

Prepared for:
ComEd

FINAL

April 4, 2022

Prepared by:

Ben Cheah
Verdant Associates

Kumar Chittory
Verdant Associates
Submitted to:

ComEd
2011 Swift Drive
Oak Brook, IL 60523

Submitted by:

Guidehouse Inc.
150 N. Riverside Plaza, Suite 2100
Chicago, IL 60606

Contact:

Charles Maglione, Partner
703.431.1983
cmaglione@guidehouse.com

Jeff Erickson, Director
608.616.4962
jeff.erickson@guidehouse.com

Nishant Mehta, Associate Director
608.616.5823
nishant.mehta@guidehouse.com

Sagar Phalke,
Managing Consultant
303.493.0350
sagar.phalke@guidehouse.com

This report was prepared by Guidehouse for ComEd. The work presented in this report represents Guidehouse’s professional judgment based on the information available at the time this report was prepared. Use of this report by any other party for whatever purpose should not, and does not, absolve such party from using due diligence in verifying the report’s contents. Neither Guidehouse nor any of its subsidiaries or affiliates assumes any liability or duty of care to such parties, and hereby disclaims any such liability.
Table of Contents

1. Introduction ... 1
2. Program Description ... 2
3. Program Savings Detail .. 3
4. Cumulative Persisting Annual Savings .. 4
5. Program Savings by Measure .. 7
6. Impact Analysis Findings and Recommendations ... 9
Appendix A. Impact Analysis Methodology ... A-1
 A.1 Extrapolating Sample Results to the Population ... A-1
 A.2 Site-Level Savings Methodology .. A-2
Appendix B. Impact Findings Detailed Results .. B-1
Appendix C. Total Resource Cost Detail ... C-1

List of Tables and Figures

Figure 4-1. Cumulative Persisting Annual Savings ... 6
Figure 5-1. Verified Net Savings by End Use Type – Electric 7
Figure B-1. Metered Amp Data for Site 3 .. B-2
Figure B-2. Metered Amp Data for Site 7 .. B-3
Figure B-3. Metered Power Data for Site 29 .. B-4
Table 2-1. Number of Participants and Projects ... 2
Table 3-1. Total Annual Incremental Electric Savings .. 3
Table 4-1. Cumulative Persisting Annual Savings – Electric 5
Table 5-1. Number of Measures by End Use Type ... 7
Table 5-2. Energy Savings by Measure – Electric ... 8
Table A-1. CY2021 IEM Gross Impact Sample by Strata ... A-1
Table B-1. CY2021 Project and Measure-Level Results ... B-1
Table B-2. Site #32 RTU Shut-off and Start-Up Assumptions B-5
Table C-1. Total Resource Cost Savings Summary ... C-1
1. Introduction

This report presents the results of the impact evaluation of the CY2021 Industrial Energy Management (IEM) Program.

It summarizes the total energy and demand impacts for the program broken out by relevant measures and program structure details. The appendices provide the impact analysis methodology and details of the total resource cost (TRC) analysis inputs. CY2021 covers January 1, 2021, through December 31, 2021.
2. Program Description

The IEM Program provides customers with resources to design and implement a customized energy management program. This program is part of the Industrial Systems Program. Cascade Energy implements this program and:

- Helps customers identify no- and low-cost opportunities to reduce their usage
- Provides recommendations and implements energy efficiency measures where capital cost is needed

The low-cost projects are referred to as operations and maintenance (O&M) projects; the savings for these projects are closed out on an annual calendar year cycle. The minimum commitment is 1 year, and the customer has options to renew at the end of the year. For CY2021, the capital measures included refrigeration, variable speed drives (VSD), compressed air, and economizers. The program had 35 participants with savings in CY2021 (see Table 2-1).

<table>
<thead>
<tr>
<th>Participation</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Participants with O&M Measures</td>
<td>35</td>
</tr>
<tr>
<td>Total Participants with Capital Measures</td>
<td>5</td>
</tr>
<tr>
<td>Total Participants</td>
<td>35</td>
</tr>
</tbody>
</table>

Note: Five participants have both capital and O&M measures, so the total number of participants is 35.

Source: ComEd tracking data and evaluation team analysis
3. Program Savings Detail

Table 3-1 summarizes the incremental energy and demand savings the IEM Program achieved in CY2021. There were no gas savings reported for this program, and the evaluation team did not identify any gas savings associated with the program.

Table 3-1. Total Annual Incremental Electric Savings

<table>
<thead>
<tr>
<th>Savings Category</th>
<th>Units</th>
<th>Ex Ante Gross Savings</th>
<th>Program Gross Realization Rate</th>
<th>Verified Gross Savings</th>
<th>Program Net-to-Gross Ratio (NTG) ‡</th>
<th>CY2019 Net Carryover Savings</th>
<th>CY2020 Net Carryover Savings</th>
<th>Verified Net Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric Energy Savings</td>
<td>kWh</td>
<td>10,597,231</td>
<td>1.01</td>
<td>10,668,396</td>
<td>Varies</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Electric Energy Savings - Converted</td>
<td>kWh</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Total Electric Energy Savings</td>
<td>kWh</td>
<td>10,597,231</td>
<td>1.01</td>
<td>10,668,396</td>
<td>Varies</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Summer Peak§ Demand Savings</td>
<td>kW</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: The “Verified Net Savings” in row one (Electric Energy Savings) includes primary kWh savings as a result of measure implementation. It does not include carryover savings, secondary kWh savings from wastewater treatment or electric heating penalties as they don’t apply to this program.

N/A = not applicable (refers to a piece of data that cannot be produced or does not apply).

§ The coincident summer peak period is defined as 1:00-5:00 p.m. Central Prevailing Time on non-holiday weekdays, June through August.

Source: ComEd tracking data and evaluation team analysis
4. Cumulative Persisting Annual Savings

Table 4-1 and Figure 4-1 show the measure-specific and total verified gross savings for the IEM Program and the cumulative persisting annual savings (CPAS) for the measures installed in CY2021. The electric CPAS across all measures installed in 2021 is shown in Table 4-1. The historic rows in each table are the CPAS contribution back to CY2020. Figure 4-1 shows the savings across the effective useful life (EUL) of the measures.

There were no gas savings reported or evaluated for this program, so electric CPAS is equivalent to total CPAS.
Table 4-1. Cumulative Persisting Annual Savings – Electric

<table>
<thead>
<tr>
<th>End Use Type</th>
<th>Research Category</th>
<th>CY2021 Verified Gross Savings (kWh)</th>
<th>Lifetime Net Savings (kWh)†</th>
<th>Verified Net kWh Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>O&M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital Refrigeration</td>
<td>238,957</td>
<td>238,957</td>
<td>238,957</td>
<td>238,957</td>
</tr>
<tr>
<td>Capital VSD</td>
<td>124,370</td>
<td>124,370</td>
<td>124,370</td>
<td>124,370</td>
</tr>
<tr>
<td>Capital Compressed Air</td>
<td>79,373</td>
<td>79,373</td>
<td>79,373</td>
<td>79,373</td>
</tr>
<tr>
<td>Capital Economizer</td>
<td>43,731</td>
<td>43,731</td>
<td>43,731</td>
<td>43,731</td>
</tr>
<tr>
<td>CY2021 Program Total Electric Contribution to CPAS</td>
<td>486,431</td>
<td>486,431</td>
<td>486,431</td>
<td>486,431</td>
</tr>
<tr>
<td>Historic Program Total Electric Contribution to CPAS‡</td>
<td>3,945,821</td>
<td>3,945,821</td>
<td>3,945,821</td>
<td>3,945,821</td>
</tr>
<tr>
<td>Program Total Electric CPAS§</td>
<td>14,468,920</td>
<td>14,468,920</td>
<td>14,468,920</td>
<td>14,468,920</td>
</tr>
<tr>
<td>Program Total Incremental Expiring Electric Savings¶</td>
<td>10,523,099</td>
<td>10,523,099</td>
<td>10,523,099</td>
<td>10,523,099</td>
</tr>
<tr>
<td>O&M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital Refrigeration</td>
<td>43,731</td>
<td>43,731</td>
<td>43,731</td>
<td>43,731</td>
</tr>
<tr>
<td>Capital VSD</td>
<td>79,373</td>
<td>79,373</td>
<td>79,373</td>
<td>79,373</td>
</tr>
<tr>
<td>Capital Compressed Air</td>
<td>124,370</td>
<td>124,370</td>
<td>124,370</td>
<td>124,370</td>
</tr>
<tr>
<td>Capital Economizer</td>
<td>238,957</td>
<td>238,957</td>
<td>238,957</td>
<td>238,957</td>
</tr>
<tr>
<td>CY2021 Program Total Electric Contribution to CPAS</td>
<td>238,957</td>
<td>238,957</td>
<td>238,957</td>
<td>238,957</td>
</tr>
<tr>
<td>Historic Program Total Electric Contribution to CPAS‡</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Program Total Electric CPAS§</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Program Total Incremental Expiring Electric Savings¶</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: The green highlighted cell shows program total first-year electric savings. The gray cells are blank, indicating values irrelevant to the CY2021 contribution to CPAS.

† Lifetime savings are the sum of CPAS savings through the EUL.
‡ Historic savings go back to CY2020.
§ Incremental expiring savings are equal to CPAS Yn-1 - CPAS Yn.
¶ Historic incremental expiring savings are equal to Historic CPAS Yn-1 – Historic CPAS Yn
Program total incremental expiring savings is equal to current year total incremental expiring savings plus historic total incremental expiring savings.

Source: Evaluation team analysis
Figure 4-1. Cumulative Persisting Annual Savings

* Expiring savings are equal to CPAS Yn-1 - CPAS Yn

Source: Evaluation team analysis
5. Program Savings by Measure

The program included the measures shown in Table 5-1 and Figure 5-1.

Table 5-1. Number of Measures by End Use Type

<table>
<thead>
<tr>
<th>End Use Type</th>
<th>Research Category</th>
<th>Total Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>O&M</td>
<td>O&M</td>
<td>35</td>
</tr>
<tr>
<td>Capital</td>
<td>Refrigeration</td>
<td>1</td>
</tr>
<tr>
<td>Capital</td>
<td>VSD</td>
<td>1</td>
</tr>
<tr>
<td>Capital</td>
<td>Compressed Air</td>
<td>2</td>
</tr>
<tr>
<td>Capital</td>
<td>Economizer</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>35</td>
</tr>
</tbody>
</table>

Note: Five participants have both capital and O&M measures, so the total number of participants is 35.

Source: ComEd tracking data and evaluation team analysis

Figure 5-1. Verified Net Savings by End Use Type – Electric

Source: ComEd tracking data and evaluation team analysis

Measure-level energy savings are provided in Table 5-2. These tables provide the verified net energy savings by measure type. The evaluation sample for the IEM participants was drawn at the strata level, not at the measure level. Therefore, the sample results were rolled up to the population rather than at the measure level. The verified gross savings for each research category was estimated by multiplying the realization rate for each end use type with the ex ante
savings estimates. ComEd does not report peak demand reduction for the IEM program, and no peak demand reductions were evaluated.

Table 5-2. Energy Savings by Measure – Electric

<table>
<thead>
<tr>
<th>End Use Type</th>
<th>Research Category</th>
<th>Ex Ante Gross Savings (kWh)</th>
<th>Verified Gross Realization Rate</th>
<th>Verified Gross Savings (kWh)</th>
<th>NTG*</th>
<th>Verified Net Savings (kWh)</th>
<th>EUL (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O&M</td>
<td>O&M</td>
<td>9,969,717</td>
<td>1.01</td>
<td>10,036,668</td>
<td>1.00</td>
<td>10,036,668</td>
<td>5.0</td>
</tr>
<tr>
<td>Capital</td>
<td>Refrigeration</td>
<td>308,263</td>
<td>1.01</td>
<td>310,333</td>
<td>0.77</td>
<td>238,957</td>
<td>20.0</td>
</tr>
<tr>
<td>Capital</td>
<td>VSD</td>
<td>160,442</td>
<td>1.01</td>
<td>161,519</td>
<td>0.77</td>
<td>124,370</td>
<td>15.0</td>
</tr>
<tr>
<td>Capital</td>
<td>Compressed Air</td>
<td>102,394</td>
<td>1.01</td>
<td>103,082</td>
<td>0.77</td>
<td>79,373</td>
<td>13.0</td>
</tr>
<tr>
<td>Capital</td>
<td>Economizer</td>
<td>56,415</td>
<td>1.01</td>
<td>56,794</td>
<td>0.77</td>
<td>43,731</td>
<td>10.0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>10,597,231</td>
<td>1.01</td>
<td>10,668,396</td>
<td>1.00</td>
<td>10,523,099</td>
<td></td>
</tr>
</tbody>
</table>

Source: *ComEd tracking data and evaluation team analysis*
6. Impact Analysis Findings and Recommendations

The evaluation team developed several recommendations for ComEd based on findings from the CY2021 evaluation.

Finding 1. Two sampled participant projects had observed metered data that was quite different from the data the evaluation team expected to see based on the ex ante documentation review. In one example, the project notes stated the pump was running at full speed except for a few hours a week, yet the meter data showed very different findings. Through discussions with the customer, the evaluation team received confirmation and additional data demonstrating that the week of meter data was atypical and should not be used in the calculations. Revising the calculations based on this information increased savings for the measure by 20%. For a second measure, compressor usage was significantly different for two different Tuesdays. In conversations with the site contact, it was clear this was due to production, but no normalization due to production was attempted.

Recommendation 1. Validate any logger data collected and used for savings calculations against expected trends. Graphically representing the data helps the engineer see trends that may not be apparent while looking at the raw data. The following types of questions should be asked when looking at the graphical data:

- Does this data represent the expected operation? If the equipment is supposed to operate at full speed throughout the year, does the logger data reflect that? If the equipment is expected to see reduced usage on weekends, does it?
- Is the data consistent across similar periods (i.e., days of the week, weekends vs. weekdays, nights vs. days, etc.)? If not, are there external factors the data need to be normalized for?
- When extrapolating data to the rest of the year, is the extrapolation reasonable? Are there any seasonal variations that should be accounted for?

Finding 2. For one participant project, only two out of the four chillers were logged. The ex ante calculations assumed that the other two chillers operated in a similar fashion as those logged. However, the two logged chillers showed very different operation, and there was no documentation that suggested the operation of the two non-logged chillers would see similar operation to that of the logged chillers.

Recommendation 2. When extrapolating logger data to other pieces of non-logged equipment, ComEd should ensure the logged data matches the expected operation on the non-logged equipment. When there are large differences in logged results, documentation should be provided to ensure that the extrapolation to non-logged equipment is reasonable.

Finding 3. The ex ante calculations for one participant project utilized a regression model to calculate energy savings which did not include statistically significant variables in its analysis, even when the comparison models created during the ex ante calculations confirmed their significance and those models showed higher R² results. The evaluation team revised the model to include these variables, increasing savings for the model by 11%. Another participant project’s ex ante regression model mentioned the significance of regional precipitation data in
the model but did not account for it in the final model or provide any indication as to why it was not accounted for.

Recommendation 3. When using a regression model to estimate savings, ensure that all statistically significant variables are accounted for in the final model.

Finding 4. In five of the 12 participant projects in the evaluation sample, the ex ante calculations used both regression models to calculate measure savings and bottom-up calculations\(^1\) to calculate savings for measures implemented after the end date used in the regression model. For at least two of these projects, there should have been sufficient time at the end of the year to true up the model to incorporate the latest measures implemented.

Recommendation 4. Whenever possible, utilizing a single method of savings for the project ensures that potential interactions between measures are accounted for.

Finding 5. Summer peak demand savings were not reported for any measures in the population. For some projects, demand savings have been calculated in the project documentation but not reported. There were other projects that may see summer peak demand savings, but they were not calculated.

Recommendation 5. ComEd should calculate and report PJM peak demand savings when applicable.

\(^1\) Bottom-up calculations estimate the savings for each individual measure based on the site-specific or deemed inputs.
Appendix A. Impact Analysis Methodology

The evaluation team used a stratified random sampling approach to select the gross impact sample of 12 IEM participants. The team sorted each set of projects separately based on the level of ex ante kilowatt-hour (kWh) savings and placed the projects in three strata.

Table A-1 provides a profile of the gross impact measurement and verification sample for the IEM participant in comparison with the IEM population. The resulting sample consists of 12 participants. These projects make up approximately 6.1 million kWh, which represents 58% of the ex ante impact reported for the custom project population. The table also shows the ex ante-based kWh sample weights for each of the three strata.

<table>
<thead>
<tr>
<th>Strata</th>
<th>Number of Tracking Records (N)</th>
<th>Ex Ante Gross Savings (kWh)</th>
<th>kWh Weights</th>
<th>Number of Tracking Records (n)</th>
<th>Ex Ante Gross Savings (kWh)</th>
<th>Sampled % of Population kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>3,448,195</td>
<td>0.33</td>
<td>4</td>
<td>3,448,195</td>
<td>100%</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>3,622,277</td>
<td>0.34</td>
<td>4</td>
<td>2,023,887</td>
<td>56%</td>
</tr>
<tr>
<td>3</td>
<td>24</td>
<td>3,526,759</td>
<td>0.33</td>
<td>4</td>
<td>658,063</td>
<td>19%</td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>10,597,231</td>
<td>1.00</td>
<td>12</td>
<td>6,130,145</td>
<td>58%</td>
</tr>
</tbody>
</table>

Source: ComEd tracking data and evaluation team analysis

A.1 Extrapolating Sample Results to the Population

There are two basic statistical methods for combining individual gross realization rates from the sample projects into an estimate of verified gross kWh savings for the population: separate and combined ratio estimation.

- For a **separate ratio estimator**, the evaluation team calculates a separate gross kWh savings realization rate for each stratum and then combines them.
- For a **combined ratio estimator**, the evaluation team completes a single gross kWh savings realization rate calculation without first calculating separate gross realization rates by stratum.

The evaluation team used the separate ratio estimation technique to estimate verified gross impacts for the IEM population. The separate ratio estimation technique follows the steps outlined in the California Evaluation Framework, which identifies best practices in program evaluation. The team matched these steps to the stratified random sampling method used to...
create the sample for the program. The evaluation team used the standard error to estimate the error bound around the estimate of verified gross impacts.

A.2 Site-Level Savings Methodology

For CY2021, the evaluation team reviewed a sample of participants. The team calculated gross savings for the CY2021 IEM Program using the implementer-provided calculation methodologies—either whole building regression-based models or bottom-up engineering calculations for each measure. The team took the following steps for each project:

- Reviewed the ex ante documentation provided by ComEd, namely the site reports and the final calculation workbooks or models.
- For whole building regression-based models:
 - Replicated the final and all alternative baseline models to ensure the accuracy of the reported baseline and validated that the variables employed (and their resulting parameter estimates) were intuitive and defensible.
 - Verified the input data did not include outliers in the baseline and impact estimation periods and made sure any deviations to the normal operation were either removed or explained. This included ensuring that any out-of-model adjustments were correctly implemented. For these projects, no further follow-up with the site contact was necessary.
 - Reviewed alternate models to ensure the final ex ante model provided the best representation of savings. For these projects, the evaluation team agreed with the models and no changes were made.
- For measure-specific bottom-up engineering calculations:
 - Reviewed each measure individually to ensure an appropriate algorithm was used and applicable inputs and assumptions went into those algorithms.
 - Analyzed logging data for outliers in the baseline and impact estimation periods and made sure any deviations to the normal operation were either removed or explained.
 - Interviewed site contacts where necessary about pre- and post-improvement facility and equipment operation and runtimes, equipment assumptions in the workbooks, and any other questions that arose from the ex ante workbook reviews.
 - Identified measures that would run at full load during the summer peak period and where peak demand reduction could be calculated.

- Modified the overall models as needed, either from the data reviews or from the interviews with the site contact. No changes were made to any of the engineering adjustment factors.

5 PJM defines the coincident summer peak period as 1:00-5:00 p.m. Central Prevailing Time on non-holiday weekdays, June through August.
• Reviewed the approach taken to annualize the savings, ensuring that whole building regression-based models were weather-normalized and measure-specific bottom-up engineering calculations accounted for any annual facility or equipment downtime.

• Calculated a final realization rate for each project based on any changes made to the models.
Appendix B. Impact Findings Detailed Results

Table B-1 provides site-level impacts. Most participants received only minor changes to their savings.

Table B-1. CY2021 Project and Measure-Level Results

<table>
<thead>
<tr>
<th>Participant</th>
<th>Measure Type</th>
<th>Ex Ante Gross Savings (kWh)</th>
<th>Verified Gross Realization Rate</th>
<th>Verified Gross Savings (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>O&M</td>
<td>1,114,676</td>
<td>1.00</td>
<td>1,114,676</td>
</tr>
<tr>
<td>3</td>
<td>O&M</td>
<td>813,141</td>
<td>1.16</td>
<td>946,788</td>
</tr>
<tr>
<td>4</td>
<td>O&M</td>
<td>793,483</td>
<td>1.00</td>
<td>793,483</td>
</tr>
<tr>
<td>5</td>
<td>O&M</td>
<td>726,895</td>
<td>1.00</td>
<td>726,895</td>
</tr>
<tr>
<td>6</td>
<td>O&M</td>
<td>412,357</td>
<td>1.00</td>
<td>412,357</td>
</tr>
<tr>
<td>7</td>
<td>O&M</td>
<td>689,267</td>
<td>0.95</td>
<td>653,811</td>
</tr>
<tr>
<td>8</td>
<td>O&M & Capital</td>
<td>391,714</td>
<td>1.00</td>
<td>391,714</td>
</tr>
<tr>
<td>9</td>
<td>O&M</td>
<td>530,549</td>
<td>1.00</td>
<td>530,549</td>
</tr>
<tr>
<td>13</td>
<td>O&M</td>
<td>79,140</td>
<td>1.00</td>
<td>79,140</td>
</tr>
<tr>
<td>14</td>
<td>O&M & Capital</td>
<td>159,128</td>
<td>1.02</td>
<td>163,024</td>
</tr>
<tr>
<td>29</td>
<td>O&M & Capital</td>
<td>77,696</td>
<td>1.00</td>
<td>77,696</td>
</tr>
<tr>
<td>32</td>
<td>O&M & Capital</td>
<td>342,099</td>
<td>0.99</td>
<td>338,386</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>6,130,145</td>
<td>1.02</td>
<td>6,228,518</td>
</tr>
</tbody>
</table>

Note: The verified gross realization rates are based on the sampled projects and are unweighted.
Source: ComEd tracking data and evaluation team analysis

Only participants 3 and 7 saw changes that affected their overall savings by 5% or more. The following list includes descriptions of the changes made to project savings, along with additional project-level findings.

Participant 3: Two major changes were made to the ex ante savings for this project, affecting savings significantly.

- The first is related to the regression-based savings calculated for this project. The ex ante regression model used to calculate savings for the project accounted for only a single independent variable, claiming other variables like flow rates and weather were not statistically significant. The evaluation team found this to be incorrect, and the ex ante comparison models provided in the documentation confirmed the significance of the variables. Furthermore, the single variable in the original ultraviolet (UV) disinfectant model was binary, resulting in just two possible baseline values. The evaluation team revised the model to include influent flow data and cooling degree days as independent variables in addition to the UV disinfectant flag, which was used in the ex ante model. The inclusion of this data increased the model's R² value from 0.37 in the ex ante model to 0.54 in the evaluation model. This increased savings for the regression-based model by 11%.

Guidehouse Inc. Page B-1
• The second change had to do with the measure that was calculated using a bottom-up calculation approach. The measure involved taking pumps and blowers permanently offline. The documentation noted the pump was running at full speed except for a few hours a week. However, as Figure B-1 shows, the week of metered data provided showed very different findings. Through discussions with the customer, the evaluation team received confirmation and additional data demonstrating that the week of meter data was atypical and should not be used in the calculations. Revising the calculations based on this information increased savings for the measure by 20%.

![Figure B-1. Metered Amp Data for Site 3](source: ComEd project documentation for Site 3)

Participant 7: Multiple measures are implemented at this facility. One measure involved decreasing the use of the four chillers at the facility due to disabling the hot gas bypass, which created an artificial load on the chillers.

• Three of the four chillers had their amps logged between August 5, 2020, at 2:15 p.m. through August 27, 2020, at 11:05 p.m. However, the average amps, which was used to determine the baseline energy consumption, only used logging data through August 6, 2020, at 3:30 p.m. The evaluation team recalculated the baseline average amps using the full period of logger data. The team removed zeros at the beginning of the logging period and zeros at the end of the logging period but kept the data in the middle that showed a day and a half of downtime. This decreased the overall average amps for the chillers, decreasing the baseline usage by 3% and the savings for that measure by 10%.

• For the post case, the energy consumption for the same measure was again based on logged amp data but using only two of the four chillers (chillers 1 and 3). The ex ante calculations assumed chillers 2 and 4 had a similar operation to chillers 1 and 3. The problem is that chillers 1 and 3 have very different operation, as Figure B-2 shows. There is no documentation suggesting chillers 2 and 4 operate similarly to chillers 1 and 3. The evaluation team tried to verify the operation of chillers 2 and 4 but was unsuccessful.
Participant 14: The facility installed an air compressor sequencer, which, according to the Final Energy Report, was designed to efficiently stage the facility’s four air compressors. There were five total compressors at the facility, but the documentation states that one failed in late June 2020, prior to installation of the sequencer. Notes state that it may be replaced, but discussions with the Compressed Air Contractor revealed that the compressor was never replaced.

The baseline operation for these compressors appeared to be established using metered data from all five compressors. Two in the boiler room, one on the fourth floor, and two in the RO room. The data loggers monitored the amps for each compressor, along with the total discharge pressure for each of the three rooms. This data was then aggregated into groups by flow rate. However, the final calculations were hardcoded, and it wasn’t completely clear how the final numbers were calculated.

The evaluation team attempted to replicate the savings, which increased the overall savings for this capital measure, which increased savings for the overall project by 2%.

Participant 29: This site installed a central management control system on its compressed air system. The documentation stated that prior to the controls, all four air compressors ran continuously to provide system reliability and redundancy, but not all of them were required to meet system demand most of the time. The control system was designed to start and stop the compressors and adjust the capacities to deliver air based on a single setpoint using the minimum number of compressors. The issue the evaluation team uncovered is in terms of seasonal runtimes. The total compressor power during the pre- and post-periods, based on the logger data, is shown in Figure B-3. The periods highlighted in red are Tuesdays and highlighted in green are Saturdays. The site contact confirmed the facility experiences a lower production on Saturdays and occasionally on Tuesdays, especially after Labor Day, as this facility produces hot dogs and hamburgers. Both the pre- and the post-data shows a reduction.
in power usage on Saturdays. The pre-data shows small dips in Tuesday production, while the
post-data shows one Tuesday with a clear reduction, but the other Tuesday as normal
production. No normalization to production was performed to ensure these savings are due to
the compressed air controls and not just based on changes in operation on Tuesdays.

Figure B-3. Metered Power Data for Participant 29

![Graph showing pre and post metered power data for Participant 29](source: ComEd project documentation for Participant 29)

The evaluation team received weekly production data from the site contact. The data confirmed
a reduction in production during the post-metering period production compared to the pre-
metering period. However, the weekly data provided was not granular enough to normalize the
energy consumption based on this production data. Therefore, the evaluation team did not
make any adjustments to the ex ante savings estimate, but crafted Recommendation 1 in
Section 6 based on the findings for this site.

Participant 32: This facility installed VFDs on RTU supply fans. The baseline energy usage
was established using metered amperage data on each of the 4 RTUs for most of April 2021.
The post-installation energy usage was established using approximately two weeks of metered
amperage data in early December 2021. Energy savings were calculated using a binned
analysis. The project savings calculations accounted for the fact that the site contact informed
the implementation team that RTU #1 and #3 would be shut off until spring, and RTU #2 could
be shut down when temperatures are consistently below freezing. The ex ante calculations
assumed the following shut down and start up dates for each RTU, as shown below in Table B-
2.

When the evaluation team verified these shut off and start up dates with the customer, the
customer noted that the dates looked reasonable, but that RTU #2 was still running. Based on
the reminder, they went ahead and shut it off manually and planned on starting it back up again on March 1st. The evaluation team revised the savings estimates to account for only 8 days of downtime for RTU #2, rather than the estimated 45 days. This reduced the measure’s savings by just over 2%, but only affected the entire project by about 1%.

Table B-2. Participant #32 RTU Shut-off and Start-Up Assumptions

<table>
<thead>
<tr>
<th>RTU #</th>
<th>Shut-off Date</th>
<th>Start-up Date</th>
<th>Total Days Off</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTU-1</td>
<td>12/23/2021</td>
<td>3/1/2021</td>
<td>68</td>
</tr>
<tr>
<td>RTU-2</td>
<td>1/15/2021</td>
<td>3/1/2021</td>
<td>45</td>
</tr>
<tr>
<td>RTU-3</td>
<td>12/23/2021</td>
<td>3/1/2021</td>
<td>68</td>
</tr>
<tr>
<td>RTU-4</td>
<td>N/A</td>
<td>N/A</td>
<td>0</td>
</tr>
</tbody>
</table>

Source: ComEd project documentation for Participant 32
Appendix C. Total Resource Cost Detail

Table C-1 shows the TRC cost-effectiveness analysis inputs available at the time of finalizing this impact evaluation report. This table does not include additional required cost data (e.g., measure costs, program-level incentives, and non-incentive costs). ComEd will provide this data to the evaluation team later.

Table C-1. Total Resource Cost Savings Summary

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O&M</td>
<td>O&M Participant</td>
<td>35</td>
<td>5.0</td>
<td>NO</td>
<td>10,036,668</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.00</td>
<td>1.00</td>
<td>N/A</td>
<td>10,036,668</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.00</td>
<td>1.00</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital</td>
<td>Refrigeration</td>
<td>1</td>
<td>20.0</td>
<td>NO</td>
<td>310,333</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.77</td>
<td>0.78</td>
<td>N/A</td>
<td>238,957</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.77</td>
<td>0.78</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital</td>
<td>VSD Participant</td>
<td>1</td>
<td>15.0</td>
<td>NO</td>
<td>161,519</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.77</td>
<td>0.78</td>
<td>N/A</td>
<td>124,370</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.77</td>
<td>0.78</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital</td>
<td>Compressed Air</td>
<td>2</td>
<td>13.0</td>
<td>NO</td>
<td>103,082</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.77</td>
<td>0.78</td>
<td>N/A</td>
<td>79,373</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.77</td>
<td>0.78</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital</td>
<td>Economizer</td>
<td>1</td>
<td>10.0</td>
<td>NO</td>
<td>58,794</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.77</td>
<td>0.78</td>
<td>N/A</td>
<td>43,731</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.77</td>
<td>0.78</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>5.7</td>
<td></td>
<td></td>
<td></td>
<td>10,668,396</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.77</td>
<td>0.78</td>
<td>10,523,099</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.77</td>
<td>0.78</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: To avoid double counting, the verified gross kWh and net kWh used in the TRC analysis exclude secondary energy savings from water reduction measures.
* The total of the EUL column is the weighted average measure life (WAML) and is calculated as the sum product of EUL and measure savings divided by total program savings.
† Early replacement (ER) measures are flagged as YES, otherwise a NO is indicated in the column.
Source: ComEd tracking data and evaluation team analysis