

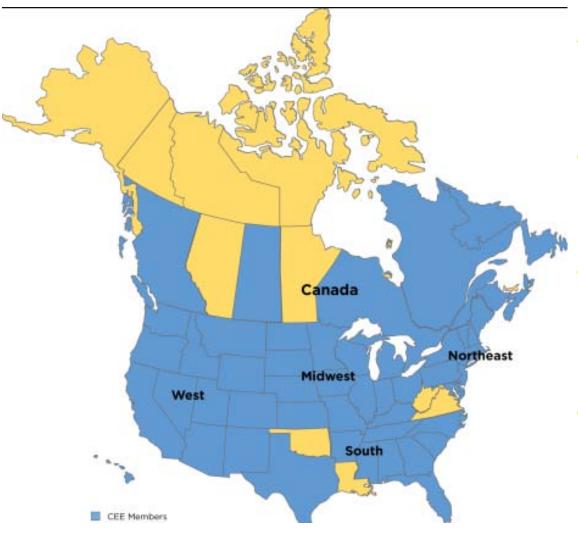
CEE

New Equipment Standards from DOE and **ENERGY STAR Criteria**

Illinois Stakeholder Advisory Group

Kara Rodgers Senior Program Manager November 29, 2011

Summary


- Background
- New DOE Furnace Standards
- New DOE Equipment Standards
- New ES Standards

OUR MISSION

efficiency programs by enhancing communications and harmonizing approaches across programs to advance energy efficiency for the public benefit.

CEE

- > 130 members serve all or part of 45 states and 8 provinces
- 86% of the \$9.1B* total efficiency budget is managed by members
- 2009 EPA Climate Protection Award recognized CEE members approach

CEE is a member-driven nonprofit, governed by a Board of Directors from member organizations

CEE focuses exclusively on member efficiency programs

Members

- Efficiency Program Administrators — CEE members including utilities and non-utilities with ratepayer funded programs
- National Program Sponsors — CEE members such as DOE national labs, state and provincial energy offices, government energy research agencies, national efficiency organizations

Non-Members

- Partners CEE has established relationships with DOE, EPA, EPRI, GTI, AGA, IEE, and trade associations such as AHRI, HARDI, ACCA
- Organizations with private interests, e.g., manufacturers, consultants, program contractors are not members but are consulted about relevant aspects for programs

High Efficiency Residential Gas Heating Initiative

- Launched in 1998, and seeks to
 - Increase the percentage of sales of high efficiency equipment
 - Reduce the cost of high efficiency equipment
 - Increase the number of contractors who promote high efficiency equipment
 - Increase consumer awareness of the components of a quality installation
 - Increase the number of quality installations
- Sets common efficiency specifications voluntarily adopted by CEE members
- Suggests awareness building activities as also being important

Background on Furnace Standards

- EISA allows for the DOE to issue rules on conservations standards
- Jan 2010 comments submitted to DOE to increase standards for Res furnaces, central AC, heat pumps
- Comment period until Oct 17, 2011
- ✓ DOE finalized the rule October 25, 2011, and it will apply May 2013 for non-weatherized (indoor) furnaces and Jan 2015 for remaining measures
- Feb 2012: ENERGY STAR moves to 95% AFUE for Northern states and remains at 90% AFUE for Southern States

Comments submitted by Air-conditioning, Heating, and Refrigeration Institute (AHRI), American Council for an Energy-Efficient Economy (ACEEE), Alliance to Save Energy (ASE), Appliance Standards Awareness Project (ASAP), Natural Resources Defense Council (NRDC), and Northeast Energy Efficiency Partnerships (NEEP)

Timeline for Residential Furnace Efficiency Specifications

May 2013:

U.S. DOE min. standards for furnaces take effect, establishing 80% min. AFUE for U.S. South and 90% AFUE for the U.S. North.

Jan 2015:

U.S. DOE min. standards for weatherized (outdoor) furnaces, A/C and heat pumps take effect.

2010 2011 2012 2013 2014 2015

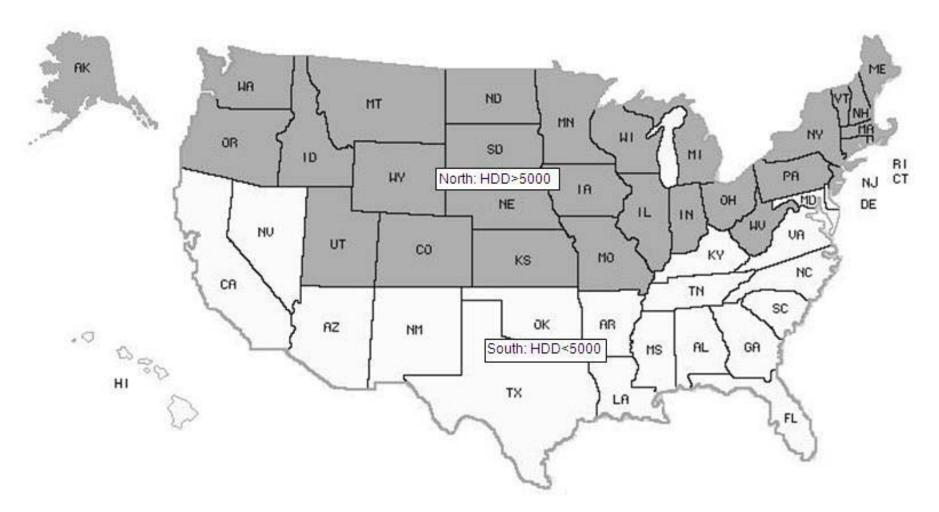
Feb 2012:

ENERGY STAR for Furnaces version 3.0 takes effect, establishing 90% AFUE for the U.S. South and 95% AFUE for the U.S. North

Feb 2013:

ENERGY STAR for Furnaces version 4.0 takes effect, adding cabinet tightness specification

Oct 2014:


California's SCAQMD Rule 1111 takes effect, limiting NOx emissions for **condensing** furnaces to 14 ng/Joule

Oct 2015:

California's SCAQMD Rule 1111 takes effect, limiting NOx emissions for **non-condensing** furnaces to 14 ng/Joule

For the first time, the new DOE standards and ENERGY STAR specs for furnaces are *regional*

New DOE minimum AFUE standards for Non-Weatherized Gas Furnaces* (NWGF), by region

U.S. AND CANADIAN MINIMUM STANDARDS FOR NWGF [*] (U.S. Effective Date May 1, 2013)				
<u>Region</u>	Most Recent New Regulation Minimum Standard			
U.S. South	> 000/	≥ 80%		
U.S. North	≥ 80%	≥ 90%		
Canada ^{††}	≥ 90%			

^{*} Non-Weatherized Gas Furnaces (NWGF) is how these regulations refer to **the majority of standard indoor residential gas furnaces**. Outdoor (weatherized) and space-constrained (mobile home) furnaces are subject to different AFUE standards and compliance on Jan. 1, 2015

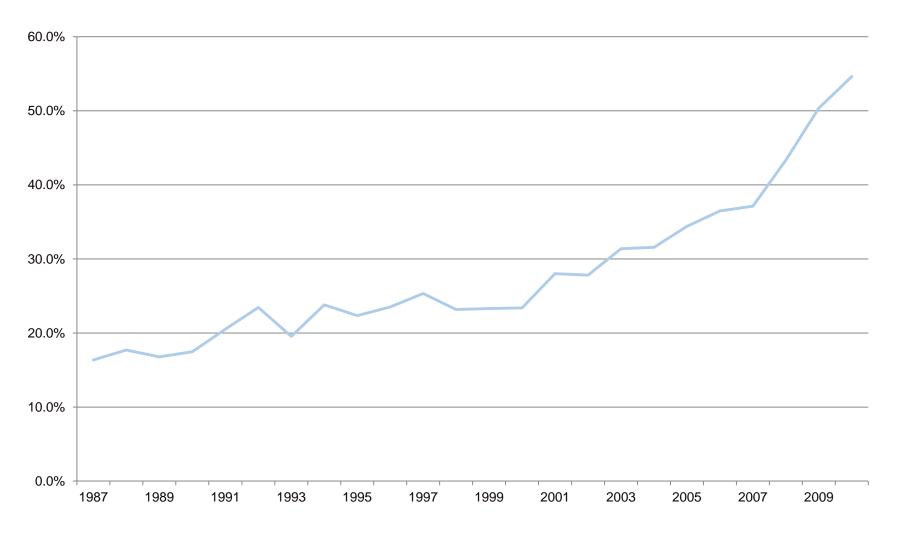
^{††} Canadian standards are *already in effect* as of as of Jan. 1 2010. No new furnaces in Canada will be labeled ENERGY STAR until the new standards take effect in 2015

ENERGY STAR for Furnaces Version 3.0 and Version 4.0

Version 3.0: new regional standards; effective Feb. 1, 2012

Region	AFUE		Furnace Fan	
	<u>Current</u>	<u>Final</u>	Efficiency (e)	
U.S. South	≥ 90%	≥ 90%		
U.S. North	2 90%	≥ 95%	≤ 2.0%	
Canada ^{††}	None	≥ 95%		

New regional label for U.S. South:


Version 4.0: adds new cabinet-leakage specification; effective Feb. 1, 2013

Version 4.0 Additional Specification:				
Air Leakage	Qleak ≤ 2.0%			

^{*} ENERGY STAR is a voluntary EPA labeling program that establishes specifications for energy-efficient products, and grants qualified higher-efficiency products an "ENERGY STAR" label

Tremendous Growth in Shipments of 90%+ AFUE Furnaces

Other 2015 Standards: Central Air Conditioners and Heat Pumps

Product Class	National Standards
Split-system air conditioners	SEER = 13
Split-system heat pumps	SEER = 14 HSPF = 8.2
Single-package air conditioners	SEER = 14
Single-package heat pumps	SEER = 14 HSPF = 8.0
Small-duct, high-velocity systems	SEER = 13 HSPF = 7.7
Space-constrained products – air conditioners	SEER = 12
Space-constrained products – heat pumps	SEER = 12 HSPF = 7.4

Residential Furnace Detail

Product class	National Standards	Northern Region Standards
Non-weatherized gas	AFUE = 80%	AFUE = 90%
Mobile home gas	AFUE = 80%	AFUE = 90%
Non-weatherized oil-fired	AFUE = 83%	AFUE = 83%
Weatherized gas	AFUE = 81%	AFUE = 81%
Mobile home oil-fired	AFUE = 75%	AFUE = 75%
Weatherized oil-fired	AFUE = 78%	AFUE = 78%
Electric	AFUE = 78%	AFUE = 78%

- New Standard: 90% AFUE
 - 90% becomes new baseline
 - Therefore all incremental costs and savings are based on increasing to 95% from 90%
- Efficiency standard is 95% AFUE
 - Currently 80% to 95% AFUE saves 171 therms
 - 90% to 95% AFUE reduces savings to 45 therms
 - > This means nearly 4 times more units need to be sold

- Treatment of Installations costs are the determining factor:
 - Higher installation costs for high efficiency condensing units (90% and 95%)
 - Assuming \$0 incremental labor costs between 90% and 95% results in TRC > 1

Measure	Efficient	Baseline	kWh	Therm	Cost	TRC
AFUE 95 w ECM -	AFUE 95 ECM	AFUE 90 standard				
No Labor**	intermittent motor	motor	345	45.0	\$597	1.24
AFUE 95 - No		AFUE 90 standard				
Labor**	AFUE 95 no ECM	motor	0	45.0	\$72	5.49

Measure	Efficient	Baseline	kWh	Therm	Cost	TRC
ER* -AFUE 95		AFUE 78 standard				
Stage 1	AFUE 95	motor	0	216.0	\$824	0.98

^{**}There is no incremental labor cost between the 90% and the 95% (both are condensing units).

^{*}ER: Early Replacement

Issue #1: Excessive number of units need to be sold

 3 additional units need to be sold that were equivalent savings to one unit previously

Issue #2: Lack of replacement measure

- Furnaces are currenlty 70%+ of therm savings
- Remaining measures can not compensate;
 - Boilers, thermostats, heat pumps, water heaters, insulation, Behavior Modification

Issue #3: Market resistance to install higher efficiency

- Market baseline is 80%
- 90% 95% AFUE is costly and invasive installation
 - 1 stack vs 2 stack; not just a switch and replace
 - Therefore high resistance to install to standard; high preference for repairing old efficiency

Issue #4: Impact of economy

- Incentive does not compensate for total cost to increase from 80% to 95%
- Cost to upgrade: \$4,455
- Incentive: \$125 \$200
- Cost to repair is lower than upgrade

New furnace standard creates a TRANSFORMED MARKET?

