitchen	((1.2 * 6.9) * 2.1/1 * 365.25 * 0.75) * 0.545 / 27.51	94
	Bathroom	((1.2 * 2.95) * 2.1/1.5 * 365.25 * 0.9) * 0.545 / 27.51	32
	Unknown	((1.2 * 9.85) * 2.1/2.5 * 365.25 * 0.795) * 0.545 / 27.51	57

GPH = Gallons per hour recovery of electric water heater calculated for 65.9F temp rise (120-54.1), 98% recovery efficiency, and typical 4.5kW electric resistance storage tank.

= 27.51

CF = Coincidence Factor for electric load reduction

 $= 0.022^{800}$.

For example, a direct installed kitchen low flow faucet aerator in a single family electric DHW home:

 $\Delta kW = 106.9/115 * 0.022$

= 0.02kW

NATURAL GAS SAVINGS

ΔTherms = %FossilDHW * ((GPM_base * L_base - GPM_low * L_low) * Household * 365.25 *DF / FPH) * EPG gas * ISR

Where:

%FossilDHW = proportion of water heating supplied by Natural Gas heating

DHW fuel	%Fossil_DHW
Electric	0%
Natural Gas	100%
Unknown	84% ⁸⁰¹

EPG_gas = Energy per gallon of Hot water supplied by gas

⁸⁰¹ Default assumption for unknown fuel is based on EIA Residential Energy Consumption Survey (RECS) 2009 for Midwest Region, data for the state of IL. If utilities have specific evaluation results providing a more appropriate assumption for homes in a particular market or geographical area then that should be used

⁸⁰⁰ Calculated as follows: Assume 18% aerator use takes place during peak hours (based on: http://www.aquacraft.com/sites/default/files/pub/DeOreo-%282001%29-Disaggregated-Hot-Water-Use-in-Single-Family-Homes-Using-Flow-Trace-Analysis.pdf) There are 65 days in the summer peak period, so the percentage of total annual aerator use in peak period is 0.18*65/365 = 3.21%. The number of hours of recovery during peak periods is therefore assumed to be 3.21% *180 = 5.8 hours of recovery during peak period where 180 equals the average annual electric DHW recovery hours for faucet use including SF and MF homes. There are 260 hours in the peak period so the probability you will see savings during the peak period is 5.8/260 = 0.022

	= (8.33 * 1.0 * (WaterTemp - SupplyTemp)) / (RE_gas * 100,000)
	= 0.00399 Therm/gal for SF homes
	= 0.00446 Therm/gal for MF homes
RE_gas	= Recovery efficiency of gas water heater
	= 75% For SF homes ⁸⁰²
	= 67% For MF homes ⁸⁰³
100,000	= Converts Btus to Therms (btu/Therm)
Other v	ariables as defined above.

For example, a direct-installed kitchen low flow faucet aerator in a fuel DHW single-family home:			
ΔTherms	= 1.0 * (((1.2 * 6.90 - 0.94 * 6.90) * 2.56 * 365.25 *0.75) / 1) * 0.00399 * 0.95		
	= 4.77 Therms		
For example, a direct installed bath low flow faucet aerator in a fuel DHW multi-family home:			
ΔTherms	= 1.0 * (((1.2 * 2.95 – 0.94 * 2.95) * 2.1 * 365.25 * 0.90) /1.5) * 0.0046 * 0.95		
	= 1.50 Therms		
For example, a direct in	For example, a direct installed low flow faucet aerator in unknown faucet in a fuel DHW single-family home:		
ΔTherms	= 1.0 * (((1.2 * 9.85 – 0.94 * 9.85) * 2.56 * 365.25 * 0.795) /3.83) * 0.00399 * 0.95		
	= 1.88 Therms		

WATER IMPACT DESCRIPTIONS AND CALCULATION

Δgallons = ((GPM_base * L_base - GPM_low * L_low) * Household * 365.25 *DF / FPH) * ISR

Variables as defined above

⁸⁰² DOE Final Rule discusses Recovery Efficiency with an average around 0.76 for Gas Fired Storage Water heaters and 0.78 for standard efficiency gas fired tankless water heaters up to 0.95 for the highest efficiency gas fired condensing tankless water heaters. These numbers represent the range of new units however, not the range of existing units in stock. Review of AHRI Directory suggests range of recovery efficiency ratings for new Gas DHW units of 70-87%. Average of existing units is estimated at 75%.

⁸⁰³ Water heating in multi-family buildings is often provided by a larger central boiler. This suggests that the average recovery efficiency is somewhere between a typical central boiler efficiency of 0.59 and the 0.75 for single family homes. An average efficiency of 0.67 is used for this analysis as a default for multi-family buildings.

For example, a direct-installed kitchen low flow aerator in a single family home $\Delta gallons = (((1.2 * 6.9 - 0.94 * 6.9) * 2.56 * 365.25 * 0.75) / 1) * 0.95$ = 1195 gallonsFor example, a direct installed bath low flow faucet aerator in a multi-family home: $\Delta gallons = 1.0 * (((1.2 * 2.95 - 0.94 * 2.95) * 2.1 * 365.25 * 0.90) / 1.5) * 0.95$ = 335 gallonsFor example, a direct installed low flow faucet aerator in unknown faucet in a single-family home: $\Delta gallons = 1.0 * (((1.2 * 9.85 - 0.94 * 9.85) * 2.56 * 365.25 * 0.795) / 3.83) * 0.95$ = 472 gallons

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

SOURCES

ource ID	Reference
1	2011, DeOreo, William. California Single Family Water Use Efficiency Study. April 20, 2011.
2	2000, Mayer, Peter, William DeOreo, and David Lewis. Seattle Home Water Conservation Study. December 2000.
3	1999, Mayer, Peter, William DeOreo. Residential End Uses of Water. Published by AWWA Research Foundation and American Water Works Association. 1999.
4	2003, Mayer, Peter, William DeOreo. Residential Indoor Water Conservation Study. Aquacraft, Inc. Water Engineering and Management. Prepared for East Bay Municipal Utility District and the US EPA. July 2003.
5	2011, DeOreo, William. Analysis of Water Use in New Single Family Homes. By Aquacraft. For Salt Lake City Corporation and US EPA. July 20, 2011.
6	2011, Aquacraft. Albuquerque Single Family Water Use Efficiency and Retrofit Study. For Albuquerque Bernalillo County Water Utility Authority. December 1, 2011.
7	2008, Schultdt, Marc, and Debra Tachibana. Energy related Water Fixture Measurements: Securing the Baseline for Northwest Single Family Homes. 2008 ACEEE Summer Study on Energy Efficiency in Buildings.

5.4.5 Low Flow Showerheads

DESCRIPTION

This measure relates to the installation of a low flow showerhead in a single or multi-family household.

This measure may be used for units provided through Efficiency Kit's however the in service rate for such measures should be derived through evaluation results specifically for this implementation methodology.

This measure was developed to be applicable to the following program types: TOS, RF, NC, DI, KITS. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the installed equipment must be a low flow showerhead rated at 2.0 gallons per minute (GPM) or less. Savings are calculated on a per showerhead fixture basis.

DEFINITION OF BASELINE EQUIPMENT

For Direct-install programs, the baseline condition is assumed to be a standard showerhead rated at 2.5 GPM or greater.

For retrofit and time-of-sale programs, the baseline condition is assumed to be a representative average of existing showerhead flow rates of participating customers including a range of low flow showerheads, standard-flow showerheads, and high-flow showerheads.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 10 years⁸⁰⁴.

DEEMED MEASURE COST

The incremental cost for this measure is \$12⁸⁰⁵ or program actual.

For low flow showerheads provided in Efficiency Kits, the actual program delivery costs should be utilized.

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape R03 - Residential Electric DHW

⁸⁰⁴ Table C-6, Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007. Evaluations indicate that consumer dissatisfaction may lead to reductions in persistence, particularly in Multi-Family,

[&]quot;http://neep.org/uploads/EMV%20Forum/EMV%20Studies/measure_life_GDS%5B1%5D.pdf"

⁸⁰⁵ Direct-install price per showerhead assumes cost of showerhead (Market research average of \$7 and assess and install time of \$5 (20min @ \$15/hr)

COINCIDENCE FACTOR

The coincidence factor for this measure is assumed to be 2.78%⁸⁰⁶.

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Note these savings are per showerhead fixture

ΔkWh = %ElectricDHW * ((GPM_base * L_base - GPM_low * L_low) * Household * SPCD * 365.25 / SPH) * EPG electric * ISR

Where:

%ElectricDHW = proportion of water heating supplied by electric resistance heating

DHW fuel	%ElectricDHW
Electric	100%
Natural Gas	0%
Unknown	16% ⁸⁰⁷

GPM_base = Flow rate of the baseline showerhead

Program	GPM_base
Direct-install	2.67 ⁸⁰⁸
Retrofit or TOS	2.35 ⁸⁰⁹

⁸⁰⁶ Calculated as follows: Assume 11% showers take place during peak hours (based on:

http://www.aquacraft.com/sites/default/files/pub/DeOreo-%282001%29-Disaggregated-Hot-Water-Use-in-Single-Family-Homes-Using-Flow-Trace-Analysis.pdf). There are 65 days in the summer peak period, so the percentage of total annual aerator use in peak period is 0.11*65/365 = 1.96%. The number of hours of recovery during peak periods is therefore assumed to be 1.96% * 369 = 7.23 hours of recovery during peak period, where 369 equals the average annual electric DHW recovery hours for showerhead use including SF and MF homes with Direct Install and Retrofit/TOS measures. There are 260 hours in the peak period so the probability you will see savings during the peak period is 7.23/260 = 0.0278

⁸⁰⁷ Default assumption for unknown fuel is based on EIA Residential Energy Consumption Survey (RECS) 2009 for Midwest Region, data for the state of IL. If utilities have specific evaluation results providing a more appropriate assumption for homes in a particular market or geographical area then that should be used

⁸⁰⁸ Based on measured data from Ameren IL EM&V of Direct-Install program. Program targets showers that are rated 2.5 GPM or above.

⁸⁰⁹ Representative value from sources 1, 2, 4, 5, 6 and 7 (See Source Table at end of measure section) adjusted slightly upward to account for program participation which is expected to target customers with existing higher flow devices rather than those with existing low flow devices.

GPM_low = As-used flow rate of the low-flow showerhead, which may, as a result of measurements of program evaulations deviate from rated flows, see table below:

Rated Flow
2.0 GPM
1.75 GPM
1.5 GPM
Custom or Actual ⁸¹⁰

L_base = Shower length in minutes with baseline showerhead

= 8.20 min⁸¹¹

L_low = Shower length in minutes with low-flow showerhead

= 8.20 min⁸¹²

Household = Average number of people per hou	usehold
--	---------

Household Unit Type ⁸¹³	Household
Single-Family - Deemed	2.56 ⁸¹⁴
Multi-Family - Deemed	2.1 ⁸¹⁵
Custom	Actual Occupancy
	or Number of
	Bedrooms ⁸¹⁶

SPCD = Showers Per Capita Per Day

 $= 0.75^{817}$

365.25 = Days per year, on average.

⁸¹⁷ Source ID 3

⁸¹⁰ Note that actual values may be either a) program-specific minimum flow rate, or b)program-specific evaluationbased value of actual effective flow-rate due to increased duration or temperatures. The latter increases in likelihood as the rated flow drops and may become significant at or below rated flows of 1.5 GPM. The impact can be viewed as the inverse of the throttling described in the footnote for baseline flowrate.

 ⁸¹¹ Representative value from sources 1, 2, 3, 4, 5, and 6 (See Source Table at end of measure section)
 ⁸¹² Set equal to L_base.

⁸¹³ If household type is unknown, as may be the case for time of sale measures, then single family deemed value shall be used.

⁸¹⁴ ComEd Energy Efficiency/ Demand Response Plan: Plan Year 2 (6/1/2009-5/31/2010) Evaluation Report: All Electric Single Family Home Energy Performance Tune-Up Program citing 2006-2008 American Community Survey data from the US Census Bureau for Illinois cited on p. 17 of the PY2 Evaluation report. 2.75 * 93% evaluation adjustment

⁸¹⁵ ComEd PY3 Multi-Family Evaluation Report REVISED DRAFT v5 2011-12-08.docx

⁸¹⁶ Bedrooms are suitable proxies for household occupancy, and may be preferable to actual occupancy due to turnover rates in residency and non-adult population impacts.

SPH

= Showerheads Per Household so that per-showerhead savings fractions can be determined

Household Type	SPH
Single-Family	1.79 ⁸¹⁸
Multi-Family	1.3 ⁸¹⁹
Custom	Actual

EPG_electric	= Energy per gallon of hot water supplied by electric
	= (8.33 * 1.0 * (ShowerTemp - SupplyTemp)) / (RE_electric * 3412)
	= (8.33 * 1.0 * (105 – 54.1)) / (0.98 * 3412)
	= 0.127 kWh/gal
8.33	= Specific weight of water (lbs/gallon)
1.0	= Heat Capacity of water (btu/lb-F)
ShowerTemp	= Assumed temperature of water
	= 105F ⁸²⁰
SupplyTemp	= Assumed temperature of water entering house
	= 54.1F ⁸²¹
RE_electric	= Recovery efficiency of electric water heater
	= 98% ⁸²²
3412	= Converts Btu to kWh (btu/kWh)
ISR	= In service rate of showerhead
	= Dependant on program delivery method as listed in table below

⁸¹⁸ Based on findings from a 2009 ComEd residential survey of 140 sites, provided by Cadmus. ⁸¹⁹ Ibid.

⁸²⁰ Shower temperature cited from SBW Consulting, Evaluation for the Bonneville Power Authority, 1994, http://www.bpa.gov/energy/n/reports/evaluation/residential/faucet_aerator.cfm ⁸²¹ US DOE Building America Program. Building America Analysis Spreadsheet. For Chicago, IL

http://www1.eere.energy.gov/buildings/building_america/analysis_spreadsheets.html. ⁸²² Electric water heater have recovery efficiency of 98%: http://www.ahrinet.org/ARI/util/showdoc.aspx?doc=576

Selection	ISR
Direct Install - Single Family	0.98 ⁸²³
Direct Install – Multi Family	0.93 ⁸²⁴
Efficiency Kits	To be determined
	through evaluation

For example, a direct-installed 1.5 GPM low flow showerhead in a single family home with electric DHW where the number of showers is not known:

 $\Delta kWh = 1.0 * ((2.67 * 8.2 - 1.5 * 8.2) * 2.56 * 0.75 * 365.25 / 1.79) * 0.127 * 0.98$

= 468 kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh/Hours * CF$

Where:

∆kWh	= calculated value above
------	--------------------------

- Hours = Annual electric DHW recovery hours for showerhead use
 - = ((GPM_base * L_base) * Household * SPCD * 365.25) * 0.773⁸²⁵ / GPH
 - = 431 for SF Direct Install; 354 for MF Direct Install
 - = 380 for SF Retrofit and TOS; 311 for MF Retrofit and TOS
- GPH = Gallons per hour recovery of electric water heater calculated for 65.9F temp rise (120-54.1), 98% recovery efficiency, and typical 4.5kW electric resistance storage tank.
 - = 27.51
- CF = Coincidence Factor for electric load reduction
 - = 0.0278⁸²⁶

⁸²⁵ 77.3% is the proportion of hot 120F water mixed with 54.1F supply water to give 105F shower water.
 ⁸²⁶ Calculated as follows: Assume 11% showers take place during peak hours (based on:

⁸²³ Deemed values are from ComEd Energy Efficiency/ Demand Response Plan: Plan Year 2 (6/1/2009-5/31/2010) Evaluation Report: All Electric Single Family Home Energy Performance Tune-Up Program Table 3-8. Alternative ISRs may be developed for program delivery methods based on evaluation results.

⁸²⁴ Navigant, ComEd-Nicor Gas EPY4/GPY1 Multi-Family Home Energy Savings Program Evaluation Report DRAFT 2013-01-28

http://www.aquacraft.com/sites/default/files/pub/DeOreo-%282001%29-Disaggregated-Hot-Water-Use-in-Single-Family-Homes-Using-Flow-Trace-Analysis.pdf). There are 65 days in the summer peak period, so the percentage of total annual aerator use in peak period is 0.11*65/365 = 1.96%. The number of hours of recovery during peak

For example, a direct installed 1.5 GPM low flow showerhead in a single family home with electric DHW where the number of showers is not known:

 $\Delta kW = 468/431 * 0.0278$

= 0.030 kW

NATURAL GAS SAVINGS

∆Therms	= %FossilDHW * ((GPM_base * L_base - GPM_low * L_low) * Household * SPCD
	* 365.25 / SPH) * EPG_gas * ISR

Where:

%FossilDHW = proportion of water heating supplied by Natural Gas heating

DHW fuel	%Fossil_DHW
Electric	0%
Natural Gas	100%
Unknown	84% ⁸²⁷

EPG_gas	= Energy per gallon of Hot water supplied by gas				
	= (8.33 * 1.0 * (ShowerTemp - SupplyTemp)) / (RE_gas * 100,000)				
	= 0.0054 Therm/gal for SF homes				
	= 0.0063 Therm/gal for MF homes				
RE_gas	= Recovery efficiency of gas water heater				
	= 78% For SF homes ⁸²⁸				
	= 67% For MF homes ⁸²⁹				

periods is therefore assumed to be 1.96% * 369 = 7.23 hours of recovery during peak period where 369 equals the average annual electric DHW recovery hours for showerhead use including SF and MF homes with Direct Install and Retrofit/TOS measures. There are 260 hours in the peak period so the probability you will see savings during the peak period is 7.23/260 = 0.0278

⁸²⁷ Default assumption for unknown fuel is based on EIA Residential Energy Consumption Survey (RECS) 2009 for Midwest Region, data for the state of IL. If utilities have specific evaluation results providing a more appropriate assumption for homes in a particular market or geographical area then that should be used

⁸²⁸ DOE Final Rule discusses Recovery Efficiency with an average around 0.76 for Gas Fired Storage Water heaters and 0.78 for standard efficiency gas fired tankless water heaters up to 0.95 for the highest efficiency gas fired condensing tankless water heaters. These numbers represent the range of new units however, not the range of existing units in stock. Review of AHRI Directory suggests range of recovery efficiency ratings for new Gas DHW units of 70-87%. Average of existing units is estimated at 78%.

⁸²⁹ Water heating in multi-family buildings is often provided by a larger central boiler. This suggests that the

100,000 = Converts Btus to Therms (btu/Therm)

Other variables as defined above.

For example, a direct installed 1.5 GPM low flow showerhead in a gas fired DHW single family home where the number of showers is not known: $\Delta Therms = 1.0 * ((2.67 * 8.2 - 1.5 * 8.2) * 2.56 * 0.75 * 365.25 / 1.79) * 0.0054 * 0.98$ = 19.9 therms

WATER IMPACT DESCRIPTIONS AND CALCULATION

 Δgallons
 = ((GPM_base * L_base - GPM_low * L_low) * Household * SPCD * 365.25 / SPH) * ISR

 Variables as defined above

 For example, a direct installed 1.5 GPM low flow showerhead where the number of showers is not known:

 Δgallons
 = ((2.67 * 8.2 - 1.5 * 8.2) * 2.56 * 0.75 * 365.25 / 1.79) * 0.98

 = 3438 gallons

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

average recovery efficiency is somewhere between a typical central boiler efficiency of 0.59 and the 0.75 for single family homes. An average efficiency of 0.67 is used for this analysis as a default for multi-family buildings.

Source ID	Reference
1	2011, DeOreo, William. California Single Family Water Use Efficiency Study. April 20, 2011.
2	2000, Mayer, Peter, William DeOreo, and David Lewis. Seattle Home Water Conservation Study. December 2000.
3	1999, Mayer, Peter, William DeOreo. Residential End Uses of Water. Published by AWWA Research Foundation and American Water Works Association. 1999.
4	2003, Mayer, Peter, William DeOreo. Residential Indoor Water Conservation Study. Aquacraft, Inc. Water Engineering and Management. Prepared for East Bay Municipal Utility District and the US EPA. July 2003.
5	2011, DeOreo, William. Analysis of Water Use in New Single Family Homes. By Aquacraft. For Salt Lake City Corporation and US EPA. July 20, 2011.
6	2011, Aquacraft. Albuquerque Single Family Water Use Efficiency and Retrofit Study. For Albuquerque Bernalillo County Water Utility Authority. December 1, 2011.
7	2008, Schultdt, Marc, and Debra Tachibana. Energy related Water Fixture Measurements: Securing the Baseline for Northwest Single Family Homes. 2008 ACEEE Summer Study on Energy Efficiency in Buildings.

SOURCES

MEASURE CODE: RS-HWE-LFSH-V02-130601

5.4.6 Water Heater Temperature Setback

DESCRIPTION

The thermostat setting of a hot water tank is lowered to 120 degrees. The savings are from the Connecticut TRM which considers that for some draws, the hot water flow will be increased to make up for the lower temperature, and that additional dishwasher's supplemental heating will be required.

This measure was developed to be applicable to the following program types: NC, RF, DI. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

High efficiency is a hot water tank with the thermostat set at 120 degrees.

DEFINITION OF BASELINE EQUIPMENT

The baseline condition is a hot water tank with a thermostat setting that is higher than 120 degrees, typically systems with settings of 130 degrees or higher, this analysis assumes a 15 degree setback. Note if there are more than one DHW tanks in the home at or higher than 130 degrees and they are all turned down, then the savings per tank can be multiplied by the number of tanks.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The assumed lifetime of the measure is 2 years.

DEEMED MEASURE COST

The incremental cost of a setback is assumed to be \$5 for contractor time.

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape R03 - Residential Electric DHW

COINCIDENCE FACTOR

The summer peak coincidence factor for this measure is assumed to be 1.

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

For homes with electric DHW tanks:

ΔkWh =	= 86.4 kWh ⁸³⁰
--------	---------------------------

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh / Hours * CF$

Where:

Hours	= 8766
CF	= Summer Peak Coincidence Factor for measure
	= 1
ΔkW	= 86.4 / 8766 * 1
	= 0.00986 kW
NATURAL GAS SAVINGS	

For homes with gas water heaters:

∆Therms	= 6.4 therms ⁸³¹		
ΔkWh	= -34.2 kWh ⁸³²		

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-HWE-TMPS-V02-130601

⁸³⁰ All savings estimates are based on UL and CLP Program Savings Documentation, 2010. This is the net savings after taking into account increased use of dishwasher's supplemental heating. <u>http://neep.org/uploads/EMV%20Forum/EMV%20Studies/CT-UI_CLP_2010_PSD.pdf</u>

⁸³¹ All savings estimates are based on UL and CLP Program Savings Documentation, 2010. The Δtherms are the gross savings for a gas heater. <u>http://neep.org/uploads/EMV%20Forum/EMV%20Studies/CT-</u> UI CLP 2010 PSD.pdf

 $^{^{832}}$ The Δ kWh accounts for the increased use of dishwasher's supplemental heating.

5.4.7 Water Heater Wrap

DESCRIPTION

This measure relates to a Tank Wrap or insulation "blanket" that is wrapped around the outside of a hot water tank to reduce stand-by losses. This measure applies only for homes that have an electric water heater that is not already well insulated. Generally this can be determined based upon the appearance of the tank.⁸³³

This measure was developed to be applicable to the following program types: RF, DI. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The measure is a properly installed, R-8 or greater insulating tank wrap to reduce standby energy losses from the tank to the surrounding ambient area.

DEFINITION OF BASELINE EQUIPMENT

The baseline is a standard electric domestic hot water tank without an additional tank wrap. Gas storage water heaters are excluded due to the limitations of retrofit wrapping and the associated impacts on reduced savings and safety.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The measure life is assumed to be 5 years⁸³⁴.

DEEMED MEASURE COST

The incremental cost for this measure will be the actual material cost of procuring and labor cost of installing the tank wrap.

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape R03 - Residential Electric DHW

COINCIDENCE FACTOR

This measure assumes a flat loadshape and as such the coincidence factor is 1.

Algorithm

⁸³³ Visually determine whether it is insulated by foam (newer, rigid, and more effective) or fiberglass (older, gives to gently pressure, and not as effective)

⁸³⁴ This estimate assumes the tank wrap is installed on an existing unit with 5 years remaining life.

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

For electric DHW systems:

$$\Delta kWh = ((U_{base}A_{base} - U_{insul}A_{insul}) * \Delta T * Hours) / (3.412 * \eta DHW)$$

Where:

U _{base}	= Overall heat transfer coefficient prior to adding tank wrap (Btu/Hr-F-ft2).
U _{insul}	= Overall heat transfer coefficient after addition of tank wrap (Btu/Hr-F-ft2).
A _{base}	= Surface area of storage tank prior to adding tank wrap (square feet) ⁸³⁵
A _{insul}	= Surface area of storage tank after addition of tank wrap (square feet) ⁸³⁶
ΔΤ	= Average temperature difference between tank water and outside air temperature (°F)
	= 60°F ⁸³⁷
Hours	= Number of hours in a year (since savings are assumed to be constant over year).
	= 8766
3412	= Conversion from BTU to kWh
ηDHW	= Recovery efficiency of electric hot water heater
	= 0.98 ⁸³⁸

⁸³⁵ Area includes tank sides and top to account for typical wrap coverage.

⁸³⁶ Ibid.

 ⁸³⁷ Assumes 125°F water leaving the hot water tank and average temperature of basement of 65°F.
 ⁸³⁸ Electric water heater have recovery efficiency of 98%: <u>http://www.ahrinet.org/ARI/util/showdoc.aspx?doc=576</u>

Capacity (gal)	Rbase	Rinsul	Abase (ft2) ⁸³⁹	Ainsul (ft2) ⁸⁴⁰	ΔkWh	ΔkW
30	8	16	19.16	20.94	171	0.0195
30	10	18	19.16	20.94	118	0.0135
30	12	20	19.16	20.94	86	0.0099
30	8	18	19.16	20.94	194	0.0221
30	10	20	19.16	20.94	137	0.0156
30	12	22	19.16	20.94	101	0.0116
40	8	16	23.18	25.31	207	0.0236
40	10	18	23.18	25.31	143	0.0164
40	12	20	23.18	25.31	105	0.0120
40	8	18	23.18	25.31	234	0.0268
40	10	20	23.18	25.31	165	0.0189
40	12	22	23.18	25.31	123	0.0140
50	8	16	24.99	27.06	225	0.0257
50	10	18	24.99	27.06	157	0.0179
50	12	20	24.99	27.06	115	0.0131
50	8	18	24.99	27.06	255	0.0291
50	10	20	24.99	27.06	180	0.0206
50	12	22	24.99	27.06	134	0.0153
80	8	16	31.84	34.14	290	0.0331
80	10	18	31.84	34.14	202	0.0231
80	12	20	31.84	34.14	149	0.0170
80	8	18	31.84	34.14	328	0.0374
80	10	20	31.84	34.14	232	0.0265
80	12	22	31.84	34.14	173	0.0198

The following table has default savings for various tank capacity and pre and post R-VALUES.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta kW = \Delta kWh / 8766 * CF$$

Where:

ΔkWh	= kWh savings from tank wrap installation
8766	= Number of hours in a year (since savings are assumed to be constant over year).
CF	= Summer Coincidence Factor for this measure
	= 1.0

The table above has default kW savings for various tank capacity and pre and post R-values.

⁸³⁹ Assumptions from PA TRM. Area values were calculated from average dimensions of several commercially available units, with radius values measured to the center of the insulation. Area includes tank sides and top to account for typical wrap coverage.

⁸⁴⁰ Assumptions from PA TRM. A_{insul} was calculated by assuming that the water heater wrap is a 2" thick fiberglass material.

NATURAL GAS SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-HWE-WRAP-V01-120601

5.5 Lighting End Use

5.5.1 ENERGY STAR Compact Fluorescent Lamp (CFL)

DESCRIPTION

A low wattage ENERGY STAR qualified compact fluorescent screw-in bulb (CFL) is installed in place of a baseline screw-in bulb.

This characterization assumes that the CFL is installed in a residential location. If the implementation strategy does not allow for the installation location to be known (e.g. an upstream retail program), a deemed split of 96% Residential and 4% Commercial assumptions should be used⁸⁴¹.

Federal legislation stemming from the Energy Independence and Security Act of 2007 (EISA) will require all general-purpose light bulbs between 40W and 100W to be approximately 30% more energy efficient than current incandescent bulbs. Production of 100W, standard efficacy incandescent lamps ended in 2012, followed by restrictions on 75W in 2013 and 60W and 40W in 2014. The baseline for this measure will therefore become bulbs (improved incandescent or halogen) that meet the new standard.

To account for these new standards, the expected delay in clearing retail inventory, and the potential for movement of product across state borders, the first year annual savings for this measure is reduced for 100W equivalent bulbs in June 2012, for 75W equivalent bulbs in June 2013 and for 60W and 40W equivalent bulbs in June 2014.

In addition, since during the lifetime of a CFL, the baseline bulb will be replaced multiple times, the annual savings claim must also be reduced within the life of the measure. For example, for 60W equivalent bulbs installed in 2012, the full savings (as calculated below in the Algorithm) should be claimed for the first two years, but a reduced annual savings based on the EISA-compliant baseline should be claimed for the remainder of the measure life. The appropriate adjustment factors are provided in the 'Mid Life Baseline Adjustment' section below.

Finally, a provision in the EISA regulations requires that by January 1, 2020, all lamps meet efficiency criteria of at least 45 lumens per watt, in essence making the baseline equivalent to a current day CFL. Therefore the measure life (number of years that savings should be claimed) should be reduced once the assumed lifetime of the bulb exceeds 2020. Due to expected delay in clearing retail inventory and to account for the operating life of a halogen incandescent potentially spanning over 2020, this shift is assumed not to occur until mid-2020.

This measure was developed to be applicable to the following program types: TOS, NC, DI, KITS. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the high-efficiency equipment must be a standard ENERGY STAR qualified compact fluorescent lamp.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is assumed to be a standard incandescent light bulb, up until when EISA regulations dictate higher efficiency baseline bulbs. A 100W baseline bulb becomes a 72W bulb in June 2012, a 75W bulb

⁸⁴¹ RES v C&I split is based on a weighted (by sales volume) average of ComEd PY3 and PY4 and Ameren PY5 in store intercept survey results.

becomes 53W in June 2013 and 60W and 40W bulbs become 43W and 29W respectively in June 2014. Annual savings are reduced to account for this baseline shift within the life of a measure and the measure life is reduced to account for the baseline replacements becoming equivalent to a current day CFL by June 2020.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

Residential, Multi Family In unit bulbs and Unknown: The expected measure life (number of years that savings should be claimed) for bulbs installed June 2012 – May 2015 is assumed to be 5.2 years⁸⁴². For bulbs installed June 2015 – May 2016, this would be reduced to 5 years and then for every subsequent year should be reduced by one year⁸⁴³.

Multi Family Common area bulbs: The expected measure life is 1.7 years⁸⁴⁴ for bulbs installed June 2012 –May 2017.

Exterior bulbs: The expected measure life is 4.4 years⁸⁴⁵ for bulbs installed June 2012 – May 2015. For bulbs installed June 2016-May 2017 this would be reduced to 4 years.

DEEMED MEASURE COST

For the Retail (Time of Sale) measure, the incremental capital cost is \$1.90, from June 2012 – May 2013, \$1.80 from June 2013 – May 2014 and \$1.50 from June 2014 – May 2015⁸⁴⁶.

For the Direct Install measure, the full cost of \$2.50 per bulb should be used, plus \$5 labor cost⁸⁴⁷ for a total of \$7.50 per bulb. However actual program delivery costs should be utilized if available.

For bulbs provided in Efficiency Kits, the actual program delivery costs should be utilized.

DEEMED O&M COST ADJUSTMENTS

For those bulbs not impacted by EISA (25W incandescent equivalents), a simple O&M impact should be calculated based on baseline replacement cost of \$0.50 and a lifetime of 1.07 years for Residential Interior and In-unit Multi Family, 0.17 years for Multi Family common area, 0.55 years for Exterior and 1.0 year for Unknown location⁸⁴⁸. For bulbs impacted by EISA, an annualized baseline replacement cost is provided below

Residential Interior, in-unit Multi Family and Unknown:

⁸⁴⁸ Lamp life calculated by dividing 1000 hour rated life with hours of use.

⁸⁴² Jump et al 2008: "Welcome to the Dark Side: The Effect of Switching on CFL Measure Life" indicates that the "observed life" of CFLs with an average rated life of 8000 hours (8000 hours is the average rated life of ENERGY STAR bulbs (<u>http://www.energystar.gov/index.cfm?c=cfls.pr_crit_cfls</u>) is 5.2 years.

⁸⁴³ Since the replacement baseline bulb from 2020 on will be equivalent to a CFL, no additional savings should be claimed from that point. Due to expected delay in clearing stock from retail outlets and to account for the operating life of a halogen incandescent potentially spanning over 2020, this shift is assumed not to occur until mid-2020.

⁸⁴⁴ Based on using 10,000 hour rated life assumption since significantly less switching with higher use. 10,000/5950 = 1.7years.

 ⁸⁴⁵ Based on using 8,000 hour rated life assumption since more switching and use ourdoors. 8,000/1825 = 4.4years
 ⁸⁴⁶ Based on Northeast Regional Residential Lighting Strategy (RLS) report, prepared by EFG, D&R International,

Ecova and Optimal Energy, applying sales weighting and phase-in of EISA regulations. Assumption is \$2.50 for CFL over three years and \$0.6 for baseline in 2012, \$0.70 in 2013 and \$1.00 in 2014 as more expensive EISA qualified bulbs become baseline.

⁸⁴⁷ Based on 15 minutes at \$20 an hour. Includes some portion of travel time to site.

The Net Present Value of the baseline replacement costs for each CFL lumen range and installation year (2012 - 2017) are presented below 849 :

	NPV of baseline replacement costs				
Lumen Range	June 2012 - May 2013	June 2013 - May 2014	June 2015 - May 2016	June 2016 - May 2017	
1490-2600	\$5.41	\$5.41	\$5.41	\$5.18	\$3.99
1050-1489	\$5.41	\$5.41	\$5.41	\$5.18	\$3.99
750-1049	\$4.48	\$5.41	\$5.41	\$5.18	\$3.99
310-749	\$4.48	\$5.41	\$5.41	\$5.18	\$3.99

The annual levelized baseline replacement costs using the statewide real discount rate of 5.23% are presented below:

	Levelized annual replacement cost savings				
Lumen Range	June 2012 - May 2013	June 2013 - May 2014	June 2014 - May 2015	June 2015 - May 2016	June 2016 - May 2017
1490-2600	\$1.22	\$1.22	\$1.22	\$1.16	\$0.90
1050-1489	\$1.22	\$1.22	\$1.22	\$1.16	\$0.90
750-1049	\$1.01	\$1.22	\$1.22	\$1.16	\$0.90
310-749	\$1.01	\$1.22	\$1.22	\$1.16	\$0.90

Multi Family common areas:

The Net Present Value of the baseline replacement costs for each CFL lumen range and installation year (2012 - 2016) are presented below:

	NPV of baseline replacement costs			
Lumen Range	June 2012 - May 2013	June 2013 - May 2014	June 2014 - May 2017	
Edifien Kange	1VIAY 2013			
1490-2600	\$13.09	\$13.09	\$13.09	
1050-1489	\$8.24	\$13.09	\$13.09	
750-1049	\$4.36	\$8.24	\$13.09	
310-749	\$4.36	\$8.24	\$13.09	

⁸⁴⁹ See 'RES Standard CFL O&M calc.xls' for more details.

The annual levelized baseline replacement costs using the statewide real discount rate of 5.23% are presented below:

	Levelized annual replacement cost savings			
	June 2012 - June 2013 -		June 2014 -	
Lumen Range	May 2013	May 2014	May 2017	
1490-2600	\$8.34	\$8.34	\$8.34	
1050-1489	\$5.25	\$8.34	\$8.34	
750-1049	\$2.78	\$5.25	\$8.34	
310-749	\$2.78	\$5.25	\$8.34	

Exterior:

The Net Present Value of the baseline replacement costs for each CFL lumen range and installation year (2012 - 2017) are presented below:

	NPV of baseline replacement costs				
Lumen Range	June 2012 - May 2013	June 2013 - May 2014	June 2014 - May 2015	June 2015 - May 2016	June 2016 - May 2017
1490-2600	\$9.36	\$9.36	\$9.36	\$9.36	\$8.49
1050-1489	\$8.55	\$9.36	\$9.36	\$9.36	\$8.49
750-1049	\$6.85	\$8.55	\$9.36	\$9.36	\$8.49
310-749	\$6.85	\$8.55	\$9.36	\$9.36	\$8.49

The annual levelized baseline replacement costs using the statewide real discount rate of 5.23% are presented below:

	Levelized annual replacement cost savings				
Lumen Range	June 2012 - May 2013	June 2013 - May 2014	June 2014 - May 2015	June 2015 - May 2016	June 2016 - May 2017
1490-2600	\$2.45	\$2.45	\$2.45	\$2.45	\$2.22
1050-1489	\$2.23	\$2.45	\$2.45	\$2.45	\$2.22
750-1049	\$1.79	\$2.23	\$2.45	\$2.45	\$2.22
310-749	\$1.79	\$2.23	\$2.45	\$2.45	\$2.22

LOADSHAPE

- Loadshape R06 Residential Indoor Lighting
- Loadshape R07 Residential Outdoor Lighting
- Loadshape C06 Commercial Indoor Lighting⁸⁵⁰

⁸⁵⁰ For Multi Family common area lighting.

COINCIDENCE FACTOR

The summer peak coincidence factor is assumed to be 9.5%⁸⁵¹ for Residential and in-unit Multi Family bulbs and 75%⁸⁵² for Multi Family common area bulbs.

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

ΔkWh = ((WattsBase - WattsEE) / 1000) * ISR * Hours * WHFe

Where:

WattsBase

= Based on lumens of CFL bulb and program year installed:

Minimum Lumens	Maximum Lumens	Incandescent Equivalent Pre-EISA 2007 (Watts _{Base})	Incandescent Equivalent Post-EISA 2007 (Watts _{Base})	Effective date from which Post – EISA 2007 assumption should be used
1490	2600	100	72	June 2012
1050	1489	75	53	June 2013
750	1049	60	43	June 2014
310	749	40	29	June 2014
250	309	25	25	n/a

WattsEE = Actual wattage of CFL purchased / installed

ISR

= In Service Rate, the percentage of units rebated that are actually in service.

⁸⁵¹ Based on lighting logger study conducted as part of the PY3 ComEd Residential Lighting Program evaluation. "ComEd Residential Energy Star Lighting Program Metering Study: Overview of Study Protocols" http://www.icc.illinois.gov/downloads/public/edocket/303835.pdf

[&]quot;Memo RE: Lighting Logger Study Results – Version 2, Date: May 27, 2011, To: David Nichols and ComEd Residential Lighting Interested Parties, From: Amy Buege and Jeremy Eddy; Navigant Evaluation Team" <u>http://www.icc.illinois.gov/downloads/public/edocket/303834.pdf</u>

⁸⁵² Coincidence factor is based on healthcare/clinic value (used as proxy for multi family common area lighting with similar hours of use) developed using Equest models for various building types averaged across 5 climate zones for Illinois.

Program	Weighted Average 1 st year In Service Rate (ISR)	2 nd year Installations	3 rd year Installations	Final Lifetime In Service Rate
Retail (Time of Sale) or Efficiency Kits	69.5% ⁸⁵³	15.4%	13.1%	98.0% ⁸⁵⁴
Direct Install	96.9% ⁸⁵⁵			

Hours

= Average hours of use per year

Installation Location	Hours
Residential and in-unit Multi Family	938 ⁸⁵⁶
Multi Family Common Areas	5,950 ⁸⁵⁷
Exterior	1,825 858
Unknown	1,000 859

WHFe = Waste heat factor for energy to account for cooling energy savings from efficient lighting

Bulb Location	WHFe
Interior single family or unknown location	1.06 860

⁸⁵³ 1st year in service rate is based upon review of PY1-3 evaluations from ComEd and Ameren (see 'IL RES Lighting ISR.xls' for more information. The average first year ISR for each utility was calculated weighted by the number of bulbs in the each year's survey. This was then weighted by annual sales to give a statewide assumption. ⁸⁵⁴ The 98% Lifetime ISR assumption is based upon review of two evaluations:

'Nexus Market Research, RLW Analytics and GDS Associates study; "New England Residential Lighting Markdown Impact Evaluation, January 20, 2009' and 'KEMA Inc, Feb 2010, Final Evaluation Report:, Upstream Lighting Program, Volume 1.' This implies that only 2% of bulbs purchased are never installed. The second and third year installations are based upon Ameren analysis of the Californian KEMA study showing that 54% of future installs occur in year 2 and 46% in year 3. The 2nd and 3rd year installations should be counted as part of those future

program year savings. ⁸⁵⁵ Based upon review of the PY2 and PY3 ComEd Direct Install program surveys. This value includes bulb failures in the 1st year to be consistent with the Commission approval of annualization of savings for first year savings claims. ComEd PY2 All Electric Single Family Home Energy Performance Tune-Up Program Evaluation, Navigant Consulting, December 21, 2010. http://www.icc.illinois.gov/downloads/public/edocket/287090.pdf.

⁸⁵⁶ Based on lighting logger study conducted as part of the PY3 ComEd Residential Lighting Program evaluation. http://www.icc.illinois.gov/downloads/public/edocket/323818.pdf

⁸⁵⁷ Multi family common area lighting assumption is 16.3 hours per day (5950 hours per year) based on Focus on Energy Evaluation, ACES Deemed Savings Desk Review, November 2010.

⁸⁵⁸ Based on secondary research conducted as part of the PY3 ComEd Residential Lighting Program evaluation. http://www.icc.illinois.gov/downloads/public/edocket/323818.pdf

⁸⁵⁹ Assumes 7% exterior lighting, based on lighting logger study conducted as part of the PY3 ComEd Residential Lighting Program evaluation. http://www.icc.illinois.gov/downloads/public/edocket/323818.pdf

⁸⁶⁰</sup> The value is estimated at 1.06 (calculated as 1 + (0.66*(0.27 / 2.8)). Based on cooling loads decreasing by 27%</sup>of the lighting savings (average result from REMRate modeling of several different configurations and IL locations of homes), assuming typical cooling system operating efficiency of 2.8 COP (starting from standard assumption of SEER 10.5 central AC unit, converted to 9.5 EER using algorithm (-0.02 * SEER2) + (1.12 * SEER) (from Wassmer, M. (2003). A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at Boulder), converted to COP = EER/3.412 = 2.8COP) and 66% of homes in Illinois

Multi family in unit	1.04 861
Multi family common area	1.04 862
Exterior or uncooled location	1.0

DEFERRED INSTALLS

As presented above, the characterization assumes that a percentage of bulbs purchased are not installed until Year 2 and Year 3 (see ISR assumption above). The Illinois Technical Advisory Committee has determined the following methodology for calculating the savings of these future installs.

Year 1 (Purchase Year) installs:	Characterized using assumptions provided above or evaluated assumptions if available.
Year 2 and 3 installs:	Characterized using delta watts assumption and hours of use from the Install Year i.e. the actual deemed (or evaluated if available) assumptions active in Year 2 and 3 should be applied.

The NTG factor for the Purchase Year should be applied.

For example, for a 14W CFL (60W standard incandescent and 43W EISA qualified incandescent/halogen) purchased in 2013.

 $\Delta kWH_{1st vear installs} = ((60 - 14) / 1000) * 0.695 * 1000 * 1.06$

= 33.9 kWh

 $\Delta kWH_{2nd \ year \ installs} = ((43 - 14) / 1000) * 0.154 * 1000 * 1.06$

= 4.7 kWh

Note: Here we assume no change in hours assumption. NTG value from Purchase year applied.

 $\Delta kWH_{3rd vear installs} = ((43 - 14) / 1000) * 0.131 * 1000 * 1.06$

= 4.0 kWh

having central cooling ("Table HC7.9 Air Conditioning in Homes in Midwest Region, Divisions, and States, 2009 from Energy Information Administration", 2009 Residential Energy Consumption Survey; http://www.eia.gov/consumption/residential/data/2009/xls/HC7.9%20Air%20Conditioning%20in%20Midwest%20 Region.xls)

http://205.254.135.7/consumption/residential/data/2009/xls/HC7.1%20Air%20Conditioning%20by%20Housing%2

⁸⁶² Ibid.

⁸⁶¹ As above but using estimate of 45% of multi family buildings in Illinois having central cooling (based on data from "Table HC7.1 Air Conditioning in U.S. Homes, By Housing Unit Type, 2009" which is for the whole of the US, scaled to IL air conditioning prevalence compared to US average);

MID LIFE BASELINE ADJUSTMENT

During the lifetime of a CFL, a baseline incandescent bulb would need to be replaced multiple times. Since the baseline bulb changes over time, the annual savings claim must be reduced within the life of the measure to account for this baseline shift in cost-effectiveness analysis.

For example, for 60W equivalent bulbs installed in 2012, the full savings (as calculated above in the Algorithm) should be claimed for the first two years, but a reduced annual savings claimed for the remainder of the measure life. If the delta watts assumption is already based on the post EISA value, no mid-life adjustment is necessary. For deferred installs (described above) the delta watts and appropriate mid life adjustment (if any) should be applied.

Lumen Range	Pre EISA WattsBase	Post EISA WattsBase	CFL Equivalent	Delta Watts Before EISA	Delta Watts After EISA	Mid Life Adjustment	Adjustment made from date
1490-2600	100	72	25	75	47	63%	N/A (2012 is already post EISA)
1050-1489	75	53	20	55	33	60%	June, 2013
750-1049	60	43	14	46	29	63%	June, 2014
310-749	40	29	11	29	18	62%	June, 2014

The appropriate adjustment factors are provided below.

For example, a 14W standard CFL purchased and *installed* during the June 2013 – May 2014 program year (i.e. for this example we are ignoring the ISR):

First Year savings:

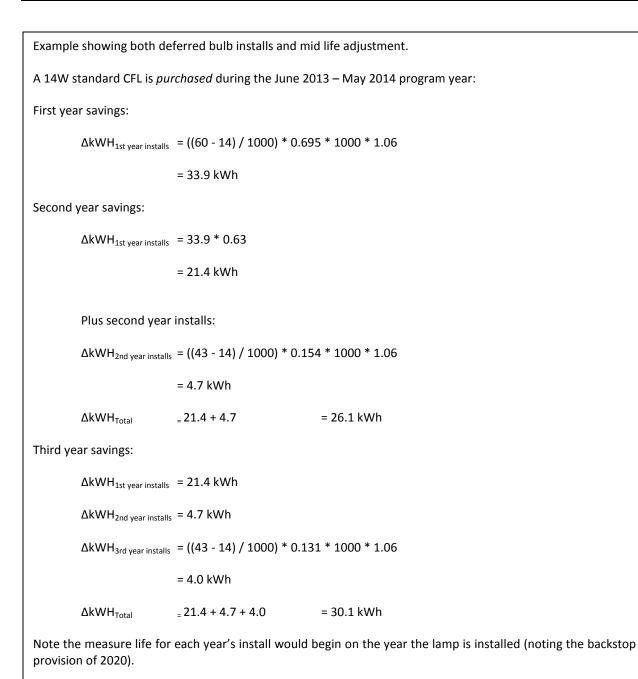
 $\Delta kWH_{1st year} = ((60 - 14) / 1000) * 1000 * 1.06$

= 48.8 kWh

This value should be claimed in June 2013 – May 2014. However after one year the baseline bulb would need to be replaced. For the purpose of cost-effectiveness analysis, from June 2014 the baseline shifts to the EISA compliant 43W bulb and so savings for that same bulb purchased and installed in 2013 will claim the following in that second year and for all subsequent years through the measure life:

Annual savings for same installed bulb after 1st replacement:

 $\Delta kWH_{remaining vears} = ((43 - 14) / 1000) * 1000 * 1.06$


= 30.7 kWh

Another way to calculate this is to use the mid life adjustment factors provided above:

= 48.8 * 0.63

= 30.7 kWh

Note these adjustments should be applied to kW and fuel impacts.

HEATING PENALTY

If electric heated home (if heating fuel is unknown assume gas, see Natural Gas section):

$$\Delta kWh^{863} = -(((WattsBase - WattsEE) / 1000) * ISR * Hours * HF) / \eta Heat$$

Where:

HF

	= Heating Factor or percentage of light savings that must be heated
--	---

- = $49\%^{864}$ for interior or unknown location
- = 0% for exterior or unheated location

ηHeat = Efficiency in COP of Heating equipment

= actual. If not available use⁸⁶⁵:

System Type	Age of Equipment	HSPF Estimate	ηHeat (COP Estimate)
Heat Pump	Before 2006	6.8	2.00
ficut f unip	After 2006	7.7	2.26
Resistance	N/A	N/A	1.00

For example, a 14W standard CFL is purchased in 2013 and installed in home with 2.0 COP Heat Pump:

 $\Delta kWh_{1st year} = -(((60 - 14) / 1000) * 0.695 * 938 * 0.49) / 2.0$

= - 7.3 kWh

Second and third year install savings should be calculated using the appropriate ISR and the delta watts and hours from the install year. The appropriate baseline shift adjustment should then be applied to all installs.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

WHFd

 $\Delta kW = ((WattsBase - WattsEE) / 1 000) * ISR * WHFd * CF$

Where:

= Waste heat factor for demand to account for cooling savings from efficient

⁸⁶³ Negative value because this is an increase in heating consumption due to the efficient lighting.

⁸⁶⁴ This means that heating loads increase by 49% of the lighting savings. This is based on the average result from REMRate modeling of several different configurations and IL locations of homes.

⁸⁶⁵ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.

lighting.

Bulb Location	WHFd
Interior single family or unknown location	1.11866
Multi family in unit	1.07 ⁸⁶⁷
Multi family common area	1.07 868
Exterior or uncooled location	1.0

CF

= Summer Peak Coincidence Factor for measure.

Bulb Location	CF
Interior single family or unknown location	9.5% ⁸⁶⁹
Multi family in unit	9.5% ⁸⁷⁰
Multi family common area	75% 871

Other factors as defined above

For example, a 14W standard CFL is purchased and installed in a single family interior location in 2012:

= ((60 - 14) / 1000) * 0.695 * 1.11 * 0.095 ΛkW

= 0.003 kW

Second and third year install savings should be calculated using the appropriate ISR and the delta watts and hours from the install year. The appropriate baseline shift adjustment should then be applied to all installs.

NATURAL GAS SAVINGS

Heating Penalty if Natural Gas heated home (or if heating fuel is unknown):

http://205.254.135.7/consumption/residential/data/2009/xls/HC7.1%20Air%20Conditioning%20by%20Housing%2 0Unit%20Type.xls.

⁸⁶⁶ The value is estimated at 1.11 (calculated as 1 + (0.66 * 0.466 / 2.8)). See footnote relating to WHFe for details. Note the 46.6% factor represents the average Residential cooling coincidence factor calculated by dividing average load during the peak hours divided by the maximum cooling load.

⁸⁶⁷ As above but using estimate of 45% of multi family buildings in Illinois having central cooling (based on data from "Table HC7.1 Air Conditioning in U.S. Homes, By Housing Unit Type, 2009" which is for the whole of the US, scaled to IL air conditioning prevalence compared to US average);

⁸⁶⁸ Ibid

⁸⁶⁹ Based on lighting logger study conducted as part of the PY3 ComEd Residential Lighting Program evaluation. "ComEd Residential Energy Star Lighting Program Metering Study: Overview of Study Protocols" http://www.icc.illinois.gov/downloads/public/edocket/303835.pdf

[&]quot;Memo RE: Lighting Logger Study Results – Version 2, Date: May 27, 2011, To: David Nichols and ComEd Residential Lighting Interested Parties, From: Amy Buege and Jeremy Eddy; Navigant Evaluation Team" http://www.icc.illinois.gov/downloads/public/edocket/303834.pdf ⁸⁷⁰ lbid.

⁸⁷¹ Coincidence factor is based on healthcare/clinic value (used as proxy for multi family common area lighting with similar hours of use) developed using Equest models for various building types averaged across 5 climate zones for Illinois for the following building types.

 Δ Therms⁸⁷² = - (((WattsBase - WattsEE) / 1000) * ISR * Hours * HF * 0.03412) / η Heat

Where:

HF	= Heating Factor or percentage of light savings that must be heated
	= 49% ⁸⁷³ for interior or unknown location
	= 0% for exterior or unheated location
0.03412	=Converts kWh to Therms
ηHeat	= Efficiency of heating system
	=70% ⁸⁷⁴

For example, a14 standard CFL is purchased and installed in a home in 2012:

ΔTherms = - (((60 - 14) / 1000) * 0.695 * 938 * 0.49 * 0.03412) / 0.7 = - 0.72 Therms

Second and third year install savings should be calculated using the appropriate ISR and the delta watts and hours from the install year. The appropriate baseline shift adjustment should then be applied to all installs.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

For those bulbs not impacted by EISA (25W incandescent equivalents), a simple O&M impact should be calculated based on baseline replacement cost of \$0.50 and a lifetime of 1.07years for Residential Interior and In-unit Multi

(0.24*0.92) + (0.76*0.8) * (1-0.15) = 0.70

⁸⁷² Negative value because this is an increase in heating consumption due to the efficient lighting.

⁸⁷³ This means that heating loads increase by 49% of the lighting savings. This is based on the average result from REMRate modeling of several different configurations and IL locations of homes.

⁸⁷⁴ This has been estimated assuming that natural gas central furnace heating is typical for Illinois residences (66% of Illinois homes have a Natural Gas Furnace (based on Energy Information Administration, 2009 Residential Energy Consumption Survey:

http://www.eia.gov/consumption/residential/data/2009/xls/HC6.9%20Space%20Heating%20in%20Midwest%20R egion.xls))

In 2000, 24% of furnaces purchased in Illinois were condensing (based on data from GAMA, provided to Department of Energy during the federal standard setting process for residential heating equipment - see Furnace Penetration.xls). Furnaces tend to last up to 20 years and so units purchased 10 years ago provide a reasonable proxy for the current mix of furnaces in the State. Assuming typical efficiencies for condensing and non-condensing furnaces and duct losses, the average heating system efficiency is estimated as follows:

Family, 0.17 years for Multi Family common area, 0.55 years for Exterior and 1.0 year for Unknown location⁸⁷⁵.

In order to account for the shift in baseline due to the Energy Independence and Security Act of 2007, an equivalent annual levelized baseline replacement cost over the lifetime of the CFL is calculated (see RES Standard CFL O&M calc.xls). The key assumptions used in this calculation are documented below:

	Standard Incandescent	EISA qualified Incandescent/Halogen
Replacement Cost	\$0.50	\$1.50
Component Rated Life (hrs)	1000	1000 ⁸⁷⁶

Residential, in-unit Multi Family and Unknown:

The Net Present Value of the baseline replacement costs for each CFL lumen range and installation year (2012 - 2016) are presented below:

	NPV of baseline replacement costs					
Lumen Range	June 2012 - June 2013 - June 2014 - May 2013 May 2014 May 2015					
Luillen Kalige	IVIAY 2013	101ay 2014	IVIAY 2013			
1490-2600	\$5.41	\$5.41	\$5.41			
1050-1489	\$5.41	\$5.41	\$5.41			
750-1049	\$4.48	\$5.41	\$5.41			
310-749	\$4.48	\$5.41	\$5.41			

The annual levelized baseline replacement costs using the statewide real discount rate of 5.23% are presented below:

	Levelized annual replacement cost savings					
Lumen Range	June 2012 - June 2013 - June 2014 May 2013 May 2014 May 2015					
1490-2600	\$1.22	\$1.22	\$1.22			
1050-1489	\$1.22	\$1.22	\$1.22			
750-1049	\$1.01	\$1.22	\$1.22			
310-749	\$1.01	\$1.22	\$1.22			

Multi Family common areas:

The Net Present Value of the baseline replacement costs for each CFL lumen range and installation year (2012 - 2016) are presented below:

⁸⁷⁵ Lamp life calculated by dividing 1000 hour rated life with hours of use.

⁸⁷⁶ The manufacturers of the new minimally compliant EISA Halogens are using regular incandescent lamps with halogen fill gas rather than halogen infrared to meet the standard and so the component rated life is equal to the standard incandescent.

	NPV of baseline replacement costs						
	June 2012 -						
Lumen Range	May 2013	May 2014	May 2015				
1490-2600	\$13.09	\$13.09	\$13.09				
1050-1489	\$8.24	\$13.09	\$13.09				
750-1049	\$4.36	\$8.24	\$13.09				
310-749	\$4.36	\$8.24	\$13.09				

The annual levelized baseline replacement costs using the statewide real discount rate of 5.23% are presented below:

	Levelized annual replacement cost savings				
	June 2012 -	June 2013 -	June 2014 -		
Lumen Range	May 2013	May 2014	May 2015		
1490-2600	\$8.34	\$8.34	\$8.34		
1050-1489	\$5.25	\$8.34	\$8.34		
750-1049	\$2.78	\$5.25	\$8.34		
310-749	\$2.78	\$5.25	\$8.34		

Exterior:

The Net Present Value of the baseline replacement costs for each CFL lumen range and installation year (2012 - 2017) are presented below:

		NPV of baseline replacement costs					
Lumen Range	June 2012 - May 2013	June 2013 - May 2014	June 2014 - May 2015	June 2015 - May 2016	June 2016 - May 2017		
1490-2600	\$9.36	\$9.36	\$9.36	\$9.36	\$8.49		
1050-1489	\$8.55	\$9.36	\$9.36	\$9.36	\$8.49		
750-1049	\$6.85	\$8.55	\$9.36	\$9.36	\$8.49		
310-749	\$6.85	\$8.55	\$9.36	\$9.36	\$8.49		

The annual levelized baseline replacement costs using the statewide real discount rate of 5.23% are presented below:

	Levelized annual replacement cost savings					
Lumen Range	June 2012 - May 2013	June 2013 - May 2014	June 2014 - May 2015	June 2015 - May 2016	June 2016 - May 2017	
1490-2600	\$2.45	\$2.45	\$2.45	\$2.45	\$2.22	
1050-1489	\$2.23	\$2.45	\$2.45	\$2.45	\$2.22	
750-1049	\$1.79	\$2.23	\$2.45	\$2.45	\$2.22	
310-749	\$1.79	\$2.23	\$2.45	\$2.45	\$2.22	

MEASURE CODE: RS-LTG-ESCF-V02-130601

5.5.2 ENERGY STAR Specialty Compact Fluorescent Lamp (CFL)

DESCRIPTION

An ENERGY STAR qualified specialty compact fluorescent bulb is installed in place of an incandescent specialty bulb.

This characterization assumes that the specialty CFL is installed in a residential location. If the implementation strategy does not allow for the installation location to be known (e.g. an upstream retail program) a deemed split of 96% Residential and 4% Commercial assumptions should be used⁸⁷⁷.

This measure was developed to be applicable to the following program types: TOS, NC, DI, KITS. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

Energy Star qualified specialty CFL bulb based upon the draft ENERGY STAR specification for lamps (<u>http://energystar.gov/products/specs/sites/products/files/ENERGY_STAR_Lamps_V1_0_Draft%203.pdf</u>).

DEFINITION OF BASELINE EQUIPMENT

The baseline is a specialty incandescent light bulb including those exempt of the EISA 2007 standard: three-way, plant light, daylight bulb, bug light, post light, globes G40 (<40W), candelabra base (<60W), vibration service bulb, decorative candle with medium or intermediate base (<40W), shatter resistant and reflector bulbs and standard bulbs greater than 2601 lumens, and those non-exempt from EISA 2007: dimmable, globes (less than 5" diameter and >40W), candle (shapes B, BA, CA >40W, candelabra base lamps (>60W) and intermediate base lamps (>40W).

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 6.8 year⁸⁷⁸.

Multi Family Common area bulbs: The expected measure life is 1.7 years⁸⁷⁹ for bulbs installed June 2012 –May 2017.

Exterior bulbs: The expected measure life is 4.4 years⁸⁸⁰ for bulbs installed June 2012 – May 2015. For bulbs installed June 2016-May 2017 this would be reduced to 4 years.

⁸⁷⁷ RES v C&I split is based on a weighted (by sales volume) average of ComEd PY3 and PY4 and Ameren PY5 in store intercept survey results.

⁸⁷⁸ The assumed measure life for the specialty bulb measure characterization was reported in "Residential Lighting Measure Life Study", Nexus Market Research, June 4, 2008 (measure life for markdown bulbs). Measure life estimate does not distinguish between equipment life and measure persistence. Measure life includes products that were installed and operated until failure (i.e., equipment life) as well as those that were retired early and permanently removed from service for any reason, be it early failure, breakage, or the respondent not liking the product (i.e., measure persistence).
⁸⁷⁹ Based on using 10,000 hour rated life assumption since significantly less switching with higher use. 10,000/5950

⁸⁷⁹ Based on using 10,000 hour rated life assumption since significantly less switching with higher use. 10,000/5950 = 1.7years.

⁸⁸⁰ Based on using 8,000 hour rated life assumption since more switching and use ourdoors. 8,000/1825 = 4.4years

DEEMED MEASURE COST

For the Retail (Time of Sale) measure, the incremental capital cost for this measure is \$5⁸⁸¹.

For the Direct Install measure, the full cost of \$8.50 should be used plus \$5 labor⁸⁸² for a total of \$13.50. However actual program delivery costs should be utilized if available.

For bulbs provided in Efficiency Kits, the actual program delivery costs should be utilized..

DEEMED O&M COST ADJUSTMENTS

For those bulbs types exempt from EISA the following O&M assumptions should be used: Life of the baseline bulb is assumed to be 1.07 year⁸⁸³; baseline replacement cost is assumed to be \$3.5⁸⁸⁴.

For non-exempt EISA bulb types defined above, the following baseline replacement costs (NPV and annual levelized equivalent payment) for each CFL lumen range and installation year and using the statewide real discount rate of 5.23% are presented below:

The Net Present Value of the baseline replacement costs⁸⁸⁵:

	NPV of baseline replacement costs				
Lumen Range	June 2012 - May 2013	June 2013 - May 2014	June 2014 - May 2015	June 2015 - May 2016	June 2016 - May 2017
1490-2600	\$23.97	\$23.97	\$21.08	\$17.28	\$13.29
1050-1489	\$23.97	\$23.97	\$21.08	\$17.28	\$13.29
750-1049	\$22.57	\$23.97	\$21.08	\$17.28	\$13.29
310-749	\$22.57	\$23.97	\$21.08	\$17.28	\$13.29

The annual levelized baseline replacement costs:

	Levelized annual replacement cost savings					
Lumen Range	June 2012 - May 2013	June 2013 - May 2014	June 2014 - May 2015	June 2015 - May 2016	June 2016 - May 2017	
1490-2600	\$4.28	\$4.28	\$3.76	\$3.09	\$2.37	
1050-1489	\$4.28	\$4.28	\$3.76	\$3.09	\$2.37	
750-1049	\$4.03	\$4.28	\$3.76	\$3.09	\$2.37	
310-749	\$4.03	\$4.28	\$3.76	\$3.09	\$2.37	

⁸⁸¹ NEEP Residential Lighting Survey, 2011

⁸⁸² Based on 15 minutes at \$20 per hour.

⁸⁸³ Assuming 1000 hour rated life for incandescent bulb: 1000/938 = 1.07

⁸⁸⁴ NEEP Residential Lighting Survey, 2011

⁸⁸⁵ See 'RES Specialty CFL O&M calc.xls' for more details.

LOADSHAPE

Loadshape R06 - Residential Indoor Lighting
Loadshape R07 - Residential Outdoor Lighting
Loadshape C06 - Commercial Indoor Lighting ⁸⁸⁶

COINCIDENCE FACTOR

Unlike standard CFLs that could be installed in any room, certain types of specialty CFLs are more likely to be found in specific rooms, which affects the coincident peak factor. Coincidence factors by bulb types are presented below⁸⁸⁷

Bulb Type	Peak CF
Three-way	0.081
Dimmable	0.081
Interior reflector (incl. dimmable)	0.095
Exterior reflector	0.184
Candelabra base and candle medium and intermediate base	0.122
Bug light	0.184
Post light (>100W)	0.184
Daylight	0.095
Plant light	0.095
Globe	0.116
Vibration or shatterproof	0.095
Standard spirals >= 2601 lumens	0.095
Specialty - Generic	0.095

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

ΔkWh = ((WattsBase - WattsEE) / 1000) * ISR * Hours * WHFe

Where:

WattsBase = Actual wattage equivalent of incandescent specialty bulb, use the tables below to obtain the incandescent bulb equivalent wattage⁸⁸⁸; use 60W if unknown⁸⁸⁹

⁸⁸⁶ For Multi Family common area lighting.

⁸⁸⁷ Lighting logger study conducted as part of the PY3 ComEd Residential Lighting Program evaluation, results were used to calculate the average coincident peak factor in the rooms where the specialty bulbs are most likely to be installed. <u>http://www.icc.illinois.gov/downloads/public/edocket/303834.pdf</u>

⁸⁸⁸ Based upon the draft ENERGY STAR specification for lamps (<u>http://energystar.gov/products/specs/sites/products/files/ENERGY_STAR_Lamps_V1_0_Draft%203.pdf</u>) and the

Bulb Type	Lower Lumen Range	Upper Lumen Range	WattsBase
	2601	2999	150
Standard Spirals >=2601	3000	5279	200
	5280	6209	300
	250	449	25
	450	799	40
	800	1099	60
3-Way	1100	1599	75
c may	1600	1999	100
	2000	2549	125
	2550	2999	150
	90	179	10
Globe	180	249	15
(medium and intermediate bases less	250	349	25
than 750 lumens)	350	749	40
Description	70	89	10
Decorative (Shapes B, BA, C, CA, DC, F, G, medium	90	149	15
and intermediate bases less than 750	150	299	25
lumens)	300	749	40
	90	179	10
Globe	180	249	15
(candelabra bases less than 1050	250	349	25
lumens)	350	499	40
	500	1049	60
	70	89	10
Decorative	90	149	15
(Shapes B, BA, C, CA, DC, F, G, candelabra bases less than 1050	150	299	25
lumens)	300	499	40
,	500	1049	60
	400	449	40
Reflector with medium screw bases w/	450	499	45
diameter <=2.25"	500	649	50
	650	1199	65
R, PAR, ER, BR, BPAR or similar bulb	640	739	40

EISA exempt bulb types:

Energy Policy and Conservation Act of 2012.

⁸⁸⁹ A 2006-2008 California Upstream Lighting Evaluation found an average incandescent wattage of 61.7 Watts (KEMA, Inc, The Cadmus Group, Itron, Inc, PA Consulting Group, Jai J. Mitchell Analytics, Draft Evaluation Report: Upstream Lighting Program. Prepared for the California Public Utilities Commission, Energy Division. December 10, 2009)

shapes with medium screw bases w/	740	849	45
diameter >2.5" (*see exceptions below)	850	1179	50
	1180	1419	65
	1420	1789	75
	1790	2049	90
	2050	2579	100
	2580	3429	120
	3430	4270	150
	540	629	40
	630	719	45
	720	999	50
R, PAR, ER, BR, BPAR or similar bulb	1000	1199	65
shapes with medium screw bases w/ diameter > 2.26'' and ≤ 2.5" (*see	1200	1519	75
exceptions below)	1520	1729	90
. ,	1730	2189	100
	2190	2899	120
	2900	3850	150
	400	449	40
*ER30, BR30, BR40, or ER40	450	499	45
	500	649-1179 ⁸⁹⁰	50
*BR30, BR40, or ER40	650	1419	65
*R20	400	449	40
- N2U	450	719	45
*All reflector lamps	200	299	20
below lumen ranges specified above	300	399-639 ⁸⁹¹	30

EISA non-exempt bulb types:

Bulb Type	Lower Lumen Range	Upper Lumen Range	Incandescent Equivalent Pre-EISA 2007 (WattsBase)	Incandescent Equivalent Post-EISA 2007 (WattsBase)	Effective date from which Post – EISA 2007 assumption should be used
Dimmable Twist, Globe (less than 5" in	310	749	40	29	Jan-14
diameter and > 749 lumens), candle (shapes B, BA, CA > 749 lumens), Candelabra Base Lamps (>1049 lumens),	750	1049	60	43	Jan-14
	1050	1489	75	53	Jan-13
Intermediate Base Lamps (>749 lumens)	1490	2600	100	72	Jan-12

⁸⁹⁰ The upper bounds for these categories depends on the lower bound of the next higher wattage, which varies by bulb type. ⁸⁹¹ As above.

= Actual wattage of energy efficient specialty bulb purchased, use 15W if WattsEE unknown⁸⁹²

ISR	= In Service Rate, the percentage of units rebated that are actu			
Program	Weighted Average 1 st year In Service Rate (ISR)	2 nd year Installations	3 rd year Installations	Final Lifetime In Service Rate
Retail (Time of Sale) or Efficiency Kits	79.5% ⁸⁹³	10.0%	8.5%	98.0% ⁸⁹⁴
Direct Install	96.9% ⁸⁹⁵			

= In Service Rate, the percentage of units rebated that are actually in service.

= Average hours of use per year, varies by bulb type as presented below:⁸⁹⁶ Hours

Bulb Type	Annual hours of use (HOU)
Three-way	897
Dimmable	897
Interior reflector (incl. dimmable)	938
Exterior reflector	1825

⁸⁹² An evaluation (Energy Efficiency / Demand Response Plan: Plan Year 2 (6/1/2009-5/31/2010) Evaluation Report: Residential Energy Star [®] Lighting

http://ilsag.org/yahoo site admin/assets/docs/ComEd Res Lighting PY2 Evaluation Report 2010-12-

⁸⁹³ 1st year in service rate is based upon review of PY2-3 evaluations from ComEd (see 'IL RES Lighting ISR.xls' for more information. The average first year ISR was calculated weighted by the number of bulbs in the each year's survey.

⁸⁹⁴ The 98% Lifetime ISR assumption is consistent with the assumption for standard CFLs (in the absence of evidence that it should be different for this bulb type) based upon review of two evaluations:

'Nexus Market Research, RLW Analytics and GDS Associates study; "New England Residential Lighting Markdown Impact Evaluation, January 20, 2009' and 'KEMA Inc, Feb 2010, Final Evaluation Report:, Upstream Lighting Program, Volume 1.' This implies that only 2% of bulbs purchased are never installed. The second and third year installations are based upon Ameren analysis of the Californian KEMA study showing that 54% of future installs occur in year 2 and 46% in year 3. The 2nd and 3rd year installations should be counted as part of those future program year savings.

⁸⁹⁵ Consistent with assumption for standard CFLs (in the absence of evidence that it should be different for this bulb type). Based upon review of the PY2 and PY3 ComEd Direct Install program surveys. This value includes bulb failures in the 1st year to be consistent with the Commission approval of annualization of savings for first year savings claims. ComEd PY2 All Electric Single Family Home Energy Performance Tune-Up Program Evaluation, Navigant Consulting, December 21, 2010. http://www.icc.illinois.gov/downloads/public/edocket/287090.pdf.

⁸⁹⁶ Hours of use by specialty bulb type calculated using the average hours of use in locations or rooms where each type of specialty bulb is most commonly found. Annual hours of use by location in the home from Docket No. 10-0520, ICC Staff Exhibit 1.4, RE: Lighting Logger Study Results – Version 2, Navigant, May 27, 2011. http://www.icc.illinois.gov/downloads/public/edocket/303834.pdf

²¹ Final.12113928.pdf) reported 13-17W as the most common specialty CFL wattage (69% of program bulbs). 2009 California data also reported an average CFL wattage of 15.5 Watts (KEMA, Inc, The Cadmus Group, Itron, Inc, PA Consulting Group, Jai J. Mitchell Analytics, Draft Evaluation Report: Upstream Lighting Program, Prepared for the California Public Utilities Commission, Energy Division. December 10, 2009).

Candelabra base and candle medium and	
intermediate base	1328
Bug light	1825
Post light (>100W)	1825
Daylight	938
Plant light	938
Globe	1240
Vibration or shatterproof	938
Standard Spiral >2601 lumens, Residential, Multi	
Family in-unit or unknown	938
Standard Spiral >2601 lumens, Multi Family	
Common area	5950
Standard Spiral >2601 lumens, Exterior	1825
Specialty - Generic	938

WHFe = Waste heat factor for energy to account for cooling savings from efficient lighting

Bulb Location	WHFe
Interior single family or unknown location	1.06 897
Multi family in unit	1.04 898
Exterior or uncooled location	1.0

DEFERRED INSTALLS

As presented above, the characterization assumes that a percentage of bulbs purchased are not installed until Year 2 and Year 3 (see ISR assumption above). The Illinois Technical Advisory Committee has determined the following methodology for calculating the savings of these future installs.

Year 1 (Purchase Year) installs:	Characterized using assumptions provided above or evaluated assumptions if available.
Year 2 and 3 installs:	Characterized using delta watts assumption and hours of use from the Install Year i.e. the actual deemed (or evaluated if available)

⁸⁹⁷ The value is estimated at 1.06 (calculated as 1 + (0.66*(0.27 / 2.8)). Based on cooling loads decreasing by 27% of the lighting savings (average result from REMRate modeling of several different configurations and IL locations of homes), assuming typical cooling system operating efficiency of 2.8 COP (starting from standard assumption of SEER 10.5 central AC unit, converted to 9.5 EER using algorithm (-0.02 * SEER2) + (1.12 * SEER) (from Wassmer, M. (2003). A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at Boulder), converted to COP = EER/3.412 = 2.8COP) and 66% of homes in Illinois having central cooling ("Table HC7.9 Air Conditioning in Homes in Midwest Region, Divisions, and States, 2009 from Energy Information Administration", 2009 Residential Energy Consumption Survey;

http://www.eia.gov/consumption/residential/data/2009/xls/HC7.9%20Air%20Conditioning%20in%20Midwest%20 Region.xls)

⁸⁹⁸ As above but using estimate of 45% of multi family buildings in Illinois having central cooling (based on data from "Table HC7.1 Air Conditioning in U.S. Homes, By Housing Unit Type, 2009" which is for the whole of the US, scaled to IL air conditioning prevalence compared to US average);

http://205.254.135.7/consumption/residential/data/2009/xls/HC7.1%20Air%20Conditioning%20by%20Housing%20Unit%20Type.xls

assumptions active in Year 2 and 3 should be applied.

The NTG factor for the Purchase Year should be applied.

For example, for a 13W dimmable CFL impacted by EISA 2007 (60W standard incandescent and 43W EISA qualified incandescent/halogen) purchased in 2013.

 $\Delta kWH_{1st year installs} = ((60 - 13) / 1000) * 0.795 * 897 * 1.06$

= 35.5 kWh

ΔkWH_{2nd year installs} = ((43 - 13) / 1000) * 0.15 * 897 * 1.06

= 4.28 kWh

Note: Here we assume no change in hours assumption. NTG value from Purchase year applied.

ΔkWH_{3rd year installs} = ((43 - 13) / 1000) * 0.085 * 897 * 1.06

= 2.4 kWh

MID LIFE BASELINE ADJUSTMENT

For those bulbs non-exempt from EISA 2007, during the lifetime of the CFL, the baseline incandescent bulb will change over time and so the annual savings claim must be reduced within the life of the measure to account for this baseline shift in cost-effectiveness analysis.

For example, for 60W equivalent bulbs installed in 2012, the full savings (as calculated above in the Algorithm) should be claimed for the first two years, but a reduced annual savings claimed for the remainder of the measure life. If the delta watts assumption is already based on the post EISA value, no mid-life adjustment is necessary.

The appropriate adjustment factors are provided below.

Lumen Range	Pre EISA WattsBase	Post EISA WattsBase	CFL Equivalent	Delta Watts Before EISA	Delta Watts After EISA	Mid Life Adjustment	Adjustment made from date
1490-2600	100	72	25	75	47	63%	N/A (2012 is already post EISA)
1050-1489	75	53	20	55	33	60%	Jan, 2013
750-1049	60	43	14	46	29	63%	Jan, 2014
310-749	40	29	11	29	18	62%	Jan, 2014

HEATING PENALTY

If electric heated home (if heating fuel is unknown assume gas, see Natural Gas section):

$$\Delta kWh^{899} = -(((WattsBase - WattsEE) / 1000) * ISR * Hours * HF) / \eta Heat$$

Where:

HF = Heating Factor or percentage of light savings that must be heated

= $49\%^{900}$ for interior or unknown location

= 0% for exterior location

 η Heat = Efficiency in COP of Heating equipment

= actual. If not available use⁹⁰¹:

System Type	Age of Equipment	HSPF Estimate	ηHeat (COP Estimate)
Heat Pump	Before 2006	6.8	2.00
	After 2006	7.7	2.26
Resistance	N/A	N/A	1.00

For example, a 15W specialty CFL replacing a 60W incandescent specialty bulb installed in home with 2.0 COP Heat Pump:

 $\Delta kWh_{1st year} = -(((60 - 15) / 1000) * 0.795 * 938 * 0.49) / 2.0$

= - 8.2 kWh

Second and third year savings should be calculated using the appropriate ISR.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

ΔkW =((WattsBase - WattsEE) / 1000) * ISR * WHFd * CF

Where:

WHFd = Waste heat factor for demand to account for cooling savings from efficient lighting.

Bulb Location	WHFd
Interior single family or unknown location	1.11902
Multi family in unit	1.07903

⁸⁹⁹ Negative value because this is an increase in heating consumption due to the efficient lighting.

 902 The value is estimated at 1.11 (calculated as 1 + (0.66 * 0.466 / 2.8)). See footnote relating to WHFe for details. Note the 46.6% factor represents the average Residential cooling coincidence factor calculated by dividing average load during the peak hours divided by the maximum cooling load.

⁹⁰⁰ This means that heating loads increase by 49% of the lighting savings. This is based on the average result from REMRate modeling of several different configurations and IL locations of homes.

⁹⁰¹ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.

Ī	Exterior or uncooled location	1.0

CF

= Summer Peak Coincidence Factor for measure. Coincidence factors by bulb types are presented below⁹⁰⁴

Bulb Type	Peak CF
Three-way	0.081
Dimmable	0.081
Interior reflector (incl. dimmable)	0.095
Exterior reflector	0.184
Candelabra base and candle medium and intermediate base	0.122
Bug light	0.184
Post light (>100W)	0.184
Daylight	0.095
Plant light	0.095
Globe	0.116
Vibration or shatterproof	0.095
Standard Spiral >=2601 lumens	0.095
Specialty - Generic	0.095

Other factors as defined above

For example, a 15W specialty CFL replacing a 60W incandescent specialty bulb:

 $\Delta kW_{1st vear}$

= ((60 - 15) / 1000) * 0.795 * 1.11 * 0.095

= 0.004 kW

Second and third year savings should be calculated using the appropriate ISR.

NATURAL GAS SAVINGS

Heating Penalty if Natural Gas heated home (or if heating fuel is unknown):

 Δ Therms⁹⁰⁵ = - (((WattsBase - WattsEE) / 1000) * ISR * Hours * HF * 0.03412) / η Heat

Where:

HF

= Heating Factor or percentage of light savings that must be heated

⁹⁰³ As above but using estimate of 45% of multifamily buildings in Illinois having central cooling (based on data from "Table HC7.1 Air Conditioning in U.S. Homes, By Housing Unit Type, 2009" which is for the whole of the US, scaled to IL air conditioning prevalence compared to US average);

http://205.254.135.7/consumption/residential/data/2009/xls/HC7.1%20Air%20Conditioning%20by%20Housing%20Unit%20Type.xls.

⁹⁰⁴ Lighting logger study conducted as part of the PY3 ComEd Residential Lighting Program evaluation, results were used to calculate the average coincident peak factor in the rooms where the specialty bulbs are most likely to be installed.

⁹⁰⁵ Negative value because this is an increase in heating consumption due to the efficient lighting.

	= 49% ⁹⁰⁶ for interior or unknown location
	= 0% for exterior location
0.03412	=Converts kWh to Therms
ηHeat	= Efficiency of heating system
	= 70% ⁹⁰⁷

For example, a 15W specialty CFL replacing a 60W incandescent specialty bulb:

 Δ Therms = - (((60 - 15) / 1000) * 0.795 * 938 * 0.49 * 0.03412) / 0.7

= - 0.80 Therms

Second and third year savings should be calculated using the appropriate ISR.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

For those bulbs types exempt from EISA the following O&M assumptions should be used: Life of the baseline bulb is assumed to be 1.07 year⁹⁰⁸; baseline replacement cost is assumed to be \$3.5⁹⁰⁹.

For non-exempt EISA bulb types defined above, in order to account for the shift in baseline due to the Energy Independence and Security Act of 2007, an equivalent annual levelized baseline replacement cost over the lifetime of the CFL is calculated (see RES Specialty CFL O&M calc.xls) for each CFL lumen range and installation year and using the statewide real discount rate of 5.23%. The key assumptions used in this calculation are documented below:

⁹⁰⁶ This means that heating loads increase by 49% of the lighting savings. This is based on the average result from REMRate modeling of several different configurations and IL locations of homes.

⁹⁰⁷ This has been estimated assuming that natural gas central furnace heating is typical for Illinois residences (66% of Illinois homes have a Natural Gas Furnace (based on EIA Residential Energy Consumption Survey (RECS) 2009 for Midwest Region, data for the state of IL. If utilities have specific evaluation results providing a more appropriate assumption for homes in a particular market or geographical area then that should be used.)

In 2000, 24% of furnaces purchased in Illinois were condensing (based on data from GAMA, provided to Department of Energy during the federal standard setting process for residential heating equipment - see Furnace Penetration.xls). Furnaces tend to last up to 20 years and so units purchased 10 years ago provide a reasonable proxy for the current mix of furnaces in the State. Assuming typical efficiencies for condensing and non-condensing furnaces and duct losses, the average heating system efficiency is estimated as follows:

(0.24*0.92) + (0.76*0.8) * (1-0.15) = 0.70

⁹⁰⁸ Assuming 1000 hour rated life for incandescent bulb: 1000/938 = 1.07

⁹⁰⁹ NEEP Residential Lighting Survey, 2011

	Incandescent	Incandescent/Halogen
Replacement Cost	\$3.50	\$5.00
Component Rated Life (hrs)	1000	1000

The Net Present Value of the baseline replacement costs⁹¹⁰:

	NPV of baseline replacement costs					
Lumen Range	June 2012 - June 2013 - June 2014 - June 2015 - June 2016 - May 2013 May 2014 May 2015 May 2016 May 2017					
Editien Kange	101dy 2013	IVIAY ZOIT	1414 2015	1010 2010	1VIAY 2017	
1490-2600	\$23.97	\$23.97	\$21.08	\$17.28	\$13.29	
1050-1489	\$23.97	\$23.97	\$21.08	\$17.28	\$13.29	
750-1049	\$22.57	\$23.97	\$21.08	\$17.28	\$13.29	
310-749	\$22.57	\$23.97	\$21.08	\$17.28	\$13.29	

The annual levelized baseline replacement costs:

	Levelized annual replacement cost savings				
Lumen Range	June 2012 - May 2013	June 2013 - May 2014	June 2014 - May 2015	June 2015 - May 2016	June 2016 - May 2017
1490-2600	\$4.28	\$4.28	\$3.76	\$3.09	\$2.37
1050-1489	\$4.28	\$4.28	\$3.76	\$3.09	\$2.37
750-1049	\$4.03	\$4.28	\$3.76	\$3.09	\$2.37
310-749	\$4.03	\$4.28	\$3.76	\$3.09	\$2.37

MEASURE CODE: RS-LTG-ESCC-V02-130601

⁹¹⁰ See 'RES Specialty CFL O&M calc.xls' for more details.

5.5.3 ENERGY STAR Torchiere

DESCRIPTION

A high efficiency ENERGY STAR fluorescent torchiere is purchased in place of a baseline mix of halogen and incandescent torchieres and installed in a residential setting.

This measure was developed to be applicable to the following program types: TOS, NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the fluorescent torchiere must meet ENERGY STAR efficiency standards.

DEFINITION OF BASELINE EQUIPMENT

The baseline is based on a mix of halogen and incandescent torchieres.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The lifetime of the measure is assumed to be 8 years⁹¹¹.

DEEMED MEASURE COST

The incremental cost for this measure is assumed to be $$5^{912}$.

DEEMED O&M COST ADJUSTMENTS

Life of the baseline bulb is assumed to be 1.83 years⁹¹³ for residential and multifamily in unit and 0.34 years⁹¹⁴ for multifamily common area. Baseline bulb cost replacement is assumed to be 6^{915} .

LOADSHAPE

Loadshape R06 - Residential Indoor Lighting Loadshape R07 - Residential Outdoor Lighting Loadshape C06 - Commercial Indoor Lighting⁹¹⁶

COINCIDENCE FACTOR

The summer peak coincidence factor for this measure is 9.5%⁹¹⁷ for Residential and in-unit Multi Family bulbs and

⁹¹⁴ 2000/5950 = 0.34 years

⁹¹¹ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

⁹¹² DEER 2008 Database Technology and Measure Cost Data (<u>www.deeresources.com</u>) and consistent with Efficiency Vermont TRM.

⁹¹³ Based on assumption of baseline bulb (mix of incandescent and halogen) average rated life of 2000 hours, 2000/1095 = 1.83 years.

⁹¹⁵ Derived from Efficiency Vermont TRM.

⁹¹⁶ For Multi Family common area lighting.

⁹¹⁷ Based on lighting logger study conducted as part of the PY3 ComEd Residential Lighting Program evaluation.

75%⁹¹⁸ for Multi Family common area bulbs.

Multi Family Common Areas

Algorithm				
CALCULATION OF SAVINGS				
ELECTRIC ENERGY SAVINGS				
ΔkWh	= ((ΔWatts) /1000) * ISR * HOURS * WHFe			
Where:				
ΔWatts	= Average delta watts per purchased ENERGY STAR torchiere			
	= 115.8 ⁹¹⁹			
ISR	= In Service Rate or percentage of units rebated that get installed.			
	= 0.86 ⁹²⁰			
HOURS	= Average hours of use per year			
Ins	tallation LocationHoursin-unit Multi Family1095 (3.0 hrs per day)			

5950⁹²²

"ComEd Residential Energy Star Lighting Program Metering Study: Overview of Study Protocols" <u>http://www.icc.illinois.gov/downloads/public/edocket/303835.pdf</u>

"Memo RE: Lighting Logger Study Results – Version 2, Date: May 27, 2011, To: David Nichols and ComEd Residential Lighting Interested Parties, From: Amy Buege and Jeremy Eddy; Navigant Evaluation Team" <u>http://www.icc.illinois.gov/downloads/public/edocket/303834.pdf</u>

⁹¹⁸ Coincidence factor is based on healthcare/clinic value (used as proxy for multi family common area lighting with similar hours of use) developed using Equest models for various building types averaged across 5 climate zones for Illinois for the following building types.

⁹¹⁹ Nexus Market Research, "Impact Evaluation of the Massachusetts, Rhode Island and Vermont 2003 Residential Lighting Programs", Final Report, October 1, 2004, p. 43 (Table 4-9)

⁹²⁰ Nexus Market Research, RLW Analytics "Impact Evaluation of the Massachusetts, Rhode Island, and Vermont 2003 Residential Lighting Programs" table 6-3 on p63 indicates that 86% torchieres were installed in year one. http://publicservice.vermont.gov/energy/ee_files/efficiency/eval/marivtreportfinal100104.pdf

⁹²² Multi family common area lighting assumption is 16.3 hours per day (5950 hours per year) based on Focus on Energy Evaluation, ACES Deemed Savings Desk Review, November 2010.

⁹²¹ Nexus Market Research, "Impact Evaluation of the Massachusetts, Rhode Island and Vermont 2003 Residential Lighting Programs", Final Report, October 1, 2004, p. 104 (Table 9-7)

WHFe

= Waste Heat Factor for Energy to account for cooling savings from efficient lighting.

Bulb Location	WHFe
Interior single family or unknown location	1.06 923
Multi family in unit	1.04 924
Multi family common area	1.04 925
Exterior or uncooled location	1.0

For single family buildings:

ΔkWh = (115.8 /1000) * 0.86 * 1095 * 1.06

= 116 kWh

For multi family in unit:

ΔkWh = (115.8 /1000) * 0.86 * 1095 * 1.04

= 113 kWh

For multi family common area:

ΔkWh = (115.8 /1000) * 0.86 * 5950 * 1.04

= 616 kWh

HEATING PENALTY

If electric heated home (if heating fuel is unknown assume gas, see Natural Gas section):

 $\Delta kWh^{926} = -((\Delta Watts) / 1000) * ISR * HOURS * HF) / \eta Heat$

http://205.254.135.7/consumption/residential/data/2009/xls/HC7.1%20Air%20Conditioning%20by%20Housing%20Unit%20Type.xls

⁹²³ The value is estimated at 1.06 (calculated as 1 + (0.66*(0.27 / 2.8)). Based on cooling loads decreasing by 27% of the lighting savings (average result from REMRate modeling of several different configurations and IL locations of homes), assuming typical cooling system operating efficiency of 2.8 COP (starting from standard assumption of SEER 10.5 central AC unit, converted to 9.5 EER using algorithm (-0.02 * SEER2) + (1.12 * SEER) (from Wassmer, M. (2003). A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at Boulder), converted to COP = EER/3.412 = 2.8COP) and 66% of homes in Illinois having central cooling ("Table HC7.9 Air Conditioning in Homes in Midwest Region, Divisions, and States, 2009 from Energy Information Administration", 2009 Residential Energy Consumption Survey;

http://www.eia.gov/consumption/residential/data/2009/xls/HC7.9%20Air%20Conditioning%20in%20Midwest%20 Region.xls)

⁹²⁴ As above but using estimate of 45% of multi family buildings in Illinois having central cooling (based on data from "Table HC7.1 Air Conditioning in U.S. Homes, By Housing Unit Type, 2009" which is for the whole of the US, scaled to IL air conditioning prevalence compared to US average);

⁹²⁵ Ibid.

Where:

HF = Heating Factor or percentage of light savings that must be heated

= 49%⁹²⁷ for interior or unknown location

ηHeat = Efficiency in COP of Heating equipment

= Actual. If not available use defaults provided below⁹²⁸:

System Type	Age of Equipment	HSPF Estimate	ηHeat (COP Estimate)
Heat Pump	Before 2006	6.8	2.00
	After 2006	7.7	2.26
Resistance	N/A	N/A	1.00

For example, an ES torchiere installed in a house with a newer heat pump:

 $\Delta kWh = -((115.8) / 1000) * 0.86 * 1095 * 0.49) / 2.26$

= - 23.6 kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = ((\Delta Watts) / 1000) * ISR * WHFd * CF$

Where:

⁹²⁶ Negative value because this is an increase in heating consumption due to the efficient lighting.

⁹²⁷ This means that heating loads increase by 49% of the lighting savings. This is based on the average result from REMRate modeling of several different configurations and IL locations of homes.

⁹²⁸ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.

WHFd

= Waste Heat Factor for Demand to account for cooling savings from efficient lighting

Bulb Location	WHFd
Interior single family or unknown location	1.11 ⁹²⁹
Multi family in unit	1.07 ⁹³⁰
Multi family common area	1.07 931
Exterior or uncooled location	1.0

CF

= Summer Peak Coincidence Factor for measure

Bulb Location	CF
Interior single family or unknown location	9.5% ⁹³²
Multi family in unit	9.5% ⁹³³
Multi family common area	75% ⁹³⁴

For single family buildings:

ΔkW = (115.8 / 1000) * 0.86 * 1.11 * 0.095

= 0.011kW

For multi family in unit:

ΔkW = (115.8 / 1000) * 0.86 * 1.07 * 0.095 = 0.010 kW

For multi family common area:

ΔkW = (115.8 / 1000) * 0.86 * 1.07 * 0.75

⁹³³ Ibid.

 $^{^{929}}$ The value is estimated at 1.11 (calculated as 1 + (0.66 * 0.466 / 2.8)). See footnote relating to WHFe for details. Note the 46.6% factor represents the average Residential cooling coincidence factor calculated by dividing average load during the peak hours divided by the maximum cooling load.

⁹³⁰ As above but using estimate of 45% of multi family buildings in Illinois having central cooling (based on data from "Table HC7.1 Air Conditioning in U.S. Homes, By Housing Unit Type, 2009" which is for the whole of the US, scaled to IL air conditioning prevalence compared to US average);

http://205.254.135.7/consumption/residential/data/2009/xls/HC7.1%20Air%20Conditioning%20by%20Housing%20Unit%20Type.xls.

⁹³¹ Ibid

 ⁹³² Based on lighting logger study conducted as part of the PY3 ComEd Residential Lighting Program evaluation.
 "ComEd Residential Energy Star Lighting Program Metering Study: Overview of Study Protocols"
 <u>http://www.icc.illinois.gov/downloads/public/edocket/303835.pdf</u>

[&]quot;Memo RE: Lighting Logger Study Results – Version 2, Date: May 27, 2011, To: David Nichols and ComEd Residential Lighting Interested Parties, From: Amy Buege and Jeremy Eddy; Navigant Evaluation Team" <u>http://www.icc.illinois.gov/downloads/public/edocket/303834.pdf</u>

⁹³⁴ Coincidence factor is based on healthcare/clinic value (used as proxy for multi family common area lighting with similar hours of use) developed using Equest models for various building types averaged across 5 climate zones for Illinois for the following building types.

= 0.080 kW

NATURAL GAS SAVINGS

Heating penalty if Natural Gas heated home, or if heating fuel is unknown.

ΔTherms _{wH}	= - (((ΔWatts) /1000) * ISR * HOURS * 0.03412 * HF) / ηHeat
ΔITICITISWH	$= -((\Delta Wat(3)/1000) - 151(-11001(3-0.03412) - 111)/1116at$

Where:

ΔTherms _{wH}	= gross customer annual heating fuel increased usage for the measure from the reduction in lighting heat in therms.
0.03412	= conversion from kWh to therms
HF	= Heating Factor or percentage of light savings that must be heated
	= 49% ⁹³⁵
ηHeat	= average heating system efficiency
	= 70% ⁹³⁶
ΔTherms _{wH}	= - ((115.8 / 1000) * 0.86 * 1095 * 0.03412 * 0.49) / 0.70
	= - 2.60 therms

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

Life of the baseline bulb is assumed to be 1.83 years⁹³⁷ for residential and multifamily in unit and 0.34 years⁹³⁸ for

⁹³⁵ This means that heating loads increase by 49% of the lighting savings. This is based on the average result from REMRate modeling of several different configurations and IL locations of homes.

⁹³⁶ This has been estimated assuming that natural gas central furnace heating is typical for Illinois residences (66% of Illinois homes have a Natural Gas Furnace (based on Energy Information Administration, 2009 Residential Energy Consumption Survey:

www.eia.gov/consumption/residential/data/2009/xls/HC6.9%20Space%20Heating%20in%20Midwest%20Region.xl <u>s</u>) In 2000, 24% of furnaces purchased in Illinois were condensing (based on data from GAMA, provided to Department of Energy during the federal standard setting process for residential heating equipment - see Furnace Penetration.xls). Furnaces tend to last up to 20 years and so units purchased 10 years ago provide a reasonable proxy for the current mix of furnaces in the State. Assuming typical efficiencies for condensing and non-condensing

furnaces and duct losses, the average heating system efficiency is estimated as follows: (0.24*0.92) + (0.76*0.8) * (1-0.15) = 0.70

⁹³⁷ Based on VEIC assumption of baseline bulb (mix of incandescent and halogen) average rated life of 2000 hours, 2000/1095 = 1.83 years.

⁹³⁸ 2000/5950 = 0.34 years

multifamily common area. Baseline bulb cost replacement is assumed to be \$6.939

MEASURE CODE: RS-LTG-ESTO-V01-120601

⁹³⁹ Derived from Efficiency Vermont TRM.

5.5.4 Exterior Hardwired Compact Fluorescent Lamp (CFL) Fixture

DESCRIPTION

An ENERGY STAR lighting fixture wired for exclusive use with pin-based compact fluorescent lamps is installed in an exterior residential setting. This measure could relate to either a fixture replacement or new installation (i.e. time of sale).

Federal legislation stemming from the Energy Independence and Security Act of 2007 will require all generalpurpose light bulbs between 40 and 100W to be approximately 30% more energy efficient than current incandescent bulbs. Production of 100W, standard efficacy incandescent lamps ends in 2012, followed by restrictions on 75W in 2013 and 60W and 40W in 2014. The baseline for this measure will therefore become bulbs (improved incandescent or halogen) that meet the new standard.

To account for these new standards, the expected delay in clearing retail inventory and potential for movement of product across state borders, the first year annual savings for this measure is reduced for 100W equivalent bulbs in June 2012, for 75W equivalent bulbs in June 2013 and for 60 and 40W equivalent bulbs in June 2014.

In addition, since during the lifetime of a CFL, the baseline bulb will be replaced multiple times, the annual savings claim must also be reduced within the life of the measure. For example, for 60W equivalent bulbs installed in 2012, the full savings (as calculated below in the Algorithm) should be claimed for the first two years, but a reduced annual savings based on the EISA-compliant baseline should be claimed for the remainder of the measure life. The appropriate adjustment factors are provided in the 'Mid Life Baseline Adjustment' section below.

Finally, a provision in the EISA regulations requires that by January 1, 2020, all lamps meet efficiency criteria of at least 45 lumens per watt, in essence making the baseline equivalent to a current day CFL. Therefore the measure life (number of years that savings should be claimed) should be reduced once the assumed lifetime of the bulb exceeds 2020. Due to expected delay in clearing retail inventory and to account for the operating life of a halogen incandescent potentially spanning over 2020, this shift is assumed not to occur until mid-2020.

This measure was developed to be applicable to the following program types: TOS, NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient condition is an ENERGY STAR lighting exterior fixture for pin-based compact fluorescent lamps.

DEFINITION OF BASELINE EQUIPMENT

The baseline condition is a standard incandescent exterior fixture, up until when EISA regulations dictate higher efficiency baseline bulbs. A 100W baseline bulb becomes a 72W bulb in June 2012, a 75W bulb becomes 53W in June 2012 and 60W and 40W bulbs become 43W and 29W respectively in June 2014. Annual savings are reduced to account for this baseline shift within the life of a measure and the measure life is reduced to account for the baseline replacements becoming equivalent to a current day CFL by June 2020.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected life of an interior fixture is 20 years⁹⁴⁰. However due to the backstop provision in the Energy Independence and Security Act of 2007 that requires by January 1, 2020, all lamps meet efficiency criteria of at least 45 lumens per watt, the baseline replacement would become a CFL in that year. The expected measure life for CFL fixtures installed June 2012 – May 2013 is therefore assumed to be 8 years. For bulbs installed June 2013 – May 2014, this would be reduced to 7 years and should be reduced each year⁹⁴¹.

DEEMED MEASURE COST

The incremental cost for an interior fixture is assumed to be \$17⁹⁴².

DEEMED O&M COST ADJUSTMENTS

The Net Present Value of the baseline replacement costs for each CFL lumen range and installation year (2012 - 2016) are presented below⁹⁴³:

	Ν			
		Baseline		
Lumen Range	June 2012 - May 2013	June 2013 - May 2014	June 2014 - May 2015	All
1490-2600	\$18.34	\$16.28	\$14.12	
1050-1489	\$17.36	\$16.28	\$14.12	\$1.90
750-1049	\$15.50	\$15.30	\$14.12	\$1.90
310-749	\$15.50	\$15.30	\$14.12	

The annual levelized baseline replacement costs using the statewide real discount rate of 5.23% are presented below:

	Leveli	bulb			
		Baseline			
Lumen Range	June 2012 - May 2013	June 2013 - May 2014	June 2014 - May 2015	All	
1490-2600	\$2.86	\$2.54	\$2.20		
1050-1489	\$2.71	\$2.54	\$2.20	\$0.30	
750-1049	\$2.42	\$2.39	\$2.20	ŞU.3U	
310-749	\$2.42	\$2.39	\$2.20		

⁹⁴⁰ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007 (<u>http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf</u>) gives 20 years for an interior fluorescent fixture.

⁹⁴¹ Due to expected delay in clearing stock from retail outlets and to account for the operating life of a halogen incandescent potentially spanning over 2020, this shift is assumed not to occur until mid-2020.

⁹⁴² ENERGY STAR Qualified Lighting Savings Calculator default incremental cost input for exterior fixture (<u>http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/LightingCalculator.xlsx?b299-55ae&b299-55ae</u>)

⁹⁴³ See 'RES CFL Fixture O&M calc.xls' for more details.

LOADSHAPE

Loadshape R07 - Residential Outdoor Lighting

COINCIDENCE FACTOR

The summer peak coincidence factor is assumed to be $0.4\%^{944}$.

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

ΔkWh =((WattsBase - WattsEE) / 1000) * ISR * Hours

Where:

WattsBase = Based on lumens of CFL bulb and program year purchased:

Minimum Lumens	Maximum Lumens	Incandescent Equivalent Pre-EISA 2007 (Watts _{Base})	Incandescent Equivalent Post-EISA 2007 (Watts _{Base})	Effective date from which Post – EISA 2007 assumption should be used
1490	2600	100	72	June 2012
1050	1489	75	53	June 2013
750	1049	60	43	June 2014
310	749	40	29	June 2014

WattsEE = Actual wattage of CFL purchased

⁹⁴⁴ Estimated based on Commercial Outdoor Lighting coincidence factor calculation from analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. Residential Outdoor Lighting is not provided in this data set.

ISR

= In Service Rate or the percentage of units rebated that get installed.

Program	Weighted Average 1 st year In Service Rate (ISR)	2 nd year Installations	3 rd year Installations	Final Lifetime In Service Rate
Retail (Time of Sale)	87.5% ⁹⁴⁵	5.7%	4.8%	98.0% ⁹⁴⁶
Direct Install	96.9 ⁹⁴⁷			

Hours

= Average hours of use per year

=1643 (4.5 hrs per day)⁹⁴⁸

DEFERRED INSTALLS

As presented above, the characterization assumes that a percentage of bulbs purchased are not installed until Year 2 and Year 3 (see ISR assumption above). The Illinois Technical Advisory Committee has determined the following methodology for calculating the savings of these future installs.

Year 1 (Purchase Year) installs:	Characterized using assumptions provided above or evaluated assumptions if available.
Year 2 and 3 installs:	Characterized using delta watts assumption and hours of use from the Install Year i.e. the actual deemed (or evaluated if available) assumptions active in Year 2 and 3 should be applied.
	The NTG factor for the Purchase Year should be applied.

For example, for a 2 x 14W pin based CFL fixture (60W standard incandescent and 43W EISA qualified incandescent/halogen) purchased in 2013.

⁹⁴⁵ 1st year in service rate is based upon review of PY2-3 evaluations from ComEd (see 'IL RES Lighting ISR.xls' for more information. The average first year ISR was calculated weighted by the number of bulbs in the each year's survey.

⁹⁴⁶ The 98% Lifetime ISR assumption is consistent with the assumption for standard CFLs (in the absence of evidence that it should be different for this bulb type) based upon review of two evaluations:

^{&#}x27;Nexus Market Research, RLW Analytics and GDS Associates study; "New England Residential Lighting Markdown Impact Evaluation, January 20, 2009' and 'KEMA Inc, Feb 2010, Final Evaluation Report:, Upstream Lighting Program, Volume 1.' This implies that only 2% of bulbs purchased are never installed. The second and third year installations are based upon Ameren analysis of the Californian KEMA study showing that 54% of future installs occur in year 2 and 46% in year 3. The 2nd and 3rd year installations should be counted as part of those future program year savings.

 ⁹⁴⁷ In the absence of evaluation results for Direct Install Fixtures specifically, this is made consistent with the Direct Install CFL measure which is based upon review of the PY2 and PY3 ComEd Direct Install program surveys.
 ⁹⁴⁸ Updated results from above study, presented in 2005 memo;

http://publicservice.vermont.gov/energy/ee_files/efficiency/eval/marivtfinalresultsmemodelivered.pdf

 $\Delta kWH_{1st year installs} = ((120 - 28) / 1000) * 0.875 * 1643$

= 132.3 kWh

 $\Delta kWH_{2nd year installs} = ((86 - 28) / 1000) * 0.057 * 1643$

= 5.4 kWh

Note: Here we assume no change in hours assumption. NTG value from Purchase year applied.

 $\Delta kWH_{3rd year installs} = ((86 - 28) / 1000) * 0.048 * 1643$

= 4.6 kWh

MID LIFE BASELINE ADJUSTMENT

During the lifetime of a CFL, a baseline incandescent bulb would need to be replaced multiple times. Since the baseline bulb changes over time the annual savings claim must be reduced within the life of the measure to account for this baseline shift.

For example, for 60W equivalent bulbs installed in 2012, the full savings (as calculated above in the Algorithm) should be claimed for the first two years, but a reduced annual savings claimed for the remainder of the measure life. If the delta watts assumption is already based on the post EISA value, no mid-life adjustment is necessary. For deferred installs (described above) the delta watts and appropriate mid life adjustment (if any) should be applied.

The appropriate adjustment factors are provided below.

Lumen Range	Pre EISA WattsBase	Post EISA WattsBase		Delta Watts Before EISA	Delta Watts After EISA	Mid Life Adjustment	Adjustment made from date
1490-2600	100	72	25	75	47	63%	N/A
							(2012 is already
							post EISA)
1050-1489	75	53	20	55	33	60%	June, 2013
750-1049	60	43	14	46	29	63%	June, 2014
310-749	40	29	11	29	18	62%	June, 2014

For example, a 2 x 14W pin based CFL fixture *installed* in 2013 (i.e. for this example we are ignoring the ISR):

First Year savings:

 $\Delta kWH_{1st year} = ((120 - 28) / 1000) * 1643$

= 151.2 kWh

This value should be claimed in June 2013 – May 2014. However after June 2014 the baseline replacement bulb shifts to the EISA compliant 43W bulb and so savings for that same bulb purchased and installed in 2013 will claim the following in that second year and for all subsequent years through the measure life:

Annual savings for same installed bulbs after 1st replacement:

 $\Delta kWH_{remaining years} = ((86 - 28) / 1000) * 1643$

= 95.3 kWh

Another way to calculate this is to use the mid life adjustment factors provided above;

= 151.2 * 0.63

= 95.3 kWh

Note these adjustments should be applied to kW and fuel impacts.

Example showing both deferred bulb installs and mid life adjustment.	
A 2 x 14W pin based CFL fixture is <i>purchased</i> in 2012:	
First year savings:	
$\Delta kWH_{1st year installs} = ((120 - 28) / 1000) * 0.875 * 1643$	
= 132.3 kWh	
Second year savings:	
$\Delta kWH_{1st year installs} = 132.3 * 0.63$	
= 83.3 kWh	
Plus second year installs:	
$\Delta kWH_{2nd year installs} = ((86 - 28) / 1000) * 0.057 * 1643$	
= 5.4 kWh	
ΔkWH_{Total} = 83.3 + 5.4 = 88.7 kWh	
Third year savings:	
$\Delta kWH_{1st year installs} = 83.3 kWh$	
$\Delta kWH_{2nd year installs} = 5.4 kWh$	
$\Delta kWH_{3rd year installs} = ((86 - 28) / 1000) * 0.048 * 1643$	
= 4.6 kWh	
ΔkWH_{Total} = 83.3 + 5.4 + 4.6 = 93.3 kWh	
Note the measure life for each year's install would end at 2020 (due to the	EISA backstop provision of 2020).

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 ΔkW = ((WattsBase - WattsEE) / 1 000) * ISR * CF

Where:

CF = Summer Peak Coincidence Factor for measure.

hours from the install year. The appropriate baseline shift adjustment should then be applied to all installs.

Other factors as defined above

For example, a 2 x 14W pin-based CFL fixture is purchased in 2013: $\Delta kW_{1st year} = ((120 - 28) / 1000) * 0.875 * 0.004$ = 0.0003 kWSecond and third year install savings should be calculated using the appropriate ISR and the delta watts and

NATURAL GAS SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

In order to account for the shift in baseline due to the Energy Independence and Security Act of 2007, an equivalent annual levelized baseline replacement cost over the lifetime of the CFL is calculated (see 'RES CFL Fixture O&M calc.xls'). The key assumptions used in this calculation are documented below⁹⁵⁰:

	Standard Incandescent	Efficient Incandescent	CFL
Replacement Cost	\$0.50	\$1.50	\$2.50
Component Rated Life (hrs)	1000	1000 ⁹⁵¹	8000

The Net Present Value of the baseline replacement costs for each CFL lumen range and installation year (2012 - 2016) are presented below:

	NPV of replacement costs per bulb				
	Baseline Effici				
	June 2012 -				
Lumen Range	May 2013	May 2014	May 2015	All	
1490-2600	\$18.34	\$16.28	\$14.12	\$1.90	

⁹⁴⁹ Estimated based on Commercial Outdoor Lighting coincidence factor calculation from analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. Residential Outdoor Lighting is not provided in this data set.

⁹⁵⁰ See 'RES CFL Fixture O&M calc.xls' for more details.

⁹⁵¹ The manufacturers of the new minimally compliant EISA Halogens are using regular incandescent lamps with halogen fill gas rather than halogen infrared to meet the standard and so the component rated life is equal to the standard incandescent.

1050-1489	\$17.36	\$16.28	\$14.12	
750-1049	\$15.50	\$15.30	\$14.12	
310-749	\$15.50	\$15.30	\$14.12	

The annual levelized baseline replacement costs using the statewide real discount rate of 5.23% are presented below:

	Levelized annual replacement costs per bulb				
	Baseline			Efficient	
Lumen Range	June 2012 - May 2013	June 2013 - May 2014	June 2014 - May 2015	All	
1490-2600	\$2.86	\$2.54	\$2.20		
1050-1489	\$2.71	\$2.54	\$2.20	\$0.30	
750-1049	\$2.42	\$2.39	\$2.20	ŞU.SU	
310-749	\$2.42	\$2.39	\$2.20		

MEASURE CODE: RS-LTG-EFIX-V02-120601

5.5.5 Interior Hardwired Compact Fluorescent Lamp (CFL) Fixture

DESCRIPTION

An ENERGY STAR lighting fixture wired for exclusive use with pin-based compact fluorescent lamps is installed in an interior residential setting. This measure could relate to either a fixture replacement or new installation (i.e. time of sale).

Federal legislation stemming from the Energy Independence and Security Act of 2007 will require all generalpurpose light bulbs between 40 and 100W to be approximately 30% more energy efficient than current incandescent bulbs. Production of 100W, standard efficacy incandescent lamps ends in 2012, followed by restrictions on 75W in 2013 and 60W and 40W in 2014. The baseline for this measure will therefore become bulbs (improved incandescent or halogen) that meet the new standard.

To account for these new standards, the expected delay in clearing retail inventory and potential for movement of product across state borders, the first year annual savings for this measure is reduced for 100W equivalent bulbs in June 2012, for 75W equivalent bulbs in June 2013 and for 60 and 40W equivalent bulbs in June 2014.

In addition, since during the lifetime of a CFL, the baseline bulb will be replaced multiple times, the annual savings claim must also be reduced within the life of the measure. For example, for 60W equivalent bulbs installed in 2012, the full savings (as calculated below in the Algorithm) should be claimed for the first two years, but a reduced annual savings based on the EISA-compliant baseline should be claimed for the remainder of the measure life. The appropriate adjustment factors are provided in the 'Mid Life Baseline Adjustment' section below.

Finally, a provision in the EISA regulations requires that by January 1, 2020, all lamps meet efficiency criteria of at least 45 lumens per watt, in essence making the baseline equivalent to a current day CFL. Therefore the measure life (number of years that savings should be claimed) should be reduced once the assumed lifetime of the bulb exceeds 2020. Due to expected delay in clearing retail inventory and to account for the operating life of a halogen incandescent potentially spanning over 2020, this shift is assumed not to occur until mid-2020.

This measure was developed to be applicable to the following program types: TOS, NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient condition is an ENERGY STAR lighting interior fixture for pin-based compact fluorescent lamps.

DEFINITION OF BASELINE EQUIPMENT

The baseline condition is a standard incandescent interior fixture, up until when EISA regulations dictate higher efficiency baseline bulbs. A 100W baseline bulb becomes a 72W bulb in June 2012, a 75W bulb becomes 53W in June 2012 and 60W and 40W bulbs become 43W and 29W respectively in June 2014. Annual savings are reduced to account for this baseline shift within the life of a measure and the measure life is reduced to account for the baseline replacements becoming equivalent to a current day CFL by June 2020.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected life of an interior fixture is 20 years⁹⁵². However due to the backstop provision in the Energy

⁹⁵² Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007 (<u>http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf</u>) gives 20 years for an interior

Independence and Security Act of 2007 that requires by January 1, 2020, all lamps meet efficiency criteria of at least 45 lumens per watt, the baseline replacement would become equivalent to a CFL in that year. The expected measure life for CFL fixtures installed June 2012 – May 2013 is therefore assumed to be 8 years. For bulbs installed June 2013 – May 2014, this would be reduced to 7 years and should be reduced each year⁹⁵³.

DEEMED MEASURE COST

The incremental cost for an interior fixture is assumed to be $$32^{954}$.

DEEMED O&M COST ADJUSTMENTS

Residential and in-unit Multi Family:

The Net Present Value of the baseline replacement costs for each CFL lumen range and installation year (2012 - 2016) are presented below:

	NPV of replacement costs per bulb				
		Baseline		Efficient	
Lumen Range	June 2012 - May 2013	June 2013 - May 2014	June 2014 - May 2015	All	
1490-2600	\$8.44	\$7.41	\$6.32	\$0.00 (No	
1050-1489	\$8.44	\$7.41	\$6.32	replacements	
750-1049	\$7.50	\$7.41	\$6.32	within measure life)	
310-749	\$7.50	\$7.41	\$6.32		

The annual levelized baseline replacement costs using the statewide real discount rate of 5.23% are presented below:

	Levelized annual replacement costs per bulb				
		Baseline		Efficient	
Lumen Range	June 2012 - May 2013	June 2013 - May 2014	June 2014 - May 2015	All	
1490-2600	\$1.32	\$1.16	\$0.99	\$0.00 (No	
1050-1489	\$1.32	\$1.16	\$0.99	replacements	
750-1049	\$1.17	\$1.16	\$0.99	within	
310-749	\$1.17	\$1.16	\$0.99	measure life)	

Multi Family common areas:

fluorescent fixture.

⁹⁵³ Due to expected delay in clearing stock from retail outlets and to account for the operating life of a halogen incandescent potentially spanning over 2020, this shift is assumed not to occur until mid-2020.

⁹⁵⁴ ENERGY STAR Qualified Lighting Savings Calculator default incremental cost input for interior fixture (<u>http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/LightingCalculator.xlsx?b299-55ae&b299-55ae</u>)

⁹⁵⁵ See 'RES CFL Fixture O&M calc.xls' for more details.

The Net Present Value of the baseline replacement costs for each CFL lumen range and installation year (2012 - 2016) are presented below:

	NPV of replacement costs				
		Baseline Efficient			
Lumen Range	June 2012 - May 2013	June 2013 - May 2014	June 2014 - May 2015	All	
1490-2600	\$57.47	\$51.35	\$44.90		
1050-1489	\$52.62	\$51.35	\$44.90	\$4.89	
750-1049	\$47.08	\$46.50	\$44.90	Ş4.05	
310-749	\$47.08	\$46.50	\$44.90		

The annual levelized baseline replacement costs using the statewide real discount rate of 5.23% are presented below:

	Levelized annual replacement cost savings			
		Baseline		Efficient
Lumen Range	June 2012 - May 2013	June 2013 - May 2014	June 2014 - May 2015	All
1490-2600	\$8.97	\$8.02	\$7.01	
1050-1489	\$8.22	\$8.02	\$7.01	\$0.76
750-1049	\$7.35	\$7.26	\$7.01	ŞU.70
310-749	\$7.35	\$7.26	\$7.01	

LOADSHAPE

Loadshape R06 - Residential Indoor Lighting

Loadshape C06 - Commercial Indoor Lighting⁹⁵⁶

COINCIDENCE FACTOR

The summer peak coincidence factor is assumed to be 9.5%⁹⁵⁷ for Residential and in-unit Multi Family bulbs and 75%⁹⁵⁸ for Multi Family common area bulbs.

⁹⁵⁶ For Multi Family common area lighting.

 ⁹⁵⁷ Based on lighting logger study conducted as part of the PY3 ComEd Residential Lighting Program evaluation.
 "ComEd Residential Energy Star Lighting Program Metering Study: Overview of Study Protocols"
 http://www.icc.illinois.gov/downloads/public/edocket/303835.pdf

[&]quot;Memo RE: Lighting Logger Study Results – Version 2, Date: May 27, 2011, To: David Nichols and ComEd Residential Lighting Interested Parties, From: Amy Buege and Jeremy Eddy; Navigant Evaluation Team" <u>http://www.icc.illinois.gov/downloads/public/edocket/303834.pdf</u>

⁹⁵⁸ Coincidence factor is based on healthcare/clinic value (used as proxy for multi family common area lighting with similar hours of use) developed using Equest models for various building types averaged across 5 climate zones for Illinois for the following building types.

```
Algorithm
```

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = ((WattsBase - WattsEE) / 1000) * ISR * Hours * WHFe$

Where:

WattsBase = Based on lumens of CFL bulb and program year purchased:

Minimum Lumens	Maximum Lumens	Incandescent Equivalent Pre-EISA 2007 (Watts _{Base})	Incandescent Equivalent Post-EISA 2007 (Watts _{Base})	Effective date from which Post – EISA 2007 assumption should be used
1490	2600	100	72	June 2012
1050	1489	75	53	June 2013
750	1049	60	43	June 2014
310	749	40	29	June 2014

WattsEE = Actual wattage of CFL purchased

ISR

= In Service Rate or the percentage of units rebated that get installed.

Program	Weighted Average 1 st year In Service Rate (ISR)	2 nd year Installations	3 rd year Installations	Final Lifetime In Service Rate
Retail (Time of Sale)	87.5% ⁹⁵⁹	5.7%	4.8%	98.0% ⁹⁶⁰
Direct Install	96.9 ⁹⁶¹			

⁹⁵⁹ 1st year in service rate is based upon review of PY2-3 evaluations from ComEd (see 'IL RES Lighting ISR.xls' for more information. The average first year ISR was calculated weighted by the number of bulbs in the each year's survey.

⁹⁶⁰ The 98% Lifetime ISR assumption is consistent with the assumption for standard CFLs (in the absence of evidence that it should be different for this bulb type) based upon review of two evaluations:

^{&#}x27;Nexus Market Research, RLW Analytics and GDS Associates study; "New England Residential Lighting Markdown Impact Evaluation, January 20, 2009' and 'KEMA Inc, Feb 2010, Final Evaluation Report:, Upstream Lighting Program, Volume 1.' This implies that only 2% of bulbs purchased are never installed. The second and third year installations are based upon Ameren analysis of the Californian KEMA study showing that 54% of future installs occur in year 2 and 46% in year 3. The 2nd and 3rd year installations should be counted as part of those future program year savings.

⁹⁶¹ In the absence of evaluation results for Direct Install Fixtures specifically, this is made consistent with the Direct Install CFL measure which is based upon review of the PY2 and PY3 ComEd Direct Install program surveys.

Hours

= Average hours of use per year

Installation Location	Hours
Residential and in-unit Multi Family	938 ⁹⁶²
Multi Family Common Areas	5950 ⁹⁶³

WHFe = Waste heat factor for energy to account for cooling energy savings from efficient lighting

Bulb Location	WHFe
Interior single family or unknown location	1.06 964
Multi family in unit	1.04 965
Multi family common area	1.04 966

DEFERRED INSTALLS

As presented above, the characterization assumes that a percentage of bulbs purchased are not installed until Year 2 and Year 3 (see ISR assumption above). The Illinois Technical Advisory Committee has determined the following methodology for calculating the savings of these future installs.

Year 1 (Purchase Year) installs:	Characterized using assumptions provided above or evaluated assumptions if available.
Year 2 and 3 installs:	Characterized using delta watts assumption and hours of use from the Install Year i.e. the actual deemed (or evaluated if available) assumptions active in Year 2 and 3 should be applied.
	The NTG factor for the Purchase Year should be applied.

⁹⁶² Based on lighting logger study conducted as part of the PY3 ComEd Residential Lighting Program evaluation.

http://205.254.135.7/consumption/residential/data/2009/xls/HC7.1%20Air%20Conditioning%20by%20Housing%20Unit%20Type.xls

⁹⁶³ Multi family common area lighting assumption is 16.3 hours per day (5950 hours per year) based on Focus on Energy Evaluation, ACES Deemed Savings Desk Review, November 2010.

⁹⁶⁴ The value is estimated at 1.06 (calculated as 1 + (0.66*(0.27 / 2.8)). Based on cooling loads decreasing by 27% of the lighting savings (average result from REMRate modeling of several different configurations and IL locations of homes), assuming typical cooling system operating efficiency of 2.8 COP (starting from standard assumption of SEER 10.5 central AC unit, converted to 9.5 EER using algorithm (-0.02 * SEER2) + (1.12 * SEER) (from Wassmer, M. (2003). A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at Boulder), converted to COP = EER/3.412 = 2.8COP) and 66% of homes in Illinois having central cooling ("Table HC7.9 Air Conditioning in Homes in Midwest Region, Divisions, and States, 2009 from Energy Information Administration", 2009 Residential Energy Consumption Survey;

http://www.eia.gov/consumption/residential/data/2009/xls/HC7.9%20Air%20Conditioning%20in%20Midwest%20 Region.xls)

⁹⁶⁵ As above but using estimate of 45% of multi family buildings in Illinois having central cooling (based on data from "Table HC7.1 Air Conditioning in U.S. Homes, By Housing Unit Type, 2009" which is for the whole of the US, scaled to IL air conditioning prevalence compared to US average);

⁹⁶⁶ Ibid.

For example, for a 2 x 14W pin based CFL fixture (60W standard incandescent and 43W EISA qualified incandescent/halogen) purchased in 2013.

 $\Delta kWH_{1st year installs} = ((120 - 28) / 1000) * 0.875 * 938 * 1.06$

= 80.0 kWh

 $\Delta kWH_{2nd year installs} = ((86 - 28) / 1000) * 0.057 * 938 * 1.06$

= 3.3 kWh

Note: Here we assume no change in hours assumption. NTG value from Purchase year applied.

 $\Delta kWH_{3rd \ vear \ installs} = ((86 - 28) / 1000) * 0.048 * 938 * 1.06$

= 2.8 kWh

MID LIFE BASELINE ADJUSTMENT

During the lifetime of a CFL, a baseline incandescent bulb would need to be replaced multiple times. Since the baseline bulb changes over time the annual savings claim must be reduced within the life of the measure to account for this baseline shift.

For example, for 60W equivalent bulbs installed in 2012, the full savings (as calculated above in the Algorithm) should be claimed for the first two years, but a reduced annual savings claimed for the remainder of the measure life. If the delta watts assumption is already based on the post EISA value, no mid-life adjustment is necessary. For deferred installs (described above) the delta watts and appropriate mid life adjustment (if any) should be applied.

The appropriate adjustment factors are provided below.

Lumen Range	Pre EISA WattsBase	Post EISA WattsBase	CFL Equivalent	Delta Watts Before EISA		Mid Life Adjustment	Adjustment made from date
1490-2600	100	72	25	75	47		N/A (2012 is already post EISA)
1050-1489	75	53	20	55	33	60%	June, 2013
750-1049	60	43	14	46	29	63%	June, 2014
310-749	40	29	11	29	18	62%	June, 2014

For example, a 2 x 14W pin based CFL fixture *installed* in 2013 (i.e. for this example we are ignoring the ISR):

First Year savings:

 $\Delta kWH_{1st vear} = ((120 - 28) / 1000) * 938 * 1.06$

= 91.5 kWh

This value should be claimed in June 2013 – May 2014. However after June 2014 the baseline replacement bulb shifts to the EISA compliant 43W bulb and so savings for that same bulb purchased and installed in 2013 will claim the following in that second year and for all subsequent years through the measure life:

Annual savings for same installed bulbs after 1st replacement:

 $\Delta kWH_{remaining years} = ((86 - 28) / 1000) * 938 * 1.06$

= 57.7 kWh

Another way to calculate this is to use the mid life adjustment factors provided above;

= 91.5 * 0.63

=57.7 kWh

Example showing both de	eferred bulb installs and mi	d life adjustment.
A 2 x 14W pin based CFL	fixture is <i>purchased</i> in 2012	2:
First year savings:		
$\Delta kWH_{1st year installs}$; = ((120 - 28) / 1000) * 0.8	75 * 938 * 1.06
	= 80.0 kWh	
Second year savings:		
$\Delta kWH_{1st year installs}$	s = 80.0 * 0.63	
	= 50.4 kWh	
Plus second yea	r installs:	
$\Delta kWH_{2nd \ year \ install}$	_s = ((86 - 28) / 1000) * 0.05	7 * 938 * 1.06
	= 3.3 kWh	
ΔkWH_{Total}	₌ 50.4 + 3.3	= 53.7 kWh
Third year savings:		
$\Delta kWH_{1st year installs}$; = 50.4 kWh	
$\Delta kWH_{2nd\ year\ install}$	_{ls} = 3.3 kWh	
$\Delta kWH_{3rd year install}$	s = ((86 - 28) / 1000) * 0.04	8 * 938 * 1.06
	= 2.8 kWh	
ΔkWH_{Total}	₌ 50.4 + 3.3 + 2.8	= 56.5 kWh
Note the measure life for	r each year's install would e	nd at 2020 (due to the EISA backstop provision of 2020).

HEATING PENALTY

If electric heated building:

Where:

⁹⁶⁷ Negative value because this is an increase in heating consumption due to the efficient lighting.

HF = Heating Factor or percentage of light savings that must be heated

- = $49\%^{968}$ for interior or unknown location
- = 0% for unheated location
- ηHeat = Efficiency in COP of Heating equipment

= actual. If not available use⁹⁶⁹:

System Type	Age of Equipment	HSPF	ηHeat
		Estimate	(COP Estimate)
Heat Pump	Before 2006	6.8	2.00
	After 2006	7.7	2.26
Resistance	N/A	N/A	1.00

For example, a 2 x 14W pin-based CFL fixture is purchased in 2013 and installed in home with 2.0 COP Heat Pump:

 $\Delta kWh_{1st year} = -(((120 - 28) / 1000) * 0.875 * 938 * 0.49) / 2.0$

= - 18.5 kWh

Second and third year install savings should be calculated using the appropriate ISR and the delta watts and hours from the install year. The appropriate baseline shift adjustment should then be applied to all installs.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = ((WattsBase - WattsEE) / 1 000) * ISR * WHFd * CF$

Where:

⁹⁶⁸ This means that heating loads increase by 49% of the lighting savings. This is based on the average result from REMRate modeling of several different configurations and IL locations of homes.

⁹⁶⁹ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.

WHFd = Waste heat factor for demand to account for cooling savings from efficient lighting.

Bulb Location	WHFd
Interior single family or unknown location	1.11970
Multi family in unit	1.07 ⁹⁷¹
Multi family common area	1.07 972
Exterior or uncooled location	1.0

CF

= Summer Peak Coincidence Factor for measure.

Bulb Location	CF
Interior single family or unknown location	9.5% ⁹⁷³
Multi family in unit	9.5% ⁹⁷⁴
Multi family common area	75% ⁹⁷⁵

Other factors as defined above

For example, a 14W pin-based CFL fixture is purchased in 2013:

 $\Delta kW_{1st year} = ((120 - 28) / 1000) * 0.875 * 1.11 * 0.095$

= 0.0085 kW

Second and third year install savings should be calculated using the appropriate ISR and the delta watts and hours from the install year. The appropriate baseline shift adjustment should then be applied to all installs.

⁹⁷⁴ Ibid.

 $^{^{970}}$ The value is estimated at 1.11 (calculated as 1 + (0.66 * 0.466 / 2.8)). See footnote relating to WHFe for details. Note the 46.6% factor represents the average Residential cooling coincidence factor calculated by dividing average load during the peak hours divided by the maximum cooling load.

⁹⁷¹ As above but using estimate of 45% of multi family buildings in Illinois having central cooling (based on data from "Table HC7.1 Air Conditioning in U.S. Homes, By Housing Unit Type, 2009" which is for the whole of the US, scaled to IL air conditioning prevalence compared to US average);

http://205.254.135.7/consumption/residential/data/2009/xls/HC7.1%20Air%20Conditioning%20by%20Housing%2

⁹⁷² Ibid

⁹⁷³ Based on lighting logger study conducted as part of the PY3 ComEd Residential Lighting Program evaluation. "ComEd Residential Energy Star Lighting Program Metering Study: Overview of Study Protocols" <u>http://www.icc.illinois.gov/downloads/public/edocket/303835.pdf</u>

[&]quot;Memo RE: Lighting Logger Study Results – Version 2, Date: May 27, 2011, To: David Nichols and ComEd Residential Lighting Interested Parties, From: Amy Buege and Jeremy Eddy; Navigant Evaluation Team" <u>http://www.icc.illinois.gov/downloads/public/edocket/303834.pdf</u>

⁹⁷⁵ Coincidence factor is based on healthcare/clinic value (used as proxy for multi family common area lighting with similar hours of use) developed using Equest models for various building types averaged across 5 climate zones for Illinois for the following building types.

NATURAL GAS SAVINGS

```
\DeltaTherms<sup>976</sup> = - (((WattsBase - WattsEE) / 1000) * ISR * Hours * HF * 0.03412) / \etaHeat
```

Where:

HF	= Heating Factor or percentage of light savings that must be heated
	= 49% ⁹⁷⁷ for interior or unknown location
	= 0% for unheated location
0.03412	=Converts kWh to Therms
ηHeat	= Efficiency of heating system
	=70% ⁹⁷⁸

For example, a 2 x 14W pin-based CFL fixture is purchased in 2013 and installed in home with gas heat at 70% efficiency:

 Δ Therms_{1st year} = -((120 - 28) / 1000) * 0.875 * 938 * 0.49 * 0.03412) / 0.7

= - 1.8 Therms

Second and third year install savings should be calculated using the appropriate ISR and the delta watts and hours from the install year. The appropriate baseline shift adjustment should then be applied to all installs.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

In order to account for the shift in baseline due to the Energy Independence and Security Act of 2007, an equivalent annual levelized baseline replacement cost over the lifetime of the CFL is calculated (see 'RES CFL Fixture O&M

(0.24*0.92) + (0.76*0.8) * (1-0.15) = 0.70

⁹⁷⁶ Negative value because this is an increase in heating consumption due to the efficient lighting.

⁹⁷⁷ This means that heating loads increase by 49% of the lighting savings. This is based on the average result from REMRate modeling of several different configurations and IL locations of homes.

⁹⁷⁸ This has been estimated assuming that natural gas central furnace heating is typical for Illinois residences (66% of Illinois homes have a Natural Gas Furnace (based on Energy Information Administration, 2009 Residential Energy Consumption Survey:

http://www.eia.gov/consumption/residential/data/2009/xls/HC6.9%20Space%20Heating%20in%20Midwest%20R egion.xls))

In 2000, 24% of furnaces purchased in Illinois were condensing (based on data from GAMA, provided to Department of Energy during the federal standard setting process for residential heating equipment - see Furnace Penetration.xls). Furnaces tend to last up to 20 years and so units purchased 10 years ago provide a reasonable proxy for the current mix of furnaces in the State. Assuming typical efficiencies for condensing and non-condensing furnaces and duct losses, the average heating system efficiency is estimated as follows:

calc.xls'). The key assumptions used in this calculation are documented below:

	Standard Incandescent	Efficient Incandescent	CFL
Replacement Cost	\$0.50	\$1.50	\$2.50
Component Rated Life (hrs)	1000	1000 ⁹⁷⁹	8000 (or 10,000 for multifamily common areas)

Residential and in-unit Multi Family:

The Net Present Value of the baseline replacement costs for each CFL lumen range and installation year (2012 - 2016) are presented below:

	N				
		Baseline			
Lumen Range	June 2012 - May 2013	June 2013 - May 2014	June 2014 - May 2015	All	
1490-2600	\$8.44	\$7.41	\$6.32	\$0.00 (No	
1050-1489	\$8.44	\$7.41	\$6.32	replacements	
750-1049	\$7.50	\$7.41	\$6.32	within	
310-749	\$7.50	\$7.41	\$6.32	measure life)	

The annual levelized baseline replacement costs using the statewide real discount rate of 5.23% are presented below:

	Leveli	bulb			
		Baseline			
Lumen Range	June 2012 - May 2013	June 2013 - May 2014	June 2014 - May 2015	All	
1490-2600	\$1.32	\$1.16	\$0.99	\$0.00 (No	
1050-1489	\$1.32	\$1.16	\$0.99	replacements	
750-1049	\$1.17	\$1.16	\$0.99	within	
310-749	\$1.17	\$1.16	\$0.99	measure life)	

Multi Family common areas:

The Net Present Value of the baseline replacement costs for each CFL lumen range and installation year (2012 - 2016) are presented below:

⁹⁷⁹ The manufacturers of the new minimally compliant EISA Halogens are using regular incandescent lamps with halogen fill gas rather than halogen infrared to meet the standard and so the component rated life is equal to the standard incandescent⁻

		Baseline			
Lumen Range	June 2012 - May 2013	June 2013 - May 2014	June 2014 - May 2015	All	
1490-2600	\$57.47	\$51.35	\$44.90		
1050-1489	\$52.62	\$51.35	\$44.90	\$4.89	
750-1049	\$47.08	\$46.50	\$44.90	Ş4.69	
310-749	\$47.08	\$46.50	\$44.90		

The annual levelized baseline replacement costs using the statewide real discount rate of 5.23% are presented below:

	Levelized annual replacement cost savings			
		Baseline Efficie		
Lumen Range	June 2012 - May 2013	June 2013 - May 2014	June 2014 - May 2015	All
1490-2600	\$8.97	\$8.02	\$7.01	
1050-1489	\$8.22	\$8.02	\$7.01	\$0.76
750-1049	\$7.35	\$7.26	\$7.01	ŞU.70
310-749	\$7.35	\$7.26	\$7.01	

MEASURE CODE: RS-LTG-IFIX-V02-120601

5.5.6 LED Downlights

DESCRIPTION

This measure describes savings from a variety of LED downlight lamp types. Other LED lamp types are currently available (e.g. A-lamps) but the significant incremental cost and minimal efficacy improvements over CFLs mean that they are unlikely to represent a viable measure at this time. As prices continue to drop and improvements in efficacy continue, this will be revisited in future versions.

This characterization assumes that the LED lamp or fixture is installed in a residential location. Where the implementation strategy does not allow for the installation location to be known (e.g. an upstream retail program) evaluation data could be used to determine an appropriate residential v commercial split. If this is not available, it is recommended to use this residential characterization for all installs in unknown locations to be appropriately conservative in savings assumptions.

This measure was developed to be applicable to the following program types: TOS, NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the installed equipment must be an ENERGY STAR LED lamp or fixture.

DEFINITION OF BASELINE EQUIPMENT

The baseline condition is assumed to be an incandescent/halogen lamp for all lamp types.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is given in the following table.⁹⁸⁰

Bulb Type	Measure Life (yr)
PAR20, PAR30, PAR38 screw-in lamps	10
MR16/PAR16 pin-based lamps	10
Recessed downlight luminaries	15
Track lights	15

⁹⁸⁰ Limited by persistence. NEEP EMV Emerging Technologies Research Report (December 2011)

DEEMED MEASURE COST

The price of LED lamps is falling quickly. Where possible the actual cost should be used and compared to the baseline cost provided below. If the incremental cost is unknown, assume the following⁹⁸¹:

Bulb Type	Baseline Cost	LED Cost	Incremental Cost
PAR20, PAR30, PAR38 screw-in lamps	\$4.00	\$44.00	\$40.00
MR16/PAR16 pin-based lamps	\$3.00	\$28.00	\$25.00
Recessed downlight luminaries	\$4.00	\$94.00	\$90.00
Track lights	\$4.00	\$60.00	\$56.00

DEEMED O&M COST ADJUSTMENTS

The life of the baseline bulb and the cost of its replacement is presented in the following table:

Lamp Туре	Baseline Lamp Life (hours)	Baseline Life (years) (Single Family and in unit Multifamily - 1010 hours)	Baseline Life (years) (Common Area Multifamily - 5950 hours)	Baseline Replacement Cost
PAR20, PAR30, PAR38 screw-in lamps	2000	2.0	0.3	\$4.00
MR16/PAR16 pin-based lamps	2000	2.0	0.3	\$3.00
Recessed downlight luminaries	2000	2.0	0.3	\$4.00
Track lights	2000	2.0	0.3	\$4.00

LOADSHAPE

Loadshape R06 - Residential Indoor Lighting Loadshape R07 - Residential Outdoor Lighting Loadshape C06 - Commercial Indoor Lighting⁹⁸²

COINCIDENCE FACTOR

The summer Peak Coincidence Factor is assumed to be 9.5%⁹⁸³ for Residential and in-unit Multi Family bulbs and 75%⁹⁸⁴ for Multi Family common area bulbs.

⁹⁸¹ Costs are provided as the best estimate from VEIC and are based on review of available product and of price reports provided to Efficiency Vermont by a number of manufacturers and retailers.

⁹⁸² For Multi Family common area lighting.

⁹⁸³ Based on lighting logger study conducted as part of the PY3 ComEd Residential Lighting Program evaluation. "ComEd Residential Energy Star Lighting Program Metering Study: Overview of Study Protocols" http://www.icc.illinois.gov/downloads/public/edocket/303835.pdf

[&]quot;Memo RE: Lighting Logger Study Results – Version 2, Date: May 27, 2011, To: David Nichols and ComEd Residential Lighting Interested Parties, From: Amy Buege and Jeremy Eddy; Navigant Evaluation Team" http://www.icc.illinois.gov/downloads/public/edocket/303834.pdf

⁹⁸⁴ Coincidence factor is based on healthcare/clinic value (used as proxy for multi family common area lighting with similar hours of use) developed using Equest models for various building types averaged across 5 climate zones for Illinois for the following building types.

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

ΔkWh = ((WattsBase - WattsEE) / 1000) * ISR * Hours * WHFe

Where:

WattsBase = Baseline lamp wattage of equivalent lumens, see "Bulb Types" table – default baseline assumption (incandescent/halogen) is in bold and highlighted yellow

WattsEE = Actual wattage of energy efficient LED lamp purchased

Bulb Type	Efficacy (lumen/Watt) ⁹⁸⁵	Lumens	LED Watts (WattsEE)	Incandescent/ Halogen Watts	EISA compliant Incandescent Watts	CFL Watts
PAR20 screw-in lamps	10-15	460-810	13	46		18
PAR30 screw-in lamps	(incandescent/halogen) 35-45 (CFL reflector)	600-1005	15	67		20
PAR38 screw-in lamps	40-60 (LED)	630-1170	18	78		23
		300-500	8	20		
MR16/PAR16 pin-based lamps	15-25 (Incandescent) 50 (LED)	525-875	14	35		
lamps	30 (220)	750-1250	20	50		
	ight 35 (fixture efficacy with a CFL lamp) 42-86 (LED fixture)	540	11	50		15
Recessed downlight luminaries		500-650	12	65		18
luminaries		1000	13	100		25
Track lights (R20)	10-15 ⁹⁸⁶	320-675	8	45		10
Track lights (BR30 and BR40)	(incandescent/halogen) 35-45 (CFL reflector) 40-60 (LED)	440-975	11	65		18

⁹⁸⁵ Data source for most efficacies: Energy Savings Estimates of Light Emitting Diodes in Niche Lighting Applications, Navigrant Consulting, January 2011,

http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/nichefinalreport_january2011.pdf

⁹⁸⁶ The exemption to EISA for reflector bulbs is expected to expire in 2014 for the following wattage and bulb type: 45 W (R20 and BR 19); 50W (R30, ER 30, BR 40, and ER 40); 65W (BR30, BR40, and ER 404)

ISR

= In Service Rate or the percentage of units rebated that get installed⁹⁸⁷

Bulb Type	ISR
PAR20, PAR30, PAR38 screw-in lamps	0.95
MR16/PAR16 pin-based lamps	0.95
Recessed downlight luminaries	1.0
Track lights	1.0

Hours

= Average hours of use per year

Installation Location	Hours
Residential and in-unit Multi Family	1,010 988
Multi Family Common Areas	5950 ⁹⁸⁹

WHFe = Waste heat factor for energy to account for cooling savings from efficient lighting

Bulb Location	WHFe
Interior single family or unknown location	1.06 990
Multi family in unit	1.04 991
Multi family common area	1.04 992
Exterior or uncooled location	1.0

For example, a 13W PAR20 LED is installed in place of a 46W PAR20 incandescent screw-in lamp installed in single family interior location:

⁹⁹⁰ The value is estimated at 1.06 (calculated as 1 + (0.66*(0.27 / 2.8)). Based on cooling loads decreasing by 27% of the lighting savings (average result from REMRate modeling of several different configurations and IL locations of homes), assuming typical cooling system operating efficiency of 2.8 COP (starting from standard assumption of SEER 10.5 central AC unit, converted to 9.5 EER using algorithm (-0.02 * SEER2) + (1.12 * SEER) (from Wassmer, M. (2003). A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at Boulder), converted to COP = EER/3.412 = 2.8COP) and 66% of homes in Illinois having central cooling ("Table HC7.9 Air Conditioning in Homes in Midwest Region, Divisions, and States, 2009 from Energy Information Administration", 2009 Residential Energy Consumption Survey;

http://205.254.135.7/consumption/residential/data/2009/xls/HC7.1%20Air%20Conditioning%20by%20Housing%20Unit%20Type.xls

⁹⁸⁷ NEEP EMV Emerging Technologies Research Report (December 2011)

⁹⁸⁸ NEEP EMV Emerging Technologies Research Report (December 2011)

⁹⁸⁹ Multifamily common area lighting assumption is 16.3 hours per day (5950 hours per year) based on Focus on Energy Evaluation, ACES Deemed Savings Desk Review, November 2010.

http://www.eia.gov/consumption/residential/data/2009/xls/HC7.9%20Air%20Conditioning%20in%20Midwest%20 Region.xls)

⁹⁹¹ As above but using estimate of 45% of multi family buildings in Illinois having central cooling (based on data from "Table HC7.1 Air Conditioning in U.S. Homes, By Housing Unit Type, 2009" which is for the whole of the US, scaled to IL air conditioning prevalence compared to US average);

⁹⁹² Ibid.

 $\Delta kWh = ((46 - 13) / 1000) * 0.95 * 1010 * 1.06$

= 33.6 kWh

HEATING PENALTY

If electric heated home (if heating fuel is unknown assume gas, see Natural Gas section):

Where:

HF = Heating Factor or percentage of light savings that must be heated

= 49%⁹⁹⁴ for interior or unknown location

= 0% for exterior location

ηHeat = Efficiency in COP of Heating equipment

= Actual. If not available use:⁹⁹⁵

System Type	Age of Equipment	HSPF Estimate	ηHeat (COP Estimate)
Heat Pump	Before 2006	6.8	2.00
	After 2006	7.7	2.26
Resistance	N/A	N/A	1.00

For example, a 13W PAR20 LED is installed in place of a 46W PAR20 incandescent screw-in lamp installed in single family interior location:

 $\Delta kWh = -((46 - 13) / 1000) * 0.95 * 1010 * 0.49) / 2.26$

= - 6.87 kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = ((WattsBase - WattsEE) / 1000) * ISR * WHFd * CF$

Where:

⁹⁹³ Negative value because this is an increase in heating consumption due to the efficient lighting.

⁹⁹⁴ This means that heating loads increase by 49% of the lighting savings. This is based on the average result from REMRate modeling of several different configurations and IL locations of homes.

⁹⁹⁵ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.

WHFd = Waste heat factor for demand to account for cooling savings from efficient lighting.

Bulb Location	WHFd
Interior single family or unknown location	1.11996
	1.07 ⁹⁹⁷
Multi family common area	1.07 998
Exterior or uncooled location	1.0

CF = Summer Peak Coincidence Factor for measure, see above for values.

Bulb Location	CF
Interior single family or unknown location	9.5% ⁹⁹⁹
	9.5% ¹⁰⁰⁰
Multi family common area	75% ¹⁰⁰¹

Other factors as defined above

For example, a 13W PAR20 LED is installed in place of a 46W PAR20 incandescent screw-in lamp installed in single family interior location:

 $\Delta kW = ((46 - 13) / 1000) * 0.95 * 1.11* 0.095$

= 0.0033 kW

NATURAL GAS SAVINGS

Heating penalty if Natural Gas heated home, or if heating fuel is unknown.

Δtherms = - (((WattsBase - WattsEE) / 1000) * ISR * Hours * HF * 0.03412) / ηHeat

http://205.254.135.7/consumption/residential/data/2009/xls/HC7.1%20Air%20Conditioning%20by%20Housing%2

¹⁰⁰⁰ Ibid.

⁹⁹⁶ The value is estimated at 1.11 (calculated as 1 + (0.66 * 0.466 / 2.8)). See footnote relating to WHFe for details. Note the 46.6% factor represents the average Residential cooling coincidence factor calculated by dividing average load during the peak hours divided by the maximum cooling load.

⁹⁹⁷ As above but using estimate of 45% of multi family buildings in Illinois having central cooling (based on data from "Table HC7.1 Air Conditioning in U.S. Homes, By Housing Unit Type, 2009" which is for the whole of the US, scaled to IL air conditioning prevalence compared to US average);

⁹⁹⁸ Ibid

⁹⁹⁹ Based on lighting logger study conducted as part of the PY3 ComEd Residential Lighting Program evaluation. "ComEd Residential Energy Star Lighting Program Metering Study: Overview of Study Protocols" <u>http://www.icc.illinois.gov/downloads/public/edocket/303835.pdf</u>

[&]quot;Memo RE: Lighting Logger Study Results – Version 2, Date: May 27, 2011, To: David Nichols and ComEd Residential Lighting Interested Parties, From: Amy Buege and Jeremy Eddy; Navigant Evaluation Team" <u>http://www.icc.illinois.gov/downloads/public/edocket/303834.pdf</u>

¹⁰⁰¹ Coincidence factor is based on healthcare/clinic value (used as proxy for multi family common area lighting with similar hours of use) developed using Equest models for various building types averaged across 5 climate zones for Illinois for the following building types.

HF	 Heating factor, or percentage of lighting savings that must be replaced by heating system.
	= 49% ¹⁰⁰² for interior or unknown location
	= 0% for exterior location
0.03412	= Converts kWh to Therms
ηHeat	= Average heating system efficiency.
	$= 0.70^{1003}$

Where:

Other factors as defined above

For example, a 13W PAR20 LED is installed in place of a 46W PAR20 incandescent screw-in lamp installed in single family interior location with gas heating at 70% total efficiency:

 Δ therms = - (((46 - 13) / 1000) * 0.95 * 1010 * 0.49* 0.03412) / 0.70 = - 0.756 therms

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

The life of the baseline bulb and the cost of its replacement is presented in the following table:

Lamp Type	Baseline Lamp Life (hours)	Baseline Life (Single Family and in unit Multifamily - 1010 hours)	Baseline Life (Common Area Multifamily - 5950 hours)	Baseline Replacement Cost
PAR20, PAR30, PAR38 screw-in lamps	2000	2.0	0.3	\$4.00
MR16/PAR16 pin-based lamps	2000	2.0	0.3	\$3.00
Recessed downlight luminaries	2000	2.0	0.3	\$4.00
Track lights	2000	2.0	0.3	\$4.00

¹⁰⁰² Average result from REMRate modeling of several different configurations and IL locations of homes

(0.24*0.92) + (0.76*0.8) * (1-0.15) = 0.70

¹⁰⁰³ This has been estimated assuming that natural gas central furnace heating is typical for Illinois residences (66% of Illinois homes have a Natural Gas Furnace (based on Energy Information Administration, 2009 Residential Energy Consumption Survey:

http://www.eia.gov/consumption/residential/data/2009/xls/HC6.9%20Space%20Heating%20in%20Midwest%20R egion.xls))

In 2000, 24% of furnaces purchased in Illinois were condensing (based on data from GAMA, provided to Department of Energy during the federal standard setting process for residential heating equipment - see Furnace Penetration.xls). Furnaces tend to last up to 20 years and so units purchased 10 years ago provide a reasonable proxy for the current mix of furnaces in the State. Assuming typical efficiencies for condensing and non-condensing furnaces and duct losses, the average heating system efficiency is estimated as follows:

MEASURE CODE: RS-LTG-LEDD-V01-120601

5.5.7 LED Exit Signs

DESCRIPTION

This measure characterizes the savings associated with installing a Light Emitting Diode (LED) exit sign in place of a fluorescent or incandescent exit sign in a MultiFamily building. Light Emitting Diode exit signs have a string of very small, typically red or green, glowing LEDs arranged in a circle or oval. The LEDs may also be arranged in a line on the side, top or bottom of the exit sign. LED exit signs provide the best balance of safety, low maintenance, and very low energy usage compared to other exit sign technologies.

This measure was developed to be applicable to the following program types: TOS, NC, RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient equipment is assumed to be an exit sign illuminated by LEDs.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is assumed to be a fluorescent or incandescent model.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The measure life is assumed to be 16 years¹⁰⁰⁴.

DEEMED MEASURE COST

The incremental cost for this measure is assumed to be $$30^{1005}$.

DEEMED O&M COST ADJUSTMENTS

The annual O&M Cost Adjustment savings is calculated using component costs and lifetimes presented below.

LOADSHAPE

Loadshape C53 - Flat

COINCIDENCE FACTOR

The summer peak coincidence factor for this measure is assumed to be 100%¹⁰⁰⁶.

¹⁰⁰⁴ 2008 Database for Energy-Efficiency Resources (DEER), Version 2008.2.05, "Effective/Remaining Useful Life Values", California Public Utilities Commission, December 16, 2008.

¹⁰⁰⁵ NYSERDA Deemed Savings Database, Labor cost assumes 25 minutes @ \$18/hr.

¹⁰⁰⁶ Assuming continuous operation of an LED exit sign, the Summer Peak Coincidence Factor is assumed to equal 1.0.

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

```
\Delta kWh = ((WattsBase - WattsEE) / 1000) * HOURS * WHF_e
```

Where:

WattsBase = Actual wattage if known, if unknown assume the following:

Baseline Type	WattsBase
Incandescent	35W ¹⁰⁰⁷
Fluorescent	$11W^{1008}$
Unknown (e.g. time of sale)	11W

WattsEE	= Actual wattage if known, if unknown assume 2W ¹⁰⁰⁹
HOURS	= Annual operating hours
	= 8766
WHF_{e}	= Waste heat factor for energy; accounts for cooling savings from efficient lighting.
	= 1.04 ¹⁰¹⁰ for multi family buildings
ing incondessant f	ivturo

Default if replacing incandescent fixture

ΔkWH = (35 - 2)/1000 * 8766 * 1.04

= 301 kWh

¹⁰⁰⁷ Based on review of available product.

¹⁰⁰⁸ Efficiency Vermont Technical Reference User Manual (TRM) Measure Savings Algorithms and Cost Assumptions, February, 19, 2010

¹⁰⁰⁹ Efficiency Vermont Technical Reference User Manual (TRM) Measure Savings Algorithms and Cost Assumptions, February, 19, 2010

¹⁰¹⁰ The value is estimated at 1.04 (calculated as 1 + (0.45*(0.27 / 2.8))). Based on cooling loads decreasing by 27% of the lighting savings (average result from REMRate modeling of several different configurations and IL locations of homes), assuming typical cooling system operating efficiency of 3.1 COP (starting from standard assumption of SEER 10.5 central AC unit, converted to 9.5 EER using algorithm (-0.02 * SEER2) + (1.12 * SEER) (from Wassmer, M. (2003). A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at Boulder), converted to COP = EER/3.412 = 2.8COP) and estimate of 45% of multi family buildings in Illinois having central cooling (based on data from "Table HC7.1 Air Conditioning in U.S. Homes, By Housing Unit Type, 2009" which is for the whole of the US, scaled to IL air conditioning prevalence compared to US average);

http://205.254.135.7/consumption/residential/data/2009/xls/HC7.1%20Air%20Conditioning%20by%20Housing%20Unit%20Type.xls

Default if replacing fluorescent fixture

$$\Delta kWH = (11-2)/1000 * 8766 * 1.04$$

= 82 kWh

HEATING PENALTY

If electric heated building (if heating fuel is unknown assume gas, see Natural Gas section):

 $\Delta kWh^{1011} = -(((WattsBase - WattsEE) / 1000) * Hours * HF) / \eta Heat$

Where:

HF = Heating Factor or percentage of light savings that must be heated

= 49%¹⁰¹²

ηHeat = Efficiency in COP of Heating equipment

= Actual. If not available use:¹⁰¹³

System Type	Age of Equipment	HSPF Estimate	ηHeat (COP Estimate)
Heat Pump	Before 2006	6.8	2.00
	After 2006	7.7	2.26
Resistance	N/A	N/A	1.00

```
For example, a 2.0COP Heat Pump heated building:

If incandescent fixture: \Delta kWH = -((35 - 2)/1000 * 8766 * 0.49) / 2

= -71 kWh

If fluorescent fixture \Delta kWH = -((11 - 2)/1000 * 8766 * 0.49) / 2

= -19 kWh
```

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = ((WattsBase - WattsEE) / 1000) * WHF_d * CF$

¹⁰¹¹ Negative value because this is an increase in heating consumption due to the efficient lighting.

¹⁰¹² This means that heating loads increase by 49% of the lighting savings. This is based on the average result from REMRate modeling of several different configurations and IL locations of homes.

¹⁰¹³ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.

Where:

WHF _d	= Waste heat factor for demand to account for cooling savings from efficient lighting. The cooling savings are only added to the summer peak savings.
	=1.07 ¹⁰¹⁴ for multi family buildings
CF	= Summer Peak Coincidence Factor for measure
	= 1.0
Default if incandescent fi	xture

 $\Delta kW = (35 - 2)/1000 * 1.07 * 1.0$

= 0.035 kW

Default if fluorescent fixture

 $\Delta kW = (11-2)/1000 * 1.07 * 1.0$

= 0.0096 kW

NATURAL GAS SAVINGS

Heating penalty if Natural Gas heated building, or if heating fuel is unknown.

Δtherms	ns = - (((WattsBase - WattsEE) / 1000) * Hours * HF * 0.03412) / ηHeat		
Where:			
HF	= Heating factor, or percentage of lighting savings that must be replaced by heating system.		
	= 49% ¹⁰¹⁵		
0.0342	= Converts kWh to Therms		
ηHeat	= Average heating system efficiency.		
	$= 0.70^{1016}$		

¹⁰¹⁴ The value is estimated at 1.11 (calculated as 1 + (0.45 * 0.466 / 2.8)). See footnote relating to WHFe for details. Note the 46.6% factor represents the average Residential cooling coincidence factor calculated by dividing average load during the peak hours divided by the maximum cooling load.

¹⁰¹⁵ Average result from REMRate modeling of several different configurations and IL locations of homes ¹⁰¹⁶ This has been estimated assuming that natural gas central furnace heating is typical for Illinois residences (66% of Illinois homes have a Natural Gas Furnace (based on Energy Information Administration, 2009 Residential

Energy Consumption Survey:

http://www.eia.gov/consumption/residential/data/2009/xls/HC6.9%20Space%20Heating%20in%20Midwest%20R egion.xls))

Other factors as defined above

Default if incandescent fixture

 Δ therms = - (((35 - 2) / 1000) * 8766 * 0.49* 0.03412) / 0.70

= -6.9 therms

Default if fluorescent fixture

 Δ therms = - (((11 - 2) / 1000) * 8766 * 0.49* 0.03412) / 0.70

= -1.9 therms

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

The annual O&M Cost Adjustment savings should be calculated using the following component costs and lifetimes.

	Baseline Measures	
Component	Cost	Life (yrs)
Lamp	\$7.00 ¹⁰¹⁷	1.37 years ¹⁰¹⁸

MEASURE CODE: RS-LTG-LEDE-V01-120601

(0.24*0.92) + (0.76*0.8) * (1-0.15) = 0.70

¹⁰¹⁷ Consistent with assumption for a Standard CFL bulb with an estimated labor cost of \$4.50 (assuming \$18/hour and a task time of 15 minutes).

¹⁰¹⁸ Assumes a lamp life of 12,000 hours and 8766 run hours 12000/8766 = 1.37 years.

In 2000, 24% of furnaces purchased in Illinois were condensing (based on data from GAMA, provided to Department of Energy during the federal standard setting process for residential heating equipment - see Furnace Penetration.xls). Furnaces tend to last up to 20 years and so units purchased 10 years ago provide a reasonable proxy for the current mix of furnaces in the State. Assuming typical efficiencies for condensing and non-condensing furnaces and duct losses, the average heating system efficiency is estimated as follows:

5.6 Shell End Use

5.6.1 Air Sealing

DESCRIPTION

Thermal shell air leaks are sealed through strategic use and location of air-tight materials. Leaks are detected and leakage rates measured with the assistance of a blower-door. The algorithm for this measure can be used when the program implementation does not allow for more detailed forecasting through the use of residential modeling software.

This measure was developed to be applicable to the following program types: RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

Air sealing materials and diagnostic testing should meet all eligibility program qualification criteria. The initial and final tested leakage rates should be performed in such a manner that the identified reductions can be properly discerned, particularly in situations wherein multiple building envelope measures may be implemented simultaneously.

DEFINITION OF BASELINE EQUIPMENT

The existing air leakage should be determined through approved and appropriate test methods using a blower door. The baseline condition of a building upon first inspection significantly impacts the opportunity for cost-effective energy savings through air-sealing.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 15 years.¹⁰¹⁹

DEEMED MEASURE COST

The actual capital cost for this measure should be used in screening.

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape R08 - Residential Cooling

Loadshape R09 - Residential Electric Space Heat

Loadshape R10 - Residential Electric Heating and Cooling

¹⁰¹⁹ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, 2007

COINCIDENCE FACTOR

The summer peak coincidence factor for cooling is provided in two different ways below. The first is used to estimate peak savings during the utility peak hour and is most indicative of actual peak benefits, and the second represents the *average* savings over the defined summer peak period, and is presented so that savings can be bid into PJM's Forward Capacity Market. Both values provided are based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren.

- CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C (during utility peak hour) = 91.5%¹⁰²⁰
- CF_{PJM} = PJM Summer Peak Coincidence Factor for Central A/C (average during PJM peak period) = 46.6%¹⁰²¹

	Algorithm		
CALCULATION OF SAVI	CALCULATION OF SAVINGS		
ELECTRIC ENERGY SAV	INGS		
	ΔkWh	= $\Delta kWh_cooling + \Delta kWh_heating$	
Where:			
	∆kWh_cooling	= If central cooling, reduction in annual cooling requirement due to air sealing	
		= [(((CFM50_existing - CFM50_new)/N_cool) * 60 * 24 * CDD * DUA * 0.018) / (1000 * ηCool)] * LM	
	CFM50_existing	= Infiltration at 50 Pascals as measured by blower door before air sealing.	
		= Actual	
	CFM50_new	= Infiltration at 50 Pascals as measured by blower door after air sealing.	
		= Actual	
	N_cool	= Conversion factor from leakage at 50 Pascal to leakage at natural conditions =Dependent on exposure: ¹⁰²²	

¹⁰²⁰ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The AC load during the utility's peak hour is divided by the maximum AC load during the year.

¹⁰²¹ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

¹⁰²² N-factor is used to convert 50-pascal blower door air flows to natural air flows and is dependent on geographic location and exposure of the home to wind (impacts of stack effect based on height of building will not be significant because of reduced delta T during the cooling season), based on methodology developed by Lawrence Berkeley Laboratory (LBL). N-factor values copied from J. Krigger, C. Dorsi; "Residential Energy: Cost Savings and Comfort for Existing Buildings", p284.

Climate Zone	Exposure	N-Factor
	Well Shielded	22.2
Zone 2	Normal	18.5
	Exposed	16.7
	Well Shielded	25.8
Zone 3	Normal	21.5
	Exposed	19.4

60 * 24 = Converts Cubic Feet per Minute to Cubic Feet per Day

CDD = Cooling Degree Days

= Dependent on location¹⁰²³:

Climate Zone (City based upon)	CDD 65
1 (Rockford)	820
2 (Chicago)	842
3 (Springfield)	1,108
4 (Belleville)	1,570
5 (Marion)	1,370

DUA	= Discretionary Use Adjustment (reflects the fact that people do not always
	operate their AC when conditions may call for it).

= 0.75 ¹⁰²⁴

0.018 = Specific Heat Capacity of Air (BTU/ft³*°F)

1000 = Converts Btu to kBtu

ηCool = Efficiency (SEER) of Air Conditioning equipment (kBtu/kWh)

= Actual (where it is possible to measure or reasonably estimate). If unknown assume the following 1025 :

Age of Equipment	SEER Estimate
Before 2006	10
After 2006	13

¹⁰²³ National Climatic Data Center, calculated from 1981-2010 climate normals with a base temp of 65°F.

¹⁰²⁴ This factor's source is: Energy Center of Wisconsin, May 2008 metering study; "Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research", p31.

¹⁰²⁵ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Central AC was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.

= Latent multiplier to account for latent cooling demand

= dependent on location: ¹⁰²⁶

Climate Zone (City based upon)	LM
1 (Rockford)	8.5
2 (Chicago)	6.2
3 (Springfield)	6.6
4 (St. Louis, MO)	5.8
5 (Evansville, IN)	6.6

 $\Delta kWh_{heating}$ = If electric heat (resistance or heat pump), reduction in annual electric heating due to air sealing

= (((CFM50_existing - CFM50_new)/N_heat) * 60 * 24 * HDD * 0.018) / (nHeat * 3,412)

N_heat = Conversion factor from leakage at 50 Pascal to leakage at natural conditions = Based on climate zone, building height and exposure level:¹⁰²⁷

	# Stories:	1	1.5	2	3
Zone 2	Well Shielded	22.2	20.0	17.8	15.5
	Normal	18.5	16.7	14.8	13.0
	Exposed	16.7	15.0	13.3	11.7
	Well Shielded	25.8	23.2	20.6	18.1
Zone 3	Normal	21.5	19.4	17.2	15.1
	Exposed	19.4	17.4	15.5	13.5

HDD

= Heating Degree Days

= Dependent on location:¹⁰²⁸

LM

¹⁰²⁶ The Latent Multiplier is used to convert the sensible cooling savings calculated to a value representing sensible and latent cooling loads. The values are derived from Harriman et al "Dehumidification and Cooling Loads From Ventilation Air", ASHRAE Journal, by adding the latent and sensible loads to determine the total, then dividing the total by the sensible load. Where this specialized data was not available, a nearby city was chosen.

¹⁰²⁷ N-factor is used to convert 50-pascal blower door air flows to natural air flows and is dependent on geographic location, height of building (stack effect) and exposure of the home to wind, based on methodology developed by Lawrence Berkeley Laboratory (LBL). N-factor values copied from J. Krigger, C. Dorsi; "Residential Energy: Cost Savings and Comfort for Existing Buildings", p284.

¹⁰²⁸ National Climatic Data Center, calculated from 1981-2010 climate normals with a base temp of 65°F. The base temperature was selected to account for the fact that homes receiving airsealing efforts are likely to be more leaky homes where the inside and outside air temperature is more consistent and therefore is more likely to require heating as temperatures drop below 65 degrees. Using this base temperature also reconciles the resulting savings estimates with the results of more sophisticated modeling software.

Climate Zone (City based upon)	HDD 65
1 (Rockford)	6,569
2 (Chicago)	6,339
3 (Springfield)	5,497
4 (Belleville)	4,379
5 (Marion)	4,476

ηHeat

= Efficiency of heating system

= Actual. If not available refer to default table below¹⁰²⁹:

System Type	Age of Equipment	HSPF Estimate	ηHeat (Effective COP Estimate)= (HSPF/3.413)*0.85
Heat Pump	Before 2006	6.8	1.7
	After 2006	7.7	1.92
Resistance	N/A	N/A	1

3412	= Converts Btu to kWh
0112	

For example, a well shielded, 2 story single family home in Chicago with 10.5 SEER central cooling and a heat pump with COP of 2 (1.92 including distribution losses), has pre and post blower door test results of 3,400 and 2,250:

 $\Delta kWh = \Delta kWh$ cooling + ΔkWh heating

= [((((3,400 - 2,250) / 22.2) * 60 * 24 * 842 * 0.75 * 0.018) / (1000 * 10.5)) * 6.2] + [((3,400 - 2,250) / 17.8)) * 60 * 24 * 6339 * 0.018 / (1.92 * 3,412)]

= 501 + 1620

= 2,121 kWh

ΔkWh_heating = If gas *furnace* heat, kWh savings for reduction in fan run time

= Δ Therms * F_e * 29.3

F_e = Furnace Fan energy consumption as a percentage of annual fuel consumption

 $= 3.14\%^{1030}$

¹⁰²⁹ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time means that using the minimum standard is appropriate. An 85% distribution efficiency is then applied to account for duct losses for heat pumps.

¹⁰³⁰ F_e is not one of the AHRI certified ratings provided for residential furnaces, but can be reasonably estimated

29.3 = kWh per therm

For example, a well shielded, 2 story single family home in Chicago with a gas furnace with system efficiency of 70%, has pre and post blower door test results of 3,400 and 2,250 (see therm calculation in Natural Gas Savings section:

ΔkWh = 152 * 0.0314 * 29.3

= 140 kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = (\Delta kWh_cooling / FLH_cooling) * CF$

Where:

FLH_cooling

g = Full load hours of air conditioning

= Dependent on location¹⁰³¹:

Climate Zone (City based upon)	Single Family	Multifamily
1 (Rockford)	512	467
2 (Chicago)	570	506
3 (Springfield)	730	663
4 (Belleville)	1,035	940
5 (Marion)	903	820

- CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C (during system peak hour)
 - = 91.5%¹⁰³²
- CF_{PJM} = PJM Summer Peak Coincidence Factor for Central A/C (average during peak period)

= 46.6%¹⁰³³

from a calculation based on the certified values for fuel energy (Ef in MMBTU/yr) and Eae (kWh/yr). An average of a 300 record sample (non-random) out of 1495 was 3.14%. This is, appropriately, ~50% greater than the Energy Star version 3 criteria for 2% F_e . See "Programmable Thermostats Furnace Fan Analysis.xlsx" for reference.

¹⁰³¹ Full load hours for Chicago, Moline and Rockford are provided in "Final Evaluation Report: Central Air Conditioning Efficiency Services (CACES), 2010, Navigant Consulting",

http://ilsag.org/yahoo site admin/assets/docs/ComEd PY2 CACES Evaluation Report 2010-10-

<u>18.299122020.pdf</u> p.33. An average FLH/Cooling Degree Day (from NCDC) ratio was calculated for these locations and applied to the CDD of the other locations in order to estimate FLH.

¹⁰³² Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The AC load during the utility's peak hour is divided by the maximum AC load during the year.

Other factors as defined above

For example, a well shielded, 2 story single family home in Chicago with 10.5 SEER central cooling and a heat pump with COP of 2.0, has pre and post blower door test results of 3,400 and 2,250:

 $\Delta kW_{SSP} = 501 / 570 * 0.915$ = 0.804 kW $\Delta kW_{PJM} = 501 / 570 * 0.466$ = 0.410 kW

NATURAL GAS SAVINGS

If Natural Gas heating:

```
ΔTherms = (((CFM50_existing - CFM50_new)/N_heat) * 60 * 24 * HDD * 0.018) / (ηHeat * 100,000)
```

Where:

N_heat = Conversion factor from leakage at 50 Pascal to leakage at natural conditions

	# Stories:	1	1.5	2	3
	Well Shielded	22.2	20.0	17.8	15.5
Zone 2	Normal	18.5	16.7	14.8	13.0
	Exposed	16.7	15.0	13.3	11.7
	Well Shielded	25.8	23.2	20.6	18.1
Zone 3	Normal	21.5	19.4	17.2	15.1
	Exposed	19.4	17.4	15.5	13.5

= Based on climate zone, building height and exposure level¹⁰³⁴:

HDD

Heating Degree Days
 dependent on location¹⁰³⁵:

¹⁰³⁵ National Climatic Data Center, calculated from 1981-2010 climate normals with a base temp of 60°F, consistent with the findings of Belzer and Cort, Pacific Northwest National Laboratory in "Statistical Analysis of Historical State-Level Residential Energy Consumption Trends," 2004..

¹⁰³³ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

¹⁰³⁴ N-factor is used to convert 50-pascal blower door air flows to natural air flows and is dependent on geographic location, height of building (stack effect) and exposure of the home to wind, based on methodology developed by Lawrence Berkeley Laboratory (LBL). N-factor values copied from J. Krigger, C. Dorsi; "Residential Energy: Cost Savings and Comfort for Existing Buildings", p284.

Climate Zone (City based upon)	HDD 65
1 (Rockford)	6,569
2 (Chicago)	6,339
3 (Springfield)	5,497
4 (Belleville)	4,379
5 (Marion)	4,476

ηHeat

= Efficiency of heating system

= Equipment efficiency * distribution efficiency

= Actual¹⁰³⁶. If not available use $70\%^{1037}$.

Other factors as defined above

For example, a well shielded, 2 story single family home in Chicago with a gas furnace with system efficiency of 70%, has pre and post blower door test results of 3,400 and 2,250:

 Δ Therms = ((3,400 - 2,250)/17.8) * 60 * 24 * 6339 * 0.018) / (0.7 * 100,000)

= 152 therms

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

(0.24*0.92) + (0.76*0.8) * (1-0.15) = 0.70

¹⁰³⁶ Ideally, the System Efficiency should be obtained either by recording the AFUE of the unit, or performing a steady state efficiency test. The Distribution Efficiency can be estimated via a visual inspection and by referring to a look up table such as that provided by the Building Performance Institute:

⁽http://www.bpi.org/files/pdf/DistributionEfficiencyTable-BlueSheet.pdf or by performing duct blaster testing. ¹⁰³⁷ This has been estimated assuming that natural gas central furnace heating is typical for Illinois residences (66% of Illinois homes have a Natural Gas Furnace (based on Energy Information Administration, 2009 Residential Energy Consumption Survey:

http://www.eia.gov/consumption/residential/data/2009/xls/HC6.9%20Space%20Heating%20in%20Midwest%20R egion.xls)

In 2000, 24% of furnaces purchased in Illinois were condensing (based on data from GAMA, provided to Department of Energy during the federal standard setting process for residential heating equipment - see Furnace Penetration.xls). Furnaces tend to last up to 20 years and so units purchased 10 years ago provide a reasonable proxy for the current mix of furnaces in the State. Assuming typical efficiencies for condensing and non-condensing furnaces and duct losses, the average heating system efficiency is estimated as follows:

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-SHL-AIRS-V01-120601

5.6.2 Basement Sidewall Insulation

DESCRIPTION

Insulation is added to a basement or crawl space. Insulation added above ground in conditioned space is modeled the same as wall insulation. Below ground insulation is adjusted with an approximation of the thermal resistance of the ground. Insulation in unconditioned spaces is modeled by reducing the degree days to reflect the smaller but non-zero contribution to heating and cooling load. Cooling savings only consider above grade insulation, as below grade has little temperature difference during the cooling season.

This measure was developed to be applicable to the following program types: RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

This measure requires a member of the implementation staff or a participating contractor to evaluate the pre and post R-values and measure surface areas. The requirements for participation in the program will be defined by the utilities.

DEFINITION OF BASELINE EQUIPMENT

The existing condition will be evaluated by implementation staff or a participating contractor and is likely to be no basement wall or ceiling insulation.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 25 years¹⁰³⁸.

DEEMED MEASURE COST

The actual installed cost for this measure should be used in screening.

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape R08 - Residential Cooling Loadshape R09 - Residential Electric Space Heat Loadshape R10 - Residential Electric Heating and Cooling

COINCIDENCE FACTOR

The summer peak coincidence factor for cooling is provided in two different ways below. The first is used to estimate peak savings during the utility peak hour and is most indicative of actual peak benefits, and the second represents the *average* savings over the defined summer peak period, and is presented so that savings can be bid into PJM's Forward Capacity Market. Both values provided are based on analysis of Itron eShape data for Missouri,

¹⁰³⁸ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, 2007

calibrated to Illinois loads, supplied by Ameren.

- CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C (during utility peak hour) = 91.5%¹⁰³⁹
- CF_{PJM} = PJM Summer Peak Coincidence Factor for Central A/C (average during PJM peak period) = 46.6%¹⁰⁴⁰

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Where available savings from shell insulation measures should be determined through a custom analysis. When that is not feasible for the program the following engineering algorithms can be used with the inclusion of a to be determined adjustment factor to de-rate the savings.

 $\Delta kWh = (\Delta kWh_cooling + \Delta kWh_heating) * ADJ$

Where:

ADJ	 Adjustment to account for prescriptive engineering algorithms overclaiming savings.
	=TBD ¹⁰⁴¹
∆kWh_cooling	= If central cooling, reduction in annual cooling requirement due to insulation
	= (((1/R_old_AG - 1/(R_added+R_old_AG)) * L_basement_wall_total * H_basement_wall_AG * (1-Framing_factor)) * 24 * CDD * DUA) / (1000 * ηCool))
R_added	= R-value of additional spray foam, rigid foam, or cavity insulation.
R_old_AG	= R-value value of foundation wall above grade.
	$= 2.25^{1042}$
L_basement_wa	II_total = Length of basement wall around the entire insulated perimeter (ft)

¹⁰³⁹ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The AC load during the utility's peak hour is divided by the maximum AC load during the year.

¹⁰⁴⁰ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

¹⁰⁴¹ As discussed in the Technical Advisory Committee call on 2/19/2013 and 2/26/2013, this adjustment factor will be determined and agreed upon through ongoing analysis.

¹⁰⁴² ORNL Builders Foundation Handbook, crawl space data from Table 5-5: Initial Effective R-values for Uninsulated Foundation System and Adjacent Soil, 1991,

http://www.ornl.gov/sci/roofs+walls/foundation/ORNL_CON-295.pdf

H_basement_wall_AG	= Height of insulated basement wall above grade (ft)
--------------------	--

Framing_factor = Adjustment to account for area of framing when cavity insulation is used

- = 0% if Spray Foam or External Rigid Foam
- = 15% if studs and cavity insulation¹⁰⁴³
- 24 = Converts hours to days
- CDD = Cooling Degree Days

= Dependent on location and whether basement is conditioned:¹⁰⁴⁴

Climate Zone (City based upon)	Conditioned CDD 65	Unconditioned CDD 65 ¹⁰⁴⁵
1 (Rockford)	820	263
2 (Chicago)	842	281
3 (Springfield)	1,108	436
4 (Belleville)	1,570	538
5 (Marion)	1,370	570
Weighted Average ¹⁰⁴⁶	947	325

DUA = Discretionary Use Adjustment (reflects the fact that people do not always operate their AC when conditions may call for it).

= 0.75¹⁰⁴⁷

1000 = Converts Btu to kBtu

ηCool = Seasonal Energy Efficiency Ratio of cooling system (kBtu/kWh)

= Actual (where it is possible to measure or reasonably estimate). If unknown assume the following: 1048

Age of Equipment	nCool Estimate

¹⁰⁴³ Based on Oak Ridge National Lab, Technology Fact Sheet for Wall Insulation.

¹⁰⁴⁸ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Central AC was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.

¹⁰⁴⁴ National Climatic Data Center, calculated from 1981-2010 climate normals with a base temp of 65°F. There is a county mapping table in the Appendix providing the appropriate city to use for each county of Illinois.

¹⁰⁴⁵ Five year average cooling degree days with 75F base temp from DegreeDays.net were used in this table because the 30 year climate normals from NCDC used elsewhere are not available at base temps above 72F. ¹⁰⁴⁶ Weighted based on number of occupied residential housing units in each zone.

¹⁰⁴⁷ This factor's source is: Energy Center of Wisconsin, May 2008 metering study; "Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research", p31.

Before 2006	10
After 2006	13

ΔkWh_heating = If electric heat (resistance or heat pump), reduction in annual electric heating due to insulation

= [((1/R_old_AG - 1/(R_added+R_old_AG)) * L_basement_wall_total * H_basement_wall_AG * (1-Framing_factor)) + ((1/(R_old_BG - 1/(R_added+R_old_BG)) * L_basement_wall_total * (H_basement_wall_total - H_basement_wall_AG) * (1-Framing_factor))] * 24 * HDD) / (3,412 * ηHeat))

R_old_BG = R-value value of foundation wall below grade (including thermal resistance of the earth)¹⁰⁴⁹

= dependent on depth of foundation (H_basement_wall_total -H_basement_wall_AG):

Below Grade R-value									
Depth below grade (ft)	0	1	2	3	4	5	6	7	8
Earth R-value (°F-ft ² - h/Btu)	2.44	4.50	6.30	8.40	10.44	12.66	14.49	17.00	20.00
Average Earth R-value (°F-ft2-h/Btu)	2.44	3.47	4.41	5.41	6.42	7.46	8.46	9.53	10.69
Total BG R-value (earth + R-2.25 foundation)	4.69	5.72	6.66	7.66	8.67	9.71	10.71	11.78	12.94

H_basement_wall_total = Total height of basement wall (ft)

HDD

= Heating Degree Days

= dependent on location and whether basement is conditioned¹⁰⁵⁰:

Climate Zone (City based upon)	Conditioned HDD 60	Unconditioned HDD 50
1 (Rockford)	5,352	3,322
2 (Chicago)	5,113	3,079
3 (Springfield)	4,379	2,550
4 (Belleville)	3,378	1,789

¹⁰⁴⁹ Adapted from Table 1, page 24.4, of the 1977 ASHRAE Fundamentals Handbook

¹⁰⁵⁰ National Climatic Data Center, calculated from 1981-2010 climate normals with a base temp of 60°F for a conditioned basement and 50°F for an unconditioned basement), consistent with the findings of Belzer and Cort, Pacific Northwest National Laboratory in "Statistical Analysis of Historical State-Level Residential Energy Consumption Trends," 2004. There is a county mapping table in the Appendix providing the appropriate city to use for each county of Illinois.

5 (Marion)	3,438	1,796
	eighted erage ¹⁰⁵¹	4,860	2,895

ηHeat = Efficiency of heating system

= Actual. If not available refer to default table below¹⁰⁵²:

System Type	Age of Equipment	HSPF Estimate	ηHeat (Effective COP Estimate) (HSPF/3.413)*0.85
Lloot Dump	Before 2006	6.8	1.7
Heat Pump	After 2006	7.7	1.92
Resistance	N/A	N/A	1

For example, a home in Chicago with a 20 by 25 by 7 foot unconditioned basement, with 3 feet above grade, insulated with R-13 of interior spray foam, 10.5 SEER Central AC and 2.26 COP Heat Pump: $\Delta kWh = (\Delta kWh_cooling + \Delta kWh_heating) * ADJ$ = [(((1/2.25 - 1/(13 + 2.25))*(20+25+20+25) * 3 * (1 - 0)) * 24 * 281 * 0.75)/(1000 * 10.5)] + [(((1/2.25 - 1/(13 + 2.25)) * (20+25+20+25) * 3 * (1 - 0)) + ((1 / 8.67 - 1 / (13 + 8.67)) * (20+25+20+25) * 4 * (1 - 0))) * 24 * 3079) / (3412 * 1.92)] * ADJ = (49.3 + 1435) * ADJ = 1480 * ADJ kWh $\Delta kWh_heating = If gas$ *furnace*heat, kWh savings for reduction in fan run time $= \Delta Therms * F_e * 29.3$

> F_e = Furnace Fan energy consumption as a percentage of annual fuel consumption = $3.14\%^{1053}$

29.3 = kWh per therm

¹⁰⁵¹ Weighted based on number of occupied residential housing units in each zone.

¹⁰⁵² These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time means that using the minimum standard is appropriate. An 85% distribution efficiency is then applied to account for duct losses for heat pumps.

 $^{^{1053}}$ F_e is not one of the AHRI certified ratings provided for residential furnaces, but can be reasonably estimated from a calculation based on the certified values for fuel energy (Ef in MMBTU/yr) and Eae (kWh/yr). An average of a 300 record sample (non-random) out of 1495 was 3.14%. This is, appropriately, ~50% greater than the Energy Star version 3 criteria for 2% F_e. See "Programmable Thermostats Furnace Fan Analysis.xlsx" for reference.

For example, a home in Chicago with a 20 by 25 by 7 foot unconditioned basement, with 3 feet above grade, insulated with R-13 of interior spray foam, and a 70% efficient furnace (for therm calculation see Natural Gas Savings section :

= 123 * ADJ kWh

SUMMER COINCIDENT PEAK DEMAND

 $\Delta kW = (\Delta kWh_cooling / FLH_cooling) * CF * ADJ$

Where:

FLH_cooling = Full load hours of air conditioning

= dependent on location¹⁰⁵⁴:

Climate Zone (City based upon)	Single Family	Multifamily
1 (Rockford)	512	467
2 (Chicago)	570	506
3 (Springfield)	730	663
4 (Belleville)	1,035	940
5 (Marion)	903	820
Weighted Average ¹⁰⁵⁵	629	564

CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C (during system peak hour)

= 91.5%¹⁰⁵⁶

 CF_{PJM}

= PJM Summer Peak Coincidence Factor for Central A/C (average during peak period)

= 46.6%¹⁰⁵⁷

¹⁰⁵⁴ Full load hours for Chicago, Moline and Rockford are provided in "Final Evaluation Report: Central Air Conditioning Efficiency Services (CACES), 2010, Navigant Consulting",

http://ilsag.org/yahoo_site_admin/assets/docs/ComEd_PY2_CACES_Evaluation_Report_2010-10-18.299122020.pdf, p.33. An average FLH/Cooling Degree Day (from NCDC) ratio was calculated for these locations and applied to the CDD of the other locations in order to estimate FLH. There is a county mapping table in the Appendix providing the appropriate city to use for each county of Illinois.

¹⁰⁵⁵ Weighted based on number of occupied residential housing units in each zone.

¹⁰⁵⁶ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The AC load during the utility's peak hour is divided by the maximum AC load during the year.

¹⁰⁵⁷ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load

For example, a single family home in Chicago with a 20 by 25 by 7 foot unconditioned basement, with 3 feet above grade, insulated with R-13 of interior spray foam, 10.5 SEER Central AC and 2.26 COP Heat Pump:

 $\Delta kW_{SSP} = 49.3 / 570 * 0.915 * ADJ$

= 0.0791 * ADJ kW

 $\Delta kW_{PJM} = 49.3 / 570 * 0.466 * ADJ$

= 0.0403 * ADJ kW

NATURAL GAS SAVINGS

If Natural Gas heating:

```
ΔTherms = [((1/R_old_AG - 1/(R_added+R_old_AG)) * L_basement_wall_total * H_basement_wall_AG * (1-Framing_factor) + (1/(R_old_BG - 1/(R_added+R_old_BG)) * L_basement_wall_total * (H_basement_wall_total - H_basement_wall_AG) * (1-Framing_factor)] * 24 * HDD) / (ηHeat * 100,067)] * ADJ
```

ηHeat = Efficiency of heating system

= Equipment efficiency * distribution efficiency

= Actual. If unknown assume 70%¹⁰⁵⁸

Other factors as defined above

For example, a home in Chicago with a 20 by 25 by 7 foot unconditioned basement, with 3 feet above grade, insulated with R-13 of interior spray foam, and a 70% efficient furnace:

= ((1/2.25 - 1/(13 + 2.25)) * (20+25+20+25) * 3 * (1-0) + (1/8.67 - 1/(13 + 8.67)) * (20+25+20+25) * 4 * (1 - 0)) * 24 * 3079) / (0.7 * 100,067) * ADJ

= 134 * ADJ therms

during the year.

(0.24*0.92) + (0.76*0.8) * (1-0.15) = 0.70

¹⁰⁵⁸ This has been estimated assuming that natural gas central furnace heating is typical for Illinois residences (66% of Illinois homes have a Natural Gas Furnace (based on Energy Information Administration, 2009 Residential Energy Consumption Survey:

http://www.eia.gov/consumption/residential/data/2009/xls/HC6.9%20Space%20Heating%20in%20Midwest%20R egion.xls))

In 2000, 24% of furnaces purchased in Illinois were condensing (based on data from GAMA, provided to Department of Energy during the federal standard setting process for residential heating equipment - see Furnace Penetration.xls). Furnaces tend to last up to 20 years and so units purchased 10 years ago provide a reasonable proxy for the current mix of furnaces in the State. Assuming typical efficiencies for condensing and non-condensing furnaces and duct losses, the average heating system efficiency is estimated as follows:

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-SHL-BINS-V03-130601

5.6.3 Floor Insulation Above Crawlspace

DESCRIPTION

Insulation is added to the floor above a vented crawl space that does not contain pipes or HVAC equipment. If there are pipes, HVAC, or a basement, it is desirable to keep them within the conditioned space by insulating the crawl space walls and ground. Insulating the floor separates the conditioned space above from the space below the floor, and is only acceptable when there is nothing underneath that could freeze or would operate less efficiently in an environment resembling the outdoors. Even in the case of an empty, unvented crawl space, it is still considered best practice to seal and insulate the crawl space perimeter rather than the floor. Not only is there generally less area to insulate this way, but there are also moisture control benefits. There is a "Basement Insulation" measure for perimeter sealing and insulation. This measure assumes the insulation is installed above an unvented crawl space and should not be used in other situations.

This measure was developed to be applicable to the following program types: RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

This measure requires a member of the implementation staff or a participating contractor to evaluate the pre and post R-values and measure surface areas. The requirements for participation in the program will be defined by the utilities.

DEFINITION OF BASELINE EQUIPMENT

The existing condition will be evaluated by implementation staff or a participating contractor and is likely to be no insulation on any surface surrounding a crawl space.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 25 years¹⁰⁵⁹.

DEEMED MEASURE COST

The actual installed cost for this measure should be used in screening.

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape R08 - Residential Cooling

Loadshape R09 - Residential Electric Space Heat

Loadshape R10 - Residential Electric Heating and Cooling

¹⁰⁵⁹ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, 2007

COINCIDENCE FACTOR

The summer peak coincidence factor for cooling is provided in two different ways below. The first is used to estimate peak savings during the utility peak hour and is most indicative of actual peak benefits, and the second represents the *average* savings over the defined summer peak period, and is presented so that savings can be bid into PJM's Forward Capacity Market. Both values provided are based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren.

CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C (during utility peak hour)

= 91.5%¹⁰⁶⁰

CF_{PJM} = PJM Summer Peak Coincidence Factor for Central A/C (average during PJM peak period)

= 46.6%¹⁰⁶¹

Algorithm

CALCULATION OF SAVINGS

Electric ENERGY SAVINGS

Where available savings from shell insulation measures should be determined through a custom analysis. When that is not feasible for the program the following engineering algorithms can be used with the inclusion of a to be determined adjustment factor to de-rate the savings.

 $\Delta kWh = (\Delta kWh_cooling + \Delta kWh_heating) * ADJ$

carpet with pad

Where:

ADJ	= Adjustment to account for prescriptive engineering algorithms overclaiming savings.
	=TBD ¹⁰⁶²
∆kWh_cooling	= If central cooling, reduction in annual cooling requirement due to insulation
	= (((1/R_old - 1/(R_added+R_old)) * Area * (1-Framing_factor)) * 24 * CDD * DUA) / (1000 * ηCool))
R_old	= R-value value of floor before insulation, assuming 3/4" plywood subfloor and

¹⁰⁶⁰ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The AC load during the utility's peak hour is divided by the maximum AC load during the year.

¹⁰⁶¹ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

¹⁰⁶² As discussed in the Technical Advisory Committee calls on 2/19/2013 and 2/26/2013, this adjustment factor will be determined and agreed upon through ongoing analysis.

	= 4.94 ¹⁰⁶³			
R_added	= R-value of additional s	spray foam, rigid fo	oam, or cavity insulation.	
Area	= Total floor area to be	insulated		
Framing_factor	= Adjustment to account for area of framing			
	= 15% ¹⁰⁶⁴			
24	= Converts hours to days			
CDD	= Cooling Degree Days			
	Climate Zone Unconditioned (City based upon) CDD ¹⁰⁶⁵			
	1 (Rockford) 263			
	2 (Chicago) 281			
	3 (Springfield) 436			

Climate Zone (City based upon)	Unconditioned CDD ¹⁰⁶⁵
1 (Rockford)	263
2 (Chicago)	281
3 (Springfield)	436
4 (Belleville)	538
5 (Marion)	570
Weighted Average ¹⁰⁶⁶	325

DUA = Discretionary Use Adjustment (reflects the fact that people do not always operate their AC when conditions may call for it).

= 0.75 ¹⁰⁶⁷

1000 = Converts Btu to kBtu

ηCool = Seasonal Energy Efficiency Ratio of cooling system (kBtu/kWh)

> = Actual (where it is possible to measure or reasonably estimate). If unknown assume the following:¹⁰⁶⁸

¹⁰⁶⁴ Based on Oak Ridge National Lab, Technology Fact Sheet for Wall Insulation.

¹⁰⁶³ Based on 2005 ASHREA Handbook – Fundamentals: assuming 2x8 joists, 16" OC, ¾" subfloor, ½" carpet with rubber pad, and accounting for a still air film above and below: 0.85 cavity share of area * (0.68 + 0.94 + 1.23 + 0.68) + 0.15 framing share * (0.68 + 7.5" * 1.25 R/in + 0.94 + 1.23 + 0.68) = 4.94

¹⁰⁶⁵ Five year average cooling degree days with 75F base temp from DegreeDays.net were used in this table because the 30 year climate normals from NCDC used elsewhere are not available at base temps above 72F. ¹⁰⁶⁶ Weighted based on number of occupied residential housing units in each zone.

¹⁰⁶⁷ Energy Center of Wisconsin, May 2008 metering study; "Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research", p31.

¹⁰⁶⁸ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Central AC was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.

Age of Equipment	ηCool Estimate
Before 2006	10
After 2006	13

ΔkWh_heating = If electric heat (resistance or heat pump), reduction in annual electric heating due to insulation

= ((1/R_old - 1/(R_added + R_old)) * Area * (1-Framing_factor) * 24 * HDD)/ (3,412 * nHeat))

HDD

= Heating Degree Days¹⁰⁶⁹

Climate Zone (City based upon)	Unconditioned HDD
1 (Rockford)	3,322
2 (Chicago)	3,079
3 (Springfield)	2,550
4 (Belleville)	1,789
5 (Marion)	1,796
Weighted Average ¹⁰⁷⁰	2,895

ηHeat

= Efficiency of heating system

= Actual. If not available refer to default table below:¹⁰⁷¹

System Type	Age of Equipment	HSPF Estimate	ηHeat (Effective COP Estimate) (HSPF/3.413)*0.85
Heat Dump	Before 2006	6.8	1.7
Heat Pump	After 2006	7.7	1.92
Resistance	N/A	N/A	1

Other factors as defined above

¹⁰⁶⁹ National Climatic Data Center, Heating Degree Days with a base temp of 50°F to account for lower impact of unconditioned space on heating system. There is a county mapping table in the Appendix providing the appropriate city to use for each county of Illinois.

¹⁰⁷⁰ Weighted based on number of occupied residential housing units in each zone.

¹⁰⁷¹ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time means that using the minimum standard is appropriate. An 85% distribution efficiency is then applied to account for duct losses for heat pumps.

For example, a home in Chicago with a 20 by 25 footprint, insulated with R-30 spray foam above the crawlspace, a 10.5 SEER Central AC and a newer heat pump:

```
\begin{aligned} \Delta k W h &= (\Delta k W h_cooling + \Delta k W h_heating) * A D J \\ &= [(((1/4.94-1/(30+4.94))*(20*25)*(1-0.15)*24*281*0.75)/(1000*10.5) + ((1/4.94-1/(30+4.94))*(20*25)*(1-0.15)*24*3079)/(3412*1.92)] * A D J \\ &= (35.6+833) * A D J \\ &= 869 * A D J k W h \end{aligned}
```

∆kWh_heating	= If gas <i>furnace</i> heat, kWh savings for reduction in fan run time
	= Δ Therms * F _e * 29.3
F _e	= Furnace Fan energy consumption as a percentage of annual fuel consumption
	= 3.14% ¹⁰⁷²
29.3	= kWh per therm

For example, a single family home in Chicago with a 20 by 25 footprint, insulated with R-30 spray foam above the crawlspace, and a 70% efficient furnace (for therm calculation see Natural Gas Savings section):

 $\Delta kWh = (78 * ADJ) * 0.0314 * 29.3$

= 32 * ADJ kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = (\Delta kWh \ cooling / FLH \ cooling) * CF * ADJ$

Where:

FLH_cooling = Full load hours of air conditioning

= Dependent on location¹⁰⁷³:

¹⁰⁷³ Full load hours for Chicago, Moline and Rockford are provided in "Final Evaluation Report: Central Air Conditioning Efficiency Services (CACES), 2010, Navigant Consulting",

 $^{^{1072}}$ F_e is not one of the AHRI certified ratings provided for residential furnaces, but can be reasonably estimated from a calculation based on the certified values for fuel energy (Ef in MMBTU/yr) and Eae (kWh/yr). An average of a 300 record sample (non-random) out of 1495 was 3.14%. This is, appropriately, ~50% greater than the Energy Star version 3 criteria for 2% F_e. See "Programmable Thermostats Furnace Fan Analysis.xlsx" for reference.

http://ilsag.org/yahoo_site_admin/assets/docs/ComEd_PY2_CACES_Evaluation_Report_2010-10-18.299122020.pdf, p.33. An average FLH/Cooling Degree Day (from NCDC) ratio was calculated for these locations and applied to the CDD of the other locations in order to estimate FLH. There is a county mapping table in the

	Climate Zone (City based upon)	Single Family	Multifamily	
	1 (Rockford)	512	467	
	2 (Chicago)	570	506	
	3 (Springfield)	730	663	
	4 (Belleville)	1,035	940	
	5 (Marion)	903	820	
	Weighted Average ¹⁰⁷⁴	629	564	
,	= Summer System Pea hour) = 91.5% ¹⁰⁷⁵	ık Coincidence Fac	tor for Central A/C	C (during system peak
Л	= PJM Summer Peak (period)	Coincidence Facto	r for Central A/C (average during peak

= 46.6%¹⁰⁷⁶

For example, a single family home in Chicago with a 20 by 25 footprint, insulated with R-30 spray foam above the crawlspace, a 10.5 SEER Central AC and a newer heat pump:

ΔkW_{SSP} = 35.6 / 570 * 0.915 * ADJ

= 0.057 kW

ΔkW_{SSP} = 35.6 / 570 * 0.466 * ADJ

= 0.029 kW

NATURAL GAS SAVINGS

If Natural Gas heating:

CF_{SSP}

 $\mathsf{CF}_{\mathsf{PJM}}$

ΔTherms	= (1/R_old - 1/(R_added+R_old)) * Area * (1-Framing_factor)) * 24 * HDD) / (100,000 * ηHeat) * ADJ
ηHeat	= Efficiency of heating system
	= Equipment efficiency * distribution efficiency

Appendix providing the appropriate city to use for each county of Illinois. ¹⁰⁷⁴ Weighted based on number of occupied residential housing units in each zone.

¹⁰⁷⁵ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The AC load during the utility's peak hour is divided by the maximum AC load during the year.

¹⁰⁷⁶ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

= Actual. If unknown assume 70%¹⁰⁷⁷

Other factors as defined above

For example, a single family home in Chicago with a 20 by 25 footprint, insulated with R-30 spray foam above the crawlspace, and a 70% efficient furnace:

ΔTherms = (1 / 4.94 – 1 /(30 + 4.94))*(20 * 25) * (1 - 0.15) * 24 * 3079) / (100,000 * 0.70) * ADJ

= 78.0 * ADJ therms

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-SHL-FINS-V03-130601

(0.24*0.92) + (0.76*0.8) * (1-0.15) = 0.70

¹⁰⁷⁷ This has been estimated assuming that natural gas central furnace heating is typical for Illinois residences (66% of Illinois homes have a Natural Gas Furnace (based on Energy Information Administration, 2009 Residential Energy Consumption Survey:

http://www.eia.gov/consumption/residential/data/2009/xls/HC6.9%20Space%20Heating%20in%20Midwest%20R egion.xls))

In 2000, 24% of furnaces purchased in Illinois were condensing (based on data from GAMA, provided to Department of Energy during the federal standard setting process for residential heating equipment - see Furnace Penetration.xls). Furnaces tend to last up to 20 years and so units purchased 10 years ago provide a reasonable proxy for the current mix of furnaces in the State. Assuming typical efficiencies for condensing and non-condensing furnaces and duct losses, the average heating system efficiency is estimated as follows:

5.6.4 Wall and Ceiling/Attic Insulation

DESCRIPTION

Insulation is added to wall cavities, and/or attic. This measure requires a member of the implementation staff evaluating the pre and post R-values and measure surface areas. The efficiency of the heating and cooling equipment in the home should also be evaluated if possible.

This measure was developed to be applicable to the following program types: RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

This measure requires a member of the implementation staff or a participating contractor to evaluate the pre and post R-values and measure surface areas. The requirements for participation in the program will be defined by the utilities.

DEFINITION OF BASELINE EQUIPMENT

The existing condition will be evaluated by implementation staff or a participating contractor and is likely to be empty wall cavities and little or no attic insulation.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 25 years¹⁰⁷⁸.

DEEMED MEASURE COST

The actual installed cost for this measure should be used in screening.

DEEMED O&M COST ADJUSTMENTS

N/A

LOADSHAPE

Loadshape R08 - Residential Cooling Loadshape R09 - Residential Electric Space Heat Loadshape R10 - Residential Electric Heating and Cooling

COINCIDENCE FACTOR

The summer peak coincidence factor for cooling is provided in two different ways below. The first is used to estimate peak savings during the utility peak hour and is most indicative of actual peak benefits, and the second represents the *average* savings over the defined summer peak period, and is presented so that savings can be bid into PJM's Forward Capacity Market. Both values provided are based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren.

 ¹⁰⁷⁸ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates,
 2007

- CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C (during utility peak hour) = 91.5%¹⁰⁷⁹
- CF_{PJM} = PJM Summer Peak Coincidence Factor for Central A/C (average during PJM peak period) = 46.6%¹⁰⁸⁰

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Where available savings from shell insulation measures should be determined through a custom analysis. When that is not feasible for the program the following engineering algorithms can be used with the inclusion of a to be determined adjustment factor to de-rate the savings.

 $\Delta kWh = (\Delta kWh_cooling + \Delta kWh_heating) * ADJ$

Where:

ADJ	= Adjustment to account for prescriptive engineering algorithms overclaiming savings.	
	=TBD ¹⁰⁸¹	
∆kWh_cooli	ng = If central cooling, reduction in annual cooling requirement due to insulation	
	((1/R_old - 1/R_wall) * A_wall * (1-Framing_factor) + (1/R_old - 1/R_attic) * A_attic * Framing_factor/2)) * 24 * CDD * DUA] / (1000 * ηCool)	
R_wall	= R-value of new wall assembly (including all layers between inside air and outside air).	
R_attic	= R-value of new attic assembly (including all layers between inside air and outside air).	
R_old	= R-value value of existing assemble and any existing insulation.	
	(Minimum of R-5 for uninsulated assemblies ¹⁰⁸²)	

¹⁰⁷⁹ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The AC load during the utility's peak hour is divided by the maximum AC load during the year.

¹⁰⁸⁰ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

¹⁰⁸¹ As discussed in the Technical Advisory Committee calls on 2/19/2013 and 2/26/2013, this adjustment factor will be determined and agreed upon through ongoing analysis.

¹⁰⁸² An estimate based on review of Madison Gas and Electric, Exterior Wall Insulation, R-value for no insulation in walls, and NREL's Building Energy Simulation Test for Existing Homes (BESTEST-EX).

A_wall	= Total area of insulated wall (ft ²)
--------	---

- A_attic = Total area of insulated ceiling/attic (ft²)
- Framing_factor = Adjustment to account for area of framing
 - = 15%¹⁰⁸³
- 24 = Converts hours to days
- CDD = Cooling Degree Days

= dependent on location¹⁰⁸⁴:

Climate Zone (City based upon)	CDD 65
1 (Rockford)	820
2 (Chicago)	842
3 (Springfield)	1,108
4 (Belleville)	1,570
5 (Marion)	1,370
Weighted Average ¹⁰⁸⁵	947

DUA = Discretionary Use Adjustment (reflects the fact that people do not always operate their AC when conditions may call for it).

= 0.75 ¹⁰⁸⁶

- 1000 = Converts Btu to kBtu
- ηCool = Seasonal Energy Efficiency Ratio of cooling system (kBtu/kWh)

= Actual (where it is possible to measure or reasonably estimate). If unknown assume the following¹⁰⁸⁷:

¹⁰⁸³ Based on Oak Ridge National Lab, Technology Fact Sheet for Wall Insulation. Factor is used directly for walls, but reduced by 1/2 for attics, assuming that the average joist is 5.5" and R-38 requires 11" of cellulose, therefore at each joist, 1/2 the thickness of insulation has been added as between the joists.

¹⁰⁸⁴ National Climatic Data Center, Cooling Degree Days are based on a base temp of 65°F. There is a county mapping table in the Appendix providing the appropriate city to use for each county of Illinois.

¹⁰⁸⁵ Weighted based on number of occupied residential housing units in each zone.

¹⁰⁸⁶ This factor's source is: Energy Center of Wisconsin, May 2008 metering study; "Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research", p31.

¹⁰⁸⁷ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Central AC was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.

Age of Equipment	ηCool Estimate
Before 2006	10
After 2006	13

kWh_heating = If electric heat (resistance or heat pump), reduction in annual electric heating due to insulation

= $[(1/R_old - 1/R_wall) * A_wall * (1-Framing_factor) + (1/R_old - 1/R_attic) * A_attic * (1-Framing_factor/2)) * 24 * HDD] / (\etaHeat * 3412)$

HDD = Heating Degree Days

= Dependent on location¹⁰⁸⁸:

Climate Zone (City based upon)	HDD 60
1 (Rockford)	5,352
2 (Chicago)	5,113
3 (Springfield)	4,379
4 (Belleville)	3,378
5 (Marion)	3,438
Weighted Average ¹⁰⁸⁹	4,860

ηHeat

= Efficiency of heating system

= Actual. If not available refer to default table below¹⁰⁹⁰:

System Type	Age of Equipment	HSPF Estimate	ηHeat (Effective COP Estimate) (HSPF/3.413)*0.85
Heat Pump	Before 2006	6.8	1.7
	After 2006	7.7	1.92
Resistance	N/A	N/A	1

3412 = Converts Btu to kWh

¹⁰⁸⁹ Weighted based on number of occupied residential housing units in each zone.

¹⁰⁹⁰ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time means that using the minimum standard is appropriate. An 85% distribution efficiency is then applied to account for duct losses for heat pumps.

¹⁰⁸⁸ National Climatic Data Center, calculated from 1981-2010 climate normals with a base temp of 60°F, consistent with the findings of Belzer and Cort, Pacific Northwest National Laboratory in "Statistical Analysis of Historical State-Level Residential Energy Consumption Trends," 2004. There is a county mapping table in the Appendix providing the appropriate city to use for each county of Illinois.

For example, a single family home in Chicago with 990 ft² of R-5 walls insulated to R-11 and 700 ft² of R-5 attic insulated to R-38, 10.5 SEER Central AC and 2.26 (1.92 including distribution losses) COP Heat Pump: $\Delta kWh = (\Delta kWh_cooling + \Delta kWh_heating) * ADJ$ = [(((1/5 - 1/11) * 990 * (1-0.15)) + ((1/5 - 1/38) * 700 * (1-0.15/2)) * 842 * 0.75 * 24)/ (1000 * 10.5)] + [(((1/5 - 1/11) * 990 * (1-0.15)) + (1/5 - 1/38) * 700 * (1-0.15/2)) * 5113 * 24) / (1.92 * 3412) * ADJ= (295 + 3826) * ADJ= 4120 * ADJ kWh

∆kWh_heating	= If gas <i>furnace</i> heat, kWh savings for reduction in fan run time	
	= Δ Therms * F _e * 29.3	
F _e	= Furnace Fan energy consumption as a percentage of annual fuel consumption	
	$= 3.14\%^{1091}$	
29.3	= kWh per therm	

For example, a single family home in Chicago with 990 ft² of R-5 walls insulated to R-11 and 700 ft² of R-5 attic insulated to R-38, with a gas furnace with system efficiency of 66% (for therm calculation see Natural Gas Savings section):

ΔkWh = (380 * ADJ) * 0.0314 * 29.3 = 350 * ADJ kWh

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = (\Delta kWh_cooling / FLH_cooling) * CF * ADJ$

Where:

FLH cooling = Full load hours of air conditioning

= Dependent on location as below¹⁰⁹²:

 $^{^{1091}}$ F_e is not one of the AHRI certified ratings provided for residential furnaces, but can be reasonably estimated from a calculation based on the certified values for fuel energy (Ef in MMBTU/yr) and Eae (kWh/yr). An average of a 300 record sample (non-random) out of 1495 was 3.14%. This is, appropriately, ~50% greater than the Energy Star version 3 criteria for 2% F_e. See "Programmable Thermostats Furnace Fan Analysis.xlsx" for reference.

Climate Zone (City based upon)	Single Family	Multifamily
1 (Rockford)	512	467
2 (Chicago)	570	506
3 (Springfield)	730	663
4 (Belleville)	1,035	940
5 (Marion)	903	820
Weighted Average ¹⁰⁹³	629	564

CF_{SSP}

= Summer System Peak Coincidence Factor for Central A/C (during system peak hour)

 CF_{PJM}

= PJM Summer Peak Coincidence Factor for Central A/C (average during peak period)

= 46.6%¹⁰⁹⁵

For example, a single family home in Chicago with 990 ft² of R-5 walls insulated to R-11 and 700 ft² of R-5 attic insulated to R-38, 10.5SEER Central AC and 2.26 COP Heat Pump:

ΔkW_{SSP} = 295 / 570 * 0.915 * ADJ = 0.474 * ADJ kW

 $\Delta kW_{PJM} = 295 / 570 * 0.466 * ADJ$

= 0.241 * ADJ kW

NATURAL GAS SAVINGS

If Natural Gas heating:

```
 \Delta Therms = (((1/R_old - 1/R_wall) * A_wall * (1-Framing_factor) + (1/R_old - 1/R_attic) * A_attic * (1-Framing_factor/2)) * 24 * HDD) / (\eta Heat * 100,067 Btu/therm) * ADJ
```

Where:

¹⁰⁹² Based on Full Load Hours from ENERGY Star with adjustments made in a Navigant Evaluation, other cities were scaled using those results and CDD. There is a county mapping table in the Appendix providing the appropriate city to use for each county of Illinois.

¹⁰⁹³ Weighted based on number of occupied residential housing units in each zone.

¹⁰⁹⁴ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The AC load during the utility's peak hour is divided by the maximum AC load during the year.

¹⁰⁹⁵ Based on analysis of Itron eShape data for Missouri, calibrated to Illinois loads, supplied by Ameren. The average AC load over the PJM peak period (1-5pm, M-F, June through August) is divided by the maximum AC load during the year.

HDD = Heating Degree Days

= Dependent on location¹⁰⁹⁶:

Climate Zone (City based upon)	HDD 60
1 (Rockford)	5,352
2 (Chicago)	5,113
3 (Springfield)	4,379
4 (Belleville)	3,378
5 (Marion)	3,438
Weighted Average ¹⁰⁹⁷	4,860

ηHeat = Efficiency of heating system

= Equipment efficiency * distribution efficiency

= Actual¹⁰⁹⁸. If unknown assume 70% 1099 .

Other factors as defined above

(<u>http://www.bpi.org/files/pdf/DistributionEfficiencyTable-BlueSheet.pdf</u>) or by performing duct blaster testing. ¹⁰⁹⁹ This has been estimated assuming that natural gas central furnace heating is typical for Illinois residences (66% of Illinois homes have a Natural Gas Furnace (based on Energy Information Administration, 2009 Residential

Energy Consumption Survey:

http://www.eia.gov/consumption/residential/data/2009/xls/HC6.9%20Space%20Heating%20in%20Midwest%20R egion.xls)). In 2000, 24% of furnaces purchased in Illinois were condensing (based on data from GAMA, provided to Department of Energy during the federal standard setting process for residential heating equipment - see Furnace Penetration.xls). Furnaces tend to last up to 20 years and so units purchased 10 years ago provide a reasonable proxy for the current mix of furnaces in the State. Assuming typical efficiencies for condensing and non-condensing furnaces and duct losses, the average heating system efficiency is estimated as follows: (0.24*0.92) + (0.76*0.8) * (1-0.15) = 0.70

¹⁰⁹⁶ National Climatic Data Center, calculated from 1981-2010 climate normals with a base temp of 60°F, consistent with the findings of Belzer and Cort, Pacific Northwest National Laboratory in "Statistical Analysis of Historical State-Level Residential Energy Consumption Trends," 2004. There is a county mapping table in the Appendix providing the appropriate city to use for each county of Illinois.

¹⁰⁹⁷ Weighted based on number of occupied residential housing units in each zone.

¹⁰⁹⁸ Ideally, the System Efficiency should be obtained either by recording the AFUE of the unit, or performing a steady state efficiency test. The Distribution Efficiency can be estimated via a visual inspection and by referring to a look up table such as that provided by the Building Performance Institute:

For example, a single family home in Chicago with 990 ft² of R-5 walls insulated to R-11 and 700 ft² of R-5 attic insulated to R-38, with a gas furnace with system efficiency of 66%:

 $\Delta \text{Therms} = (((1/5 - 1/11) * 990 * (1-0.15) + (1/5 - 1/38) * 700 * (1-0.15/2)) * 24 * 5113) / (0.66 * 100,067) * \text{ADJ}$

= 380 * ADJ therms

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE: RS-SHL-AINS-V03-130601