Innovative Energy Efficiency Trends

Dan York, Ph.D., Senior Fellow Illinois Energy Efficiency Stakeholder Advisory Group 17 Sept 2019. Chicago

The American Council for an Energy-Efficient Economy is a nonprofit 501(c)(3) founded in 1980. We act as a catalyst to advance energy efficiency policies, programs, technologies, investments, & behaviors.

Our research explores economic impacts, financing options, behavior changes, program design, and utility planning, as well as US national, state, & local policy.

Our work is made possible by foundation funding, contracts, government grants, and conference revenue.

aceee.org @ACEEEdc

Outline

1. Framing the Challenge

2. Emerging Program Design Approaches

- Integrated Programs
- New Emerging Approaches
- New Segments

3. Promising Technologies

Transformation and evolution of customer EE programs and technologies

What's next?

Where to find new savings?

Savings from energy-efficient lighting

- Typically have been single largest source of savings in portfolios
- More stringent codes and standards along with rapid technological/market changes → squeezing available program savings

New expectations for programs: longer-term savings, alignment with carbon reduction, achieving energy equity/reducing energy burdens

Big questions: What's next? Where will large savings come from to meet savings targets (from EERS and IRPs)?

Emerging program areas Most common among ~50 largest utilities

- Midstream programs
- Data centers
- Quality HVAC installation
- High efficiency consumer electronics (residential)
- Conservation voltage reduction (CVR)
- Pilot programs

Emerging program areas Next most common (~50 largest utilities)

- Advanced space-heating heat pumps
- Commercial and industrial geo-targeting
- Energy use feedback to consumers in real time
- High-efficiency residential clothes dryers
- Reduction of plug and miscellaneous loads in commercial buildings

Utility transformation: Rapid rise of Distributed Energy Resources (DERs)

Impacts of DERs \rightarrow need for flexible grid (impact of solar on California demand curve)

Impact of wind production in the Midwest

Help from rapid rise of smart technologies

- Connected
- Communicating
- Integrated
- Responsive
- Data-rich

- Real-time
- Diagnostic
- Analytical
- Predictive
- Learning

Integrated energy efficiency (EE)/demand response (DR) programs offer many benefits

- Example: Baltimore Gas & Electric
- Quick Home Energy Check-up with PeakRewards
- 2017-18 results
 - 1062 MWh savings
 - 330 MW savings
- Program in a nutshell
 - On-site assessment, direct-install measures—WiFi t-stat
 - Enroll in DR
 - Primary driver: increase customer satisfaction
 - Parallel AMI enabled, peak-time rebate program 1 million customers – can participate in both programs

Integrated EE/DR

- Example: Entergy Arkansas
- Home Energy Solutions

2017 results

- 25,757 MWh savings
- 10.1 MW savings
- 7,733 participants

Program in a nutshell

- Home energy assessments direct installation
- Option to enroll in WiFi t-stat DR program

Despite benefits—are still few fully integrated EE/DR programs

- Of 44 utility plans ACEEE reviewed, found only 5 at highest level of integration
- Only 22 programs with some degree of integration

Grid-interactive efficient buildings (GEBs) Smart, connected buildings

- Grid connectivity is rapidly becoming important --- response to/need created by rapid growth of DERS
- GEBs: Energy-efficient buildings with the ability to be demand flexible
- No real programs yet---mostly research and demonstration projects

GEB: Connected, smart, efficient building

(all of the above---connected to and interacting with the grid)

DERs, GEBs, IoT, DERMS, M&V 2.0, Big Data Welcome to the revolution!

- Rapid convergence of technologies that yield high performance buildings and high performance grid operation
- DR as "facilitator of the new electricity ecosystem"
- Platform to integrate distributed resources –distributed energy resource management systems (DERMS)
- New market and pricing opportunities
- Increased savings via behavioral and operational efficiency initiatives
- EE and DR as players in capacity markets—getting "real!"

Other evolving program approaches and opportunities

End-uses

- Controlled environment agriculture
- Energy storage

Approaches

- Energy as a service
- Utility marketplaces
- Strategic energy management
- Dual fuel programs
- Usage-based program targeting and customer segmentation (use of AMI – big data)

Controlled Environment Agriculture

- Large and rapidly growing industry: \$47 billion in 2017 estimated growth of 3.4% from 2018-2023
- Energy-intensive:
 - Lighting
 - Space heating/cooling optimal growing conditions
 - Year-round load
- Illinois in front of the curve for legalized cannabis
 - Strict energy efficiency standards for indoor ag
 - Sets maximum lighting power density allowed and HVAC efficiency requirements
 - Requires energy data reporting

Energy as a Service (EaaS)

- Biz model: service provider owns equipment; customer pays for services provided (e.g., lighting, heating, cooling)
- EaaS provider works with ESCO/EE contractor to design, install and maintain equipment
- Customer contracts with EaaS: *Energy* Services Agreement
- No upfront capital expenditure by customer
- EaaS provider has incentive for high efficiency

Utility Marketplaces

- On-line markets for energy-efficient products and services
- Mass market approach
 - Reduce barriers: information, availability, convenience
 - Trusted source

Strategic Energy Management

SEP

Verified energy performance and ISO 50001

ISO 50001

Standard Energy Management System (EnMS) framework for global industrial operations

Foundational Energy Management (e.g., ENERGY STAR For Buildings & Plants) Superior Energy Performance (SEP):

- Verifies measured results internal credibility
- Rigorous third-party measurement and verification
- External stakeholder recognition of achievement
- Marginal effort beyond ISO 50001
- ISO standard for Energy Management Systems EnMS
- Similar framework to ISO 9001 and ISO 14001
- Certifiable EnMS, SEM program

- Transition from project to systematic approach
- Many utility SEM programs operate at this level

Expanding programs to new and underserved customer segments

- Multifamily
- Small business
- Rural
- Indoor agriculture
- Low-income/income qualified

Promising EE technologies (on the horizon – selected set)

- Combined, integrated control systems for commercial lighting and HVAC (smart buildings)
- Expanded smart manufacturing
- High-rise elevator motor upgrades
- Very efficient packaged AC units
- Window attachments

Diversity of EE resources

No single dominant resource in future portfolios

Large reductions in miscellaneous plug loads	3.4%
Conservation voltage reduction	2.1%
New construction programs	1.9%
Comprehensive commercial retrofits	1.7%
Smart manufacturing	1.6%
High efficiency residential air conditioners and heat pumps	1.5%
Combined heat and power systems	1.3%
Advanced commercial lighting design and controls	1.3%
High efficiency heat pumps replacing electric resistance	1.2%
furnaces	
Smart commercial buildings	1.2%

Savings are percentage of total electricity demand in 2030 (above values are from medium scenario in ACEEE analysis *New Horizons for Energy Efficiency Report* – 2015)

Tomorrow's EE portfolios will be characterized by:

- Diversified technologies/end uses, whole building/systems solutions
- Smart, connected, integrated technologies (demand response, storage, DERs, GEBs)
- Expanded choices--growth of customer markets, expanded pricing options
- Behavior change programs and approaches
- Targeting new and underserved customer segments
- Striving for energy equity—reducing energy burdens

ACEEE resources

- Integrated Energy Efficiency and Demand Response Programs. <u>https://aceee.org/research-report/u1906</u>
- Smart Buildings: A Deeper Dive into Market Segments. https://aceee.org/research-report/a1703
- Intelligent Efficiency Technology and Market Assessment. <u>https://aceee.org/research-report/ie1701</u>
- Emerging Opportunities Topic Briefs:
 - Controlled Environment Agriculture: <u>https://aceee.org/topic-brief/indoor-ag</u>
 - Energy as a Service: <u>https://aceee.org/topic-brief/eo-energy-as-service</u>
 - Residential Window Attachments: <u>https://aceee.org/topic-brief/eo-window-attachments</u>
 - Achieving Deeper Energy Savings through Integrated Building Systems: <u>https://aceee.org/topic-brief/eo-building-systems</u>

Thanks – for more info ... questions ... contact

Dan York Email: <u>dwyork@aceee.org</u> Phone: 608-243-1123

Other staff

