©3 Energy

Assessing Lifetime Savings from Customer

Engagement Programs in Illinois

Customer Engagement Programs

- Customer Engagement Programs (CEPs):
 - Inform customers
 - Motivate customers
 - More than a "behavior change" program
- CEP evaluation uses bill analysis
 - SEE Action / LBNL paper (Todd et al. 2012) contains guidelines

Recent C3 Residential Savings Results

- Consistent online savings of 5-6% per participant
 - CUB Energy Saver: 5.82% (Integral Analytics)
 - CUB Energy Saver: 6.01% (Prof. Matthew Harding of Stanford)
 - Western Mass Saves: 5.70% (Opinion Dynamics & Navigant)
- Online participation generates the greatest energy savings
 - "Customers who utilized the online portal (activated) save more than passive customers" (Opinion Dynamics & Navigant)
 - "As savings are strongly [correlated] with online engagement, further efforts should be made to bring participants to the site more frequently" (Integral Analytics)

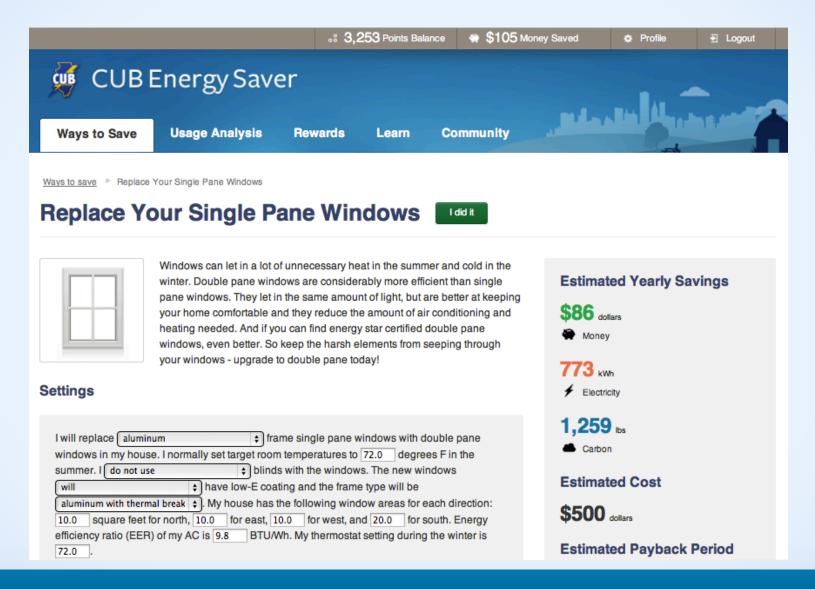
CEP Savings Are Generated both by Technology and by Behavior Change

- CEP participants take two types of energy-saving actions
 - (1) behavior change
 - (2) technology measures
- Behavior change requires continued customer action to generate a savings impact
 - Example: closing blinds in the summer to reduce cooling costs
- A technology measure will continue generating savings without continued customer action
 - Example: replacing an older A/C unit with a more efficient model

CEP Savings Are Generated both by Technology and by Behavior Change

- Across states and within the evaluation community, consensus that CEPs generate technology-based savings
- Based on available evidence up to half of CEP savings are technology-based
 - 49% (C3 data in Illinois)
 - 33% (Navigant study for CPUC)
- Other examples
 - Arkansas TRM Version 2.0
 - SCE work paper on Online Audit tool
 - SEE Action / LBNL paper


Framework for Assessing CEP Measure Life and Lifetime Savings


- Address the "evaluation double-standard"
 - E.g., an efficient air conditioner installed due to a rebate program and an efficient air conditioner installed due to a CEP generate the same savings with the same life
- Leverage available data sets and develop new data sets
 - Survey data
 - Purchase tracking
 - Engagement metrics
 - Other information with insight into the actions participants take to save energy and the proportion of CEP savings that are technology-based
- Use appropriate assumptions
 - E.g., one-year life for behavior change savings
 - Measure life for technology savings from CEPs according to the TRM

CEP Measure Life In the ICC's Procurement Plan

- C3 objected to one-year measure life
- ComEd updated TRC test in response
 - Used the C3 data on participants' actions
 - Analyzed CEP cost-effectiveness separately for behavior change and technology measures
 - Prevented double-counting

- CUB Energy Saver launched in June 2009
 - Currently available to any ComEd residential customer
 - More than 22,000 customers have signed up online to date
 - Approximately 6% savings per online participant
- Personalized savings recommendations
 - "No cost," "low cost," and "home investment" actions to save energy
- Reward points
 - Redeemable for gift cards or discounts at popular retailers
 - Granted to customers who have saved energy

 Energy Saver web portal provides insight on the sources of energy savings

	% of Actions	% of Savings
Behavior	71%	51%
Technology	29%	49%

Conclusion

- CEPs generate energy savings from both behavior change and technology measures
- Insight into actions needed to assess proper measure life
- Important to enable consistent and accurate calculation of costeffectiveness and savings impact
- Stakeholder feedback welcome

©3 Energy

Thank You!

Example Method for Calculating Lifetime Savings from a CEP

- The following equations demonstrate one method for calculating lifetime savings from a CEP
- Lifetime savings from technology measures, $LS_T = \sum_{m=1}^{n} \left(S^V \times \frac{S_m^{R,T}}{S^R} \times EUL_m \right)$
- Lifetime savings from behavior change, $LS_B = \left(S^V \times \frac{S^{R,B}}{S^R}\right)$
- Total lifetime savings = $LS_T + LS_B$
 - S^V = total verified annual energy savings (based on experimental/quasi-experimental bill analysis)
 - SR = total savings from customer-reported actions (technology and behavior)
 - $-S^{R,T}_{m}$ = savings from customer-reported technology measure, m
 - EUL_m = estimated useful life (from elsewhere in TRM) for technology measure, m
 - S^{R,B} = savings from customer-reported behavior change

Example Scenario

- Suppose the CUB Energy Saver web portal recommends 4 energy-saving actions:
 - Closing blinds in the summer (behavior change)
 - Raising thermostat temperature in summer, or lowering in winter (behavior change)
 - Replacing an air conditioner with a more efficient unit (technology measure)
 - Installing smartstrips (technology measure)
- The portal tracks the number of participants who report taking each action
- C3 software estimates the savings from each action based on participantspecific information
- These data can be plugged into the lifetime savings formula
- Other data needed: verified annual energy savings (from independent evaluation) and measure life for each technology action (look up in TRM)

Example Data

Participant	Action	Туре	Est. Savings (kWh/yr)
Α	Blinds	Behav.	268
Α	Smartstrip	Tech.	255
В	Thermostat temp.	Behav.	99
В	Smartstrip	Tech.	246
С	Blinds	Behav.	302
С	Smartstrip	Tech.	252
С	Thermostat temp.	Behav.	93
D	A/C replace	Tech.	192
D	Smartstrip	Tech.	299
D	Blinds	Behav.	279
D	Thermostat temp.	Behav.	112
Е	Thermostat temp.	Behav.	98

Action	Savings (kWh/yr)	% of Total
A/C replace	192	8%
Smartstrip	1,052	42%

Example Calculations

- Assume verified annual energy savings (S^V) = 2,000 MWh
- From the example program data we know savings from behavior as a share of total reported savings (S^{R,B} / S^R) = 50%
 - Lifetime savings from behavior change, $LS_B = 2,000 \text{ MWh} \times 50\% = 1,000 \text{ MWh}$
- From the example program data we know savings from the A/C replacement technology measure as a share of total reported savings $[(S^{R,T}_{A/C \text{ replace}}) / S^R] = 8\%$
 - Assume EUL of an efficient A/C unit = 4 years (per draft TRM)
- Similarly, [(SR,T smartstrip) / SR] = 42%
 - Assume EUL of a smartstrip is also 4 years (per draft TRM)
- Lifetime savings from technology measures, LS_T = 2,000 MWh x 8% x 4 + 2,000 MWh x 42% x 4 = 4,000 MWh
- Total lifetime savings = 1,000 MWh (from behavior) + 4,000 MWh (from technology) = 5,000 MWh

Visual Depiction of CEP Lifetime Savings

■ Savings from Behavior ■ Savings from Technology