INDUSTRIAL PRIMARY DATA COLLECTION

Methods, status, and preliminary results

DATA COLLECTION APPROACH

Hybrid approach

- » ComEd's industrial customers account for roughly 17% of total nonresidential load and less than 8% of total load (once >10 MW customers removed)
- » Industrial customers highly heterogeneous
 - Difficult to characterize the population from an end-use perspective
 - Primary data collection can be risky in terms of high cost (per site) and representativeness of data
- » Itron team had access to two rich data sets
 - 121 industrial on-site surveys and 527 telephone survey from 2012 baseline study
 - 10 years of industrial custom program and EM&V data
- » Given existing data, we proposed a hybrid approach to characterize industrial baseline
 - Data mining historic program and EM&V data (Summer '19)
 - Conducting in-depth interviews with industrial customers (Summer/Fall '19)
 - Supplement data gaps with results from 2012 baseline study and 2014 MECS (Winter '19/'20)

POTENTIAL MODELING APPROACH

Split estimation of potential from deemed and custom measures

- » Lighting and HVAC will be treated as deemed measures in Dunsky's DEEP model
 - Sufficient stock and technology data available from 2012 Baseline Study to support this
 - Outputs will be estimates of technical, economic, and naturally occurring potential in same form as those for residential and commercial measures
- » All other custom measures will be treated in a top-down approach that leverages available program tracking, evaluation, and billing data
 - Key benefit is that results will be grounded in actual custom project costs and savings and observed behavior in ComEd's specific industrial customer population
 - Also highly transparent

CUSTOM POTENTIAL ASSESSMENT APPROACH

Main calculational steps

- Calculate "eligible" load by high-level project type (kWh)
 - Billing + tracking => non-participant load
 - 2012 BL + MECS => share with end use/opportunity
 - Non-participant load * share with end use = eligible load
- 2) Calculate average project savings <u>as a share of</u> total customer load by project type (%)
 - Tracking + billing
- Multiply eligible load by the average percent savings by project type (kWh potential)

Result is ≈ gross max achievable potential

- » Less than true economic potential
- » Reflects savings potential associated with industrial customers' revealed willingness-to-pay assuming no other market barriers

	Ex Ante kWh	% of Total Ex Ante
Project Type	Savings	kWh Savings
Air Leaks	40,168,982	16%
Compressed Air	61,838,931	25%
Engineered Nozzle	2,133,567	1%
No-Loss Drain	1,613,998	1%
Controls / EMS/ SCADA	19,768,593	8%
Cooling	25,603,443	10%
Refrigeration	11,917,013	5%
VSD/ VFD	21,264,383	9%
HVAC	6,630,199	3%
Lighting	8,078,158	3%
Injection Molding	2,055,035	1%
Other	38,508,577	16%
Pumps & Motors	6,025,888	2%
Total	245,606,769	100%
In Scope	199,017,268	81%

CUSTOM POTENTIAL ASSESSMENT APPROACH

Naturally occurring potential estimation

- Calculate historical average annual gross program savings by project type and extrapolate forward assuming BAU
 - Tracking data
 - Collaborate with ComEd program staff to establish forecast
- 2) Calculate historical average net-to-gross ratio by project type and extrapolate forward assuming BAU
 - EM&V data
 - Collaborate with ComEd program staff to establish forecast
- 3) Multiply forecasted annual gross program savings by (1-NTG)

Result is forecast of program free-ridership

- » Less than true naturally occurring potential
- » Internally consistent with observed customer adoption behavior in ComEd's territory
- » Provides meaningful benchmark against which to evaluate max achievable potential results

INDUSTRIAL CUSTOM POTENTIAL ASSESSMENT

Example for compressed air (draft result)

INDUSTRIAL CUSTOM POTENTIAL ASSESSMENT

Next steps

Custom:

- » Itron will send a memo that lays out custom potential modeling methodology in full detail (including all assumptions) for review/comment by SAG (week of Feb 24th)
- » Itron will send draft custom potential results for review/comment by the SAG (week of March 23rd)

Deemed:

- » Itron will work with Dunsky to develop proposed set of inputs for industrial lighting and HVAC (Feb)
- » Itron will send a memo of proposed inputs for review/comment by SAG (week of March 2nd)
- » Dunsky will incorporate final set of inputs and send draft results for industrial deemed measures for review/comment by the SAG (June 17th – with res and com results)

THANK YOU

